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Abstract  

The basic idea of traditional density estimation is to model the overall point density analytically as the 
sum of influence functions of the data points. However, traditional density estimation techniques only 
consider the location of a point. Supervised density estimation techniques, on the other hand, additionally 
consider a variable of interest that is associated with a point. Density in supervised density estimation is 
measured as the product of an influence function with the variable of interest.  Based on this novel idea, a 
supervised density-based clustering named SCDE is introduced and discussed in detail. The SCDE 
algorithm forms clusters by associating data points with supervised density attractors which represent 
maxima and minima of a supervised density function.  Results of experiments are presented that evaluate 
SCDE for hot spot discovery and co-location discovery in spatial datasets. Moreover, the benefits of the 
presented approach for generating thematic maps are briefly discussed.  
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Abstract  

The basic idea of traditional density estimation is to model the overall point density analytically 
as the sum of influence functions of the data points. However, traditional density estimation 
techniques only consider the location of a point. Supervised density estimation techniques, on the 
other hand, additionally consider a variable of interest that is associated with a point. Density in 
supervised density estimation is measured as the product of an influence function with the 
variable of interest.  Based on this novel idea, a supervised density-based clustering named 
SCDE is introduced and discussed in detail. The SCDE algorithm forms clusters by 
associating data points with supervised density attractors which represent maxima and minima of 
a supervised density function.  Results of experiments are presented that evaluate SCDE for hot 
spot discovery and co-location discovery in spatial datasets. Moreover, the benefits of the 
presented approach for generating thematic maps are briefly discussed.  

I. INTRODUCTION 

The goal of density estimation techniques [1] is to model the distribution of the underlying population from the 
sample data collected. This technique measures the density at a point according to the impact of other points 
observed within its neighborhood using influence functions—the influence of a point on another point decreases as 
their distance increases. Density at a point is measured as the sum of the influences of data points in its 
neighborhood.  

However, traditional density estimation techniques only consider the spatial dimension of data points ignoring 
non-spatial information. In this paper, we propose a novel density estimation technique called supervised density 
estimation. It differs from the traditional density estimation by additionally considering a non-spatial variable of 
interest in its influence function. The new influence function is defined as the product of a traditional influence 
function and the variable of interest.  

In the remainder of this paper we will try to convince the reader that this generalization leads to novel 
applications for spatial data mining. One direct application of supervised density estimation techniques is the 
generation of thematic maps for a selected variable [11]. Thematic maps can serve as a visual aid to the domain 
experts for quickly identifying the interesting regions for further investigations or for finding relations between 
different features. Another application for supervised density estimation techniques is hot spot discovery in spatial 
datasets. For example, we might be interested in identifying regions of high risk from earthquakes, based on the 
past earthquakes that are characterized by longitude, latitude, and severity of the earthquake measured using the 
Richter scale. Algorithms to find such hot spots will be proposed in this paper.  

The main contributions of the paper include: the introduction of a novel supervised density estimation technique 
(discussed in Section 3), the proposal of a new supervised density-based clustering algorithm called SCDE 
(discussed in Section 4) that operates on the top of supervised density functions, and the evaluation of the proposed 
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techniques for applications that originate from geology, planetary, and environmental sciences (discussed in Section 
5). 

 

II. RELATED WORK 

Many clustering algorithms exist for spatial data mining [11]; among them, density-based algorithms [4, 6, 7, and 
16] have been found to be most promising for discovering arbitrary shaped clusters. DBSCAN [4] uses a 
straightforward definition for a density function which counts the number of points within a predefined radius. Its 
main drawbacks are the need for parameter tuning and poor performance for datasets having varying density. 
DENCLUE [6] uses kernel density estimation techniques and its clusters are formed by associating objects with 
maxima of the so-defined density function, relying on a steepest decent hill climbing procedure. DENCLUE 2.0 
[21] improves the original algorithm by using a different hill climbing technique. 

Methods of finding hot spots in spatial datasets have been investigated in the past both explicitly and implicitly. 
Because hot spots represent clusters with respect to spatial coordinates, their detection lies at the heart of spatial 
data mining and has been investigated in [5, 8, 9, 12, 21]. More explicitly, detection of hot spots using variable 
resolution approach [17] was investigated in order to minimize the effects of spatial super imposition. In [13] a 
region growing method for hot spots discovery was described, which selects seed points first and then grows 
clusters from these seed points by adding neighbor points as long as a density threshold condition is satisfied. The 
definition of hot spots was extended in [10] to cover a set of entities that are of some particular, but crucial, 
importance to the domain of experts. This is a feature-based definition, somewhat similar, but less specific, to what 
we are using in the presented paper. This definition was applied to relational databases to find important nuggets of 
information. Finally, in [18] feature-based hot spots are defined in a similar sense as in this paper, but their 
discovery is limited to datasets with a single categorical variable. 

 

III. SUPERVISED DENSITY ESTIMATION 
Throughout the paper, we assume that datasets have the form (<location>,<variable_of_interest>); for example, a 

dataset describing earthquakes whose location is described using longitude and latitude and whose variable of 
interest is the earth quake’s severity measured using the Richter scale. 

More formally, a dataset O is a set of data objects, where n is the number of objects in O belonging to a feature 
space F. 

O = {o1, …, on}⊆ F         (3-1) 
 
For the reminder of this section we assume that objects o∈O have the form ((x, y), z) where (x, y) is the location 

of object o, and z—denoted as z(o) in the following—is the value of the variable of interest of object o. The variable 
of interest can be continuous or categorical. Moreover, the distance between two objects in O o1=((x1, y1), z1) and 
o2=((x2, y2), z2) is measured as d((x1, y1), (x2, y2)) where d denotes a distance measure. Throughout this paper d is 
assumed to be Euclidian distance. 

In the following, we will introduce supervised density estimation techniques. Density estimation is called 
supervised, because in addition to distance information the feedback z(o) is used in density functions. Supervised 
density estimation is further subdivided into categorical density estimation, and continuous density estimation, 
depending whether the variable z is categorical or continuous. 

In general, density estimation techniques employ influence functions that measure the influence of a point o∈O 
with respect to another point v∈F; in general, a point o’s influence on another point v’s density decreases as the 
distance between o and v increases. In contrast to past work in density estimation, our approach employs weighted 
influence functions to measure the density in datasets O: the influence of o on v is measured as a product of z(o) and 
a Gaussian kernel function. In particular, the influence of object o∈O on a point v∈F is defined as:  
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If ∀o∈O z(o)=1 holds, the above influence function becomes a Gaussian kernel function, commonly used for 
density estimation and by the density-based clustering algorithm DENCLUE[6]. The parameter σ determines how 
quickly the influence of o on v decreases as the distance between o and v increases. 

The influence function measures a point’s influence relying on a distance measure. For the points in Figure 3-1, 
the influence of o1 with respect to point v larger than the influence of o2 on point v, that is  

),(),( 21 ovfovf InfluenceInfluence >  because d(v,o1)< d(v,o2) 
 

Figure 3-1. Example of Influence Computations. 
 
The overall influence of all data objects oi∈O for 1≤ i ≤ n on a point v∈F is measured by the density function 

ψO(v), which is defined as follows: 
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In categorical density estimation, we assume that the variable of interest is categorical and takes just two values 
that are determined by the membership in a class of interest. In this case, z(o) is defined as follows: 
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Figure 3-2. B-Complex9 dataset with its density function and a density contour map. 
 

Figure 3-2 depicts a dataset in which objects belong to two classes, depicted in blue and yellow color. O contains 
the points of Figure 3-2 and is assumed to have the form ((x, y), z) where z takes the value +1 if the object belongs 
to class yellow and -1 if the object belongs to class blue. Figure 3-2.b visualizes the density function ψO for dataset 
O. In the display, maxima identify areas in which the class yellow dominates, minima indicate areas in which the 
class blue dominates, and the density value of 0 represents decision boundaries—areas in which we have a 
complete balance with respect to instances of the two classes blue and yellow. Figure 3-2.c shows the density 
contour map for density values 10 as the red lines and -10 as the blue lines for ψO. 

Moreover, the variable of interest can be continuous. Let us consider we are conducting a survey for an insurance 
company and we are interested in measuring the risk of potential earthquake damage at different locations. 
Considering the earthquake dataset depicted below in Figure 3-3, the variable of interest is the severity of a past 
earthquake, which is continuous. In region A there have been many low severity earthquakes; in region B, there 
have been few slightly more severe earthquakes. According to our previous discussion, the influence of data objects 
far away is much less than the influence of data objects nearby and the influence of nearby data objects is more 
significant than the influence of data objects far away. Using formula (3-3) for this example, we will reach the 
conclusion that Region A is more risky than Region B, because of its higher frequency of earthquakes, whereas 

v
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v
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region B that is characterized by rare, although slightly more severe earthquakes. It should be noted that traditional 
interpolation functions will fail to reach the proper conclusion for this example: the average severity in region B is 
4, whereas the average severity in region A which is 3. In summary, continuous density estimation does not only 
consider the value of the variable of interest but also takes the frequency with which spatial events occur into 
consideration—in general, density increases as frequency increases. 

 

 
Figure 3-3. Example of Continuous Density Estimation  

 
Finally, it should be noted that the proposed supervised density estimation approach uses kernels that can take 

negative values, which might look unusual to some readers. However, in a well-known book on density estimation 
[1] Silverman observes “there are some arguments in favor of using kernels that take negative as well as positive 
values...these arguments have first put forward by Parzen in 1962 and Bartlett in 1963”. 

 

IV. SUPERVISED HOT SPOTS DISCOVEY USING DENSITY ESTIMATION TECHNIQUES 

Discovering hot spots and cool spots in spatial datasets with respect to a variable of interest is a challenging 
ongoing topic. The variable of interest can be a categorical or continuous. There are many possible algorithms to 
compute hot and cool spots; one such algorithm called SCDE (Supervised Clustering Using Density Estimation) 
will be introduced in the remainder of this section. It is a density based clustering algorithm that operates on 
supervised density functions that have been introduced earlier. The way SCDE constructs clusters has some 
similarity with the way the popular, density-based clustering DENCLUE [6] forms clusters. However, it is 
important to stress that SCDE—as we pointed out in Section2—operates on a much more general density function 
allowing to address a much broader class of problems, such as supervised clustering and co-location mining 
involving continuous variables. 

A. The SCDE Algorithm 
The SCDE algorithm operates on the top of the supervised influence and density functions that were introduced 

in formulas (3-2) and (3-3). Its clustering process is a hill-climbing process that computes density attractors. During 
the density attractor calculation process, data objects are associated with density attractors forming clusters. The 
final clusters represent hot and cool spots with respect to the variable of interest z. 

  Density Attractor 
A point, a, is called a density attractor of a dataset O if and only if it is a local maximum or minimum of the 

supervised density function ψO and |ψO(a)| > ξ , where ξ is a density threshold parameter. For any continuous and 
differentiable influence function, the density attractors can be calculated by using a steepest decent hill-climbing 
procedure. 

Pseudo-Code of the SCDE Algorithm 
SCDE computes1 clusters by associating the objects in a dataset O with density attractors with respect to the 

density function ψO. This is similar with the way the popular, density-based clustering algorithm, DENCLUE [6], 
creates clusters. However, it is important to stress that SCDE has to compute maxima and minima of the supervised 
density function; therefore, the sign of ψO(o) plays an important role for determining whether to ascent or to decent 
in the employed hill climbing procedure. Moreover, this paper describes in much more detail how the clusters are 

                                                 
1To increase the calculation speed, we use a local density function to replace the global density function. It only considers 

the influence of the data point in a predefined neighborhood. Only the data objects o∈O within o∈ neighborhood(v) will 
therefore be used to estimate the density at point v. Neighborhoods can be defined in many different ways. In SCDE, we 
partition the dataset into grid-cells and only objects in the grid-cell that v belongs to and its neighboring grid cells are used to 
compute the density of point v.  
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formed during the hill climbing procedure, whereas the original DENCLUE paper only gives an implementation 
sketch still leaving many implementation details un-discussed. Figure 4-1 gives the pseudo code of SCDE. It 
employs a steepest decent/ascent hill climbing procedure which moves in the direction of the largest/smallest 
gradient of ψO(v) based on the sign of the density value of v; the length of the movement in the chosen direction is 
determined by the parameter step. The hill climbing procedure stops when the absolute value of difference of 
supervised density value between two iterations is less than the density value thresholdϖ. 

 
Inputs 
• Dataset O={o1,...,on} 
• Step size during the iteration, step 
• Standard deviation of supervised influence function, σ . 
• Density value threshold, ξ. 
• Density difference threshold, ω. 
 
Output 
• Final clusters  X ={c1, …, cp}  
 
Algorithm 
1. Partition the feature space F to M cells with cell edge size, 4σ.  
2. For any un-clustered data objects, calculate the density attractors iteratively  
a) oi

0 := oi and ci := { oi }; 
b) Repeat until ( )))()((*))(( 11 ϖψψψ <−++ k
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 c) If |ψ(ok)|>ξ then  
For any data object u close to oi

j+1, with distance(u, oi
j+1) <σ/2 and density values ψ(u) and ψ(oi

j+1) are 
same sign 

i) If u is an un-clustered data object 
Add the data object u to the same cluster ci which oi belongs to, cluster ci is a new cluster  
ii) If u belongs another cluster cj 

Merge cluster ci and cj 
Figure 4-1 SCDE pseudo code 

 
  

 
Figure 4-2 Schematic of the SCDE clustering process in one attractor calculation step 
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SCDE does not calculate the density attractor for every data object. During the density attractor calculation, it 
examines data objects close to the current point when moving towards the supervised density attractor. If their 
density values have the same sign as the current density value at the calculating point, these data objects will be 
associated with the same final density attractors after it has been computed. 

Figure 4-2 illustrates the clustering process during the calculation of a particular attractor. All the solid objects in 
the dashed curve belong to one cluster. The final cluster includes all the data objects inside the curve that is 
enclosed by a dashed line. In each iteration step, we locate the data objects close to oi

j+1, i.e. data objects whose 
distance to oi

j+1 is less than σ/2. Each data object close to oi
j+1 is processed as follows:  

If the data object does not belong to any cluster yet—such as the solid black objects inside the dashed curve in 
Figure 4-2—the object is marked with the same cluster ID as those attracted by the current attractor computation.  

If the data object already belongs to a cluster ci—such as the solid grey objects in Figure 4-2—all the data points 
in the cluster ci are marked with the same cluster ID as those objects that have been collected by the current 
attractor computation.  
   The hill climbing procedure stops returning a density attractor a; if |ψO(a)| > ξ, a is considered a supervised 
density attractor, and a cluster is formed.  

Our currently implemented hill climbing procedure just considers the density of two points—that are step apart 
from the current point—when determining the direction using formula 4-1.  

Let dx=ψ(x+step,y)−ψ(x,y) and dy=ψ(x,y+step)−ψ(x,y) 
����∇ψ(x,y)=∇ψ(u)=(dx/(||(dx,dy)||),dy/(|dx|+|dy|)                                         (4-1) 

Alternatively, instead of using just two points to determine directions, all points in the neighborhood of the 
current hill climbing point could be used. 
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It is important to stress that DENCLUE’s hill climbing procedure [6] uses the influence function and not the 
density function to determine in which direction to proceed.  
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However, we strongly believe this formula should be normalized—otherwise, far away points would receive a 
higher weight in direction computations—obtaining formula 4-4. This approach considers all the points in the 
neighborhood of an iteration point, and the influence of a point in the neighborhood decreases as the distance to the 
iteration point increases. 
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Finally, DENCLUE 2.0 [21] uses a novel iteration procedure that directly solves ∇ψ=0 for the influence 

function, formulation 4-3, of the optimization problem; if we adapt this approach for our modified influence 
function we obtain:  
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The most critical parameter when using SCDE is σ, which determines the size of the influence region of an 
object. Larger values for σ increases the influence regions and more neighboring objects are affected. From a global 
point of view, larger values for σ results more objects are connected and joined together by density paths between 
them. Therefore when σ decreases, there are more local maxima and minima and the number of clusters increases. 

To select proper parameters for SCDE, we can visualize the density function and/or create a density contour map 
of the dataset for some initial values for σ and ξ first, and then use the displays to guide the search for good 
parameter values. Sometimes, the domain experts will give us the approximate number of clusters or number of 
outliers; this information can be used to determine good values for σ and ξ automatically using a simple binary 
search algorithm.  Based on our past experience, choosing good values for the other parameters of SCDE is straight 
forward. 

 

B. SCDE Run Time Complexity 
The run time of SCDE depends on algorithm parameters, such asσ,ξ, ω and step. The grid partitioning part takes 

O(n) in the worst case, where n is the total number of data objects in the dataset. The run time for calculating the 
density attractors and clustering varies for different values of parameters σ andξ. It will not go beyond O(h*n) 
where h is the average hill-climbing time for a data object. The total run time is approximately O(n + h*n). 

 

V. SCDE EXPERIMENTAL RESULTS 

In Section A SCDE will be evaluated for a hot spot discovery problem involving a continuous variable, and in 
Section B SCDE will be evaluated for a benchmark of categorical hot spot discovery problems. 

A. Experiments Involving Continuous Density Estimation 
It is widely believed [2] that a significant quantity of water resides in the Martian subsurface in form of ground 

ice. In this section, we will evaluate SCDE for a binary co-location mining problem that centers on identifying 
places on Ice in which we observe a strong correlation or anti-correlation between shallow and deep subsurface ice. 
The approximate 35,000 objects in the original dataset are characterized by longitude, latitude, shallow ice density 
and deep ice density, and the original dataset was transformed into a dataset Ice’=(longitude, latitude, z), where z is 
a continuous number which is the product of the z-scores of shallow ice and deep ice density. SCDE was then used 
to find hot spots and cool spots in this dataset. Knowing regions of Mars where deep and shallow ice abundances 
coincide provides insight into the history of water on Mars.  

Figure 5-1 visualizes the supervised density function for dataset Ice’ that was constructed using formula 3-2 with 
σ=0.75. In addition to visualizing the dataset we can identify hot spots and cool spots in the dataset algorithmically 
which will be the subject of the remainder of this sub-section.  

        
a)                                                                          b) 

Figure 5-1 Density Map of Ice Dataset 
 
The results of using SCDE for the dataset have been compared with two other algorithms: SPAM and SCMRG.  

SPAM (Supervised PAM) is a variation of PAM [15]. SPAM uses the fitness function q(x)—and not the mean 
square error— to determine the best cluster representatives as PAM does. SPAM starts its search with a randomly 
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created set of representatives, and then greedily replaces representatives with non-representatives as long as q(x) 
improves. 

Clustering algorithms were evaluated by measuring the absolute average z-value of clusters—obviously, we 
prefer clustering solutions which contain clusters whose average z values are highly positive or negative. However, 
the measure based on absolute average z value does not take the number of clusters used into consideration. For 
example, one clustering solution might have five clusters whereas the other clustering solution might have two 
clusters all with the same average z-value; obviously, we would prefer the two cluster solution.  To measure this 
aspect, we use the following fitness function as a second evaluation measure when comparing clustering results 
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where � >1, o is an object in cluster c and z(o) is the value of attribute z for object o; |c| is the number of objects 

in cluster c. The function i assesses interestingness based on the absolute mean value for attribute z in cluster c. 

Parameter β determines how much penalty we associate with the number of clusters obtained. If we are interested 
in finding very local hot spots, 1.01 is a good choice for β; if we are interested in finding more regional hot spots, 
1.2 turned out to be a good value for β.  

Figure 5-2 shows fractions of clusters having absolute average z values in a given range for each clustering 
algorithm. Observing formula 5-1, the larger fractions of clusters having high absolute average z values the larger 
q(x) will be. From this perspective the SCDE results are superior, because they contain the largest fraction of 
clusters characterized by the high values of |average(z)|. 
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Figure 5-2 Statistics Comparison of SPAM, SCMRG and SCDE on Ice’ Dataset  
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Table 5-1 compares solutions obtained from SCMRG and SPAM with the one produced by SCDE. As we can see 
SCDE get slightly higher value of q(x) than the other two clustering algorithms, but more importantly its maximum 
rewards are much higher than those of the other clustering algorithms, and this is accomplished by using fewer 
clusters than the other two algorithms. 

 
Algorithm q(x) Clusters Number Highest Reward 

β = 1.01 / β = 1.2 
SPAM 13502 / 24265 2000 / 807 204 / 705 
SCDE 14709 / 39935 1253 / 653 671 / 9488 
SCMRG 14129 / 34614 1597 / 644 743 / 6380 
Table 5-1 Comparison of SPAM, SCMRG and SCDE on Ice Dataset 

 

 
Figure 5-3 SCDE results on Ice dataset; Regional shallow ice/ deep ice co-location patterns in red; Regional Shallow Ice/ Deep 

Ice anti co-location patterns in blue 
 

Figure 5-3 depicts the hot spots (in red) and cool spots (in blue) that have been identified by running SCDE 
whose average z value is more than 2.25 standard deviations above or below the mean value of z (|z|>2.25). These 
are places that need to be further studied by domain experts to find what particular set of geological circumstances 
lead to their existence.  

 
 β=1.01 β=1.2 
SPAM 73957.5 42817.5 
SCMRG 5.25 1.2 
SCDE 618.75 489.375 

Table 5-2 Running Time (seconds) Comparison of SPAM, SCMRG and SCDE on Ice Dataset 
 

As shown in Table 5-2, the running time of SCDE is much faster than SPAM. It is slower than SCMARG, but its 
running time is still acceptable and efficient. 

B. Categorical Dataset Experiment Results    
The categorical datasets include 3 real-world datasets and 1 artificial dataset, as summarized in Table 5-3. Each 

object in the data sets has 3 attributes including: longitude, latitude and the class label, which takes values +1 or -1. 
 

 Dataset Name Number of objects Class of Interest  

1 B-Complex9 3,031 yellow 

2 Volcano 1,533 violent 

3 Arsenic 2,385 safe 

4 Earthquake 3,161 deep 

Table 5-3 Categorical Dataset 
 

B-Complex9 is a two dimensional synthetic spatial dataset whose examples are distributed having different, well-
separated shapes. The Arsenic dataset has been created from the Texas Ground Water Database (GWDB) [19]. A 
well is labeled as dangerous if its arsenic concentration level is above 10µg/l, the standard for drinking water by the 
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Environment Protection Agency [20]. Earthquake and Volcano are spatial datasets obtained from Geosciences 
Department, University of Houston. The Volcano dataset uses severity of eruptions as the class label, whereas the 
Earthquake dataset uses depth of the earthquake as a class label.  

Figure 5-4 visualizes the Volcano dataset and the SCDE’s clustering result for that dataset for σ=10. Figure 5-4.d 
shows the clusters that were discovered by SCDE, which provides visual evidence that the SCDE algorithms can 
discover arbitrary hot spots and cool spots in the dataset—the detected hot and cool spots are consistent with the 
density map 5-4.b 
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c) d) 
Figure 5-4 Visualization of the Volcano dataset and of clusters computed using SCDE. a) The distribution of the original 

Volcano dataset; b) Thematic map for ψO; c) The contour map according to ψO for density values 10 and -10; d) Clustering 
results of SCDE 

 
The clustering results of SCDE algorithm were also compared with other supervised clustering algorithms SCEC 

[14], SCAH and SCMRG [18].2 All three clustering algorithms seek to find clusters that maximize a reward-based 
fitness function q(x). SCEC is a K-means-style, representative-based clustering algorithm that uses evolutionary 
computing to seek for the best set of representatives. Supervised Clustering using Agglomerative Hierarchical 
Techniques (SCAH) greedily merges clusters as long as q(x) improves. Supervised Clustering using Multi-
Resolution Grids (SCMRG) is a hierarchical grid-based method that utilizes a divisive grid-based clustering 
method, which employs a divisive, top-down search: a higher level is partitioned further into a number of smaller 
cells at the lower level, until the sum of the rewards of the lower level cells is greater than the obtained reward for 
the cell at the higher level. 

 All clustering algorithms were applied to the four datasets, and cluster quality was assessed using cluster purity, 
number of clusters achieved, and the values of the following reward-based fitness function q(x): The quality q(x) of 
a clustering X is computed as the sum of the rewards obtained for each cluster c∈X. Cluster rewards are computed 
as the product of interestingness of a cluster and the size of a cluster. More specifically, the evaluation function q(x) 
is defined as follows: 

                                                 
2 Due to space limitations in this paper we will only center on discussing the most important findings of this evaluation. 
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where hst and cst are hot spot and cool spot purity thresholds and purityY(c) is the percentage of examples in 
cluster c that belong to the class of interest Y. In the experimental evaluation, hst was set to 1.5 times the prior 
probability of the class of interest, and cst was set to 0.5 times the prior probability of the class of interest. 
 

Algorithms SCEC SCAH SCMRG SCDE 

B-Complex9 

Purity 0.830 1 0.863 1 

q(x)  0.032 0.008 0.002 0.045 

# Clusters 4 17 22 9 

Time (sec) 8063 5097 1 440 

Volcano 

Purity 0.607 1 0.885 0.723 

q(x) 0.0004 1E-5 1E-4 0.001 

# Clusters 7 639 221 41 

Time 5452 448 446 80 

Arsenic 

Purity 0.774  0.857 0.794 0.831 

q(x) 0.021 0.0006 0.0009 0.019 

# Clusters 6 390 91 15 

Time (sec) 14721 3462 1 3348 

Earthquake 

Purity 0.846 0.853 0.814 0.843 

q(x) 0.016 0.004 0.006 0.019 

# Clusters 4 161 93 22 

Time (sec) 8178 448 356 264 

Table 5-4 SCDE and other algorithms comparisons based on � = 3, � = 1 
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The parameters β and η in formula 5-3 and 5-4 control the preference of how the rewards are given to the 
clusters. Large value of β causing the evaluation function 5-3 gives more rewards to clusters with more objects 
whereas the parameter η stresses on the interestingness of the cluster. We have designed 2 sets of experiments that 
the only different between the two are the parameters β and η. In the first experiment (table-5-4) we assign � = 3 
and � = 1, so that the size of clusters is considered more important than the interestingness of the cluster. The 
second experiment (table 5-5) we set � = 1.01, � = 6 so that the interestingness of the clusters are more emphasized 
than the size of the clusters.  
 

Algorithms SCEC SCAH SCMRG SCDE 

B-Complex9 

Purity 0.998 1 1 1 

q(x) 0.937 0.974 0.957 0.981 

# Clusters 98 17 132 9 

Time (sec) 23584 5275 1 440 

Volcano 

Purity  0.780 1 0.979 0.723 

q(x) 0.322 0.940 0.822 0.053 

# Clusters 402 639 311 41 

Time 6436 445 365 80 

Arsenic 

Purity  0.834 1 0.9221 0.831 

q(x) 0.391 0.942 0.668 0.019 

# Clusters 396 746 184 15 

Time (sec) 14062 2142 2 3348 

Earthquake 

Purity 0.895 1 0.938 0.84 

q(x) 0.575 0.952 0.795 0.158 

# Clusters 404 479 380 22 

Time (sec) 15440 6769 346 264 

Table 5-5 SCDE and other algorithms comparisons based on � = 1.01, � = 6 

By comparing the value of q(x), we can see that SCDE obtained good clustering results and outperforms the 
other algorithms, when β is 3 and η is 1. This is because the SCDE generates less number of clusters, larger cluster 
size, while the purity of its clusters is still comparable with clusters produced by other algorithms. This result is 
favorable by the parameters setting of the first experiment. On the other hand, for β is 1.01 and η is 6, SCDE 
obtained the best result for the Complex9 dataset, but did not perform well for the other three datasets. For 
Complex9, SCDE did a perfect job on identifying all 9 nature clusters with purity equal to 1. For the other three 
datasets, other three algorithms took advantage of increasing the number of clusters to improve their purity. Since 
the parameter setting of the second experiment stresses on the interestingness of clusters rather than the size of 
clusters, the value of q(x) for SCDE are lower than other algorithms, except the Complex9 dataset. In summary, 
SCDE did a good job in identifying larger size hot spots. We attribute the good performance to SCDE’s capability 
to find arbitrary shape clusters 
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VI. CONCLUSIONS 

This paper proposes a supervised density estimation approach that extends the traditional density estimation 
techniques by considering a variable of interest that is associated with a spatial object. Density in supervised 
density estimation is measured as the product of an influence function with the variable of interest. We claim that 
such a generalization can be used to create thematic maps, and that novel data mining algorithms can be developed 
with the help of supervised density functions. 

One such algorithm, a supervised density-based clustering algorithm SCDE was introduced and discussed in 
detail in the paper.   It uses hill-climbing to calculate the maximum/minimum (density attractors) of a supervised 
density function and clusters are formed by associating data objects with density attractors during the hill climbing 
procedure.  

We conducted sets of experiments in which SCDE was evaluated for hot spot discovery and co-location 
discovery in spatial datasets. Compared with other algorithms, SCDE performed quite well for a set of four 
categorical hot spot discovery problems and was able to compute the hot spots quickly. Moreover, SCDE did 
particularly well in identifying regions on Mars in which shallow and deep subsurface ice are co-located.  

When using categorical density estimation techniques, decision boundaries between the two classes represent 
areas whose supervised density is equal to 0. In this paper, we successfully used Matlab’s contour function to 
visualize decision boundaries of the Complex9 dataset (also see Figure 3-2). However, in general, computing 
decision boundaries is a difficult task for most datasets. In our future work, we will focus on following topics:  
• Develop novel classification algorithms that rely on decision boundaries that have been extracted from 

supervised density functions,  
• Compare different hill climbing procedures that have been proposed for SCDE in this paper 
• Develop automatic preprocessing procedures to determine the influence function parameter �σ  
• Develop a post-processing procedure to compute hotspots that only contains object whose density is above 

(below) a given threshold  
• Compare SCDE using a benchmark of hotspot discovery problems with CrimeStat [22] and SaTScan[5]3 
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