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ABSTRACT
Efficient means of determining factors controlling spatial dis-
tribution of an environmental class variable are of significant
interest in Earth science. In this paper, we present a method
for automated discovery of controlling factors by mining for
emerging patterns in a database constructed from the fusion
of several explanatory datasets. We introduce a new defini-
tion of pattern support to account for spatial character of
the data and systematically evaluate the effectiveness of our
technique using a real-world application pertaining to den-
sity of vegetation cover. Experimental results show that our
method can successfully identify controlling factors for the
presence of high vegetation cover.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Pat-
tern analysis; I.5.4 [Pattern Recognition]: Applications—
Geoscience

Keywords
Controlling factors, Emerging patterns, Spatial data mining

1. INTRODUCTION
Environmental variables are highly coupled through a com-

plex chain of interactions resulting in their mutual inter-
dependability. Efficient means of determining controlling
factors which are responsible for spatial distribution of a
selected class variable are of significant interest to domain
experts. In order to understand the properties of a class
variable, experts attempt to identify dominant controlling
factors: explanatory variables that are predominantly re-
sponsible for spatial distribution of the class variable. For
example, the density of vegetation (class variable) shows
large regional variations due to changes in environmental
variables such as various climate indicators and soil proper-
ties. Understanding the dominant factors behind geographi-
cal extent of high vegetation regions is of great interest from
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a scientific as well as a practical point of view, such as the
impact of global warming on vegetation cover.

Currently, such problems are addressed by painstaking
manual analysis, but with an increasing access to data prod-
ucts describing terrain topography, climate, vegetation cover,
lithology, soil properties, human impact, etc., a more com-
prehensive methodology, one that would distill all depen-
dencies in the data and present an expert with a relevant
summary needs to be developed. In this paper, we propose
a method for machine-aided identification of dominant con-
trolling factors for a geospatial class variable. The method
extends the standard technique of mining for emerging pat-
terns (EPs) [2, 3] to geospatial domain.

Identifying EPs in spatial datasets presents challenges.
Firstly, all databases of interest are spatial databases; this
requires modification of standard EPs methods. Secondly,
relevant geospatial databases contain continuous variables
that need to be categorized in order to be subjected to as-
sociation analysis. Categorization inevitably leads to infor-
mation loss as it introduces sharp boundaries between dif-
ferent regions (for example, regions of high vegetation and
low vegetation) where in reality the regions are not mutu-
ally exclusive, but instead they gradually transit into each
other. We address these challenges by generalizing the def-
inition of pattern support. The new definition takes into
account spatial autocorrelation - a common feature in spa-
tially extended variables. The overall goal of the method
described in this paper is to provide means for discovering a
set of dominant controlling factors that provides comprehen-
sive and systematic knowledge for building empirical models
of a chosen phenomena.

We illustrate our method by applying it to a real-world
case study of finding factors exerting control over the den-
sity of vegetation cover in the continental United States.
Continuing with the example given above, a territory of the
United States can be divided into two sets based on the
values of a class variable: high vegetation density region,
and not-high vegetation density region. The patterns to be
considered are the collections of the values of environmen-
tal explanatory variables. The goal is to identify patterns
that are relatively frequent in the high vegetation region but
rare in the low vegetation region. Examination of patterns
related to the high vegetation provides a summary of data
dependencies that helps to develop a better empirical models
of the vegetation growth.

2. METHODOLOGY

2.1 Data Preprocessing



The numerical values of different explanatory variables are
distributed differently. Therefore, it is necessary to normal-
ize the values of different variables to the common meaning.
The two most important properties of any distribution is
its center (µ) that indicates location of the bulk of the data,
and the scale (σ) that indicates dispersion around the center.
For µ, a robust estimator is the trimmed mean calculated by
discarding a certain percentage of the lowest and the high-
est values. We use the median - a particular example of the
trimmed mean - to estimate µ. For σ, we use the Sn estima-
tor introduced by [9]: Sn = c medi{medj |xi − xj |}, where c
is a constant and its value is 1.1926, and med is the median
operator. Given a set of numbers {x1, . . . , xn}, for each xi

we compute the median of {|xi−xj |, j = 1, . . . , n} to yield n
numbers, then the median of the n numbers gives estimator
Sn. Sn gives a robust estimate of σ regardless whether the
distribution is symmetric or asymmetric.

In order to categorize the data, we use the values of µ and
σ to transform the continuously distributed variables into
their modified z-scores. The modified z-score is the num-
ber of Sn that a given value of a variable is above or below
the median calculated from the global distribution of this
variable. For simplicity, we use the term z-score for the
modified z-score in the rest of the paper. Two different vari-
ables with the same z-score are “equal” in the sense that
both are deviated by the same relative amount from their
medians. The actual discretization is achieved by assigning
the z-scores into n bins using n− 1 split points. This trans-
forms all real-valued datasets into categorical datasets with
a common range.

2.2 Problem Definition
The fusion of all the datasets relevant to a given task

results in a geospatial dataset R. The objects in R are
tuples having the following form r = {x, y; a1, a2, ..., am; cl},
where the first two entries are spatial coordinates, the next
m entries are categorical values of m explanatory variables
that can potentially exert control over the class variable, and
the last entry is a binary variable that indicates whether the
class variable has a value of interest (cl = 1) or not (cl = 0).
Disregarding the location information (x, y), each object in
R can be viewed as a transaction {a1, a2, ..., am; cl}. All
transactions are classified into two mutually exclusive and
exhaustive sets: dataset D grouping transactions with cl = 1
and dataset C grouping transactions with cl = 0. A pattern
(itemset) is a set of items contained in a transaction. A
transaction supports the pattern P if it has such values at
the indicated positions. The footprint of the pattern P is
a projection of the objects that support P into the spatial
reference system of the dataset R.

We defined a controlling pattern as:

Definition 1. A controlling pattern (CP) P in D is an

itemset such that its growth ratio CPDP = sup(P,D)
sup(P,C) ≥ ρ,

where ρ is a user-defined minimum growth-ratio threshold.
sup(P,D) and sup(P, C) are the support of a pattern P in
D and C, respectively.

We define such itemsets as controlling patterns, because
they correspond to particular values of certain explanatory
variables that happen to be associated disproportional with
cl = 1 objects. It is therefore expected that they constitute
controlling factors for the distribution of cl = 1 objects.

2.3 Calculating Pattern Support
Let’s F be a set of transactions (objects) that support

a given pattern P , and G be a set of transactions where
P is absent. We define the following sets: D+ = D ∩ F ,
D− = D ∩ G, C+ = C ∩ F , C− = C ∩ G. The support of

P in datasets D and C is defined as: sup(P,D) =
|D+|
|D| ,

sup(P, C) =
|C+|
|C| . Thus,

CPDP =
sup(P,D)

sup(P, C) =
|D+|/|D|
|C+|/|C| (1)

where, | | denotes the number of elements in a set. Notice
that |D+| + |D−| + |C+| + |C−| = |R|. Discovering CP is
a matter of evaluating CPDP , given by Eqn. 1 for a set of
patterns and selecting those patterns that have CPDP ≥ ρ.

The set D may be defined by an arbitrary threshold. Be-
cause of spatial continuity of geospatial data many objects
(pixels) nearby the footprint of D are expected to have veg-
etation values, that although not high enough to be in the
two highest bins, are nevertheless high enough to be in the
upper range of the highest categorical bin not included in
the definition of “high” vegetation. In order to take such
spatial continuity into consideration, we introduce a new
definition of pattern support so it also accounts for tuples
located nearby D.

Specifically, we propose a following modification of |D+|
that we denote by |D+|∗: |D+|∗ =

∑
o∈F w(o,D), where o is

a spatial object and w(o,D) is a weight determined on the
basis of spatial proximity of this object to the set D. The
weight is calculated using the following formula:

w(o,D) =

{
1 o ∈ D
Ψ(h(o,D)) o ∈ C (2)

The influence function Ψ determines the weight for objects
outside of the footprint. In principle, an influence function
can be an arbitrary function. In this paper, we use a half
normal influence function, which is a normal distribution
with mean 0:

Ψ(ξ) = exp(
−θ2ξ2

π
) (3)

where θ (θ ∈ [0,∞)) is a free parameter and π is the
mathematical π. The function Ψ determines the weight for
objects outside of the footprint: the farther a spatial ob-
ject o is from the dataset D, the less weight is for the ob-
ject. Nearby pixels have weights decreasing with increasing
distance from the region. The less the θ value, the more
surrounding objects will be taken into account.

The function h(o,D) used by the influence function Ψ is a
special case of Hausdorff distance [4] in the spatial domain,
where the function measures the minimum distance between
o to the nearest high-vegetation object in D.

Thus, in the proposed modification, the support of the
pattern P “in” D is increased (because |D+|∗ > |D+|), if
a significant number of objects close to the footprint of D
conform to this pattern. Simultaneously, in such a situation,
the support P in C must be decreased by the same amount.
This is achieved by defining |C+|∗ =

∑
o∈F [1− w(o,D)].

Finally, the controlling patterns are mined using a new
definition of pattern support,

CPDP
∗

=
|D+|∗/|D|
|C+|∗/|C| (4)



Table 1: 11 geospatial datasets used in our case
study

Variable Short Description

awc Available water capacity [6]
bd Soil bulk density [6]
dew Average dew point temperature [7]
elev Elevation [5]
perm Soil permeability[6]
ph Soil pH [6]
poros Soil porosity [6]
ppt Average annual precipitation [7]
tmax Average annual maximum temperature [7]
tmin Average annual minimum temperature [7]
aveveg Vegetation growth average [5]
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Figure 1: Diagrams describing 780 controlling pat-
terns using the new definition of pattern support.
Blue: patterns with 1-3 items, green: 4-6 items, and
red: ≥ 7 items.

Note that in Eqn. 4 we do not modify the values of |D|
and |C|, and the total number of spatial objects remains the
same: |D+|∗ + |D−|+ |C+|∗ + |C−| = |R|.

2.4 Measuring Spatial Aggregation of Pattern
Footprints

In addition to the growth ratio CPDP
∗
, we propose that

in the case of spatial datasets it is also important to mea-
sure the degree of aggregation of the footprint of a pattern
P . The patterns with more aggregated footprints are more
interesting to domain experts as they more likely point to
real controlling factors. We use Ripley’s K function, a sta-
tistical method frequently applied to point pattern analy-
sis, to quantify such aggregation. Following the concept of
nearest neighbor analysis, Riley’s K function quantifies the
spatial pattern intensity of points in a circular search win-
dow. Without considering edge effects, Ripley’s K function
can be estimated as K̂(d) = F

N2

∑N
i=1

∑N
j=1,j 6=i Id(dij) [1],

where N is the number of pixels (points) in the footprint of
the pattern P , dij is the distance between the ith and jth

points, Id(dij) is the indicator function which is 1 if dij ≤ d
and 0, otherwise; F is the area of a footprint, and d is a free
parameter corresponding to a distance scale. In order to in-
fer clustering properties of the pattern footprint, the value
of K̂(d) is compared to the value calculated for a completely
random (homogeneous Poisson process) ensemble of points
that is Ko(d) = πd2,

kP =

√
K̂(d)

Ko(d)
=

√
K̂(d)

π

d
(5)

where kP > 1 indicates spatial aggregation, and kP < 1 in-
dicates spatial segregation. The larger value of kP indicates
a more aggregated pattern P .

Table 2: Top 20 patterns
ID Patterns Using the Traditional Definition

56 ph=3 ppt=6

12 ppt=6
312 awc=4 perm=4 ph=3 tmax=5
586 awc=4 perm=4 ph=3 tmax=5 tmin=5
555 awc=4 elev=3 perm=4 ph=3 tmax=5
780 awc=4 elev=3 perm=4 ph=3 tmax=5 tmin=5
135 perm=4 ph=3 tmax=5
337 perm=4 ph=3 tmax=5 tmin=5
314 elev=3 perm=4 ph=3 tmax=5
588 elev=3 perm=4 ph=3 tmax=5 tmin=5
114 dew=6 elev=3 ph=3
34 dew=6 ph=3
318 awc=4 perm=4 ph=3 tmin=5

568 awc=4 elev=3 perm=4 ph=3 tmin=5

530 awc=4 bd=4 perm=4 ph=3 tmax=5
695 awc=4 dew=5 perm=4 ph=3 tmax=5 tmin=5

765 awc=4 bd=4 perm=4 ph=3 tmax=5 tmin=5

549 awc=4 perm=4 ph=3 poros=5 tmax=5
441 awc=4 dew=5 perm=4 ph=3 tmax=5

776 awc=4 perm=4 ph=3 poros=4 tmax=5 tmin=5

ID Patterns Using the New Definition

56 ph=3 ppt=6
114 dew=6 elev=3 ph=3
34 dew=6 ph=3
312 awc=4 perm=4 ph=3 tmax=5
555 awc=4 elev=3 perm=4 ph=3 tmax=5
586 awc=4 perm=4 ph=3 tmax=5 tmin=5
780 awc=4 elev=3 perm=4 ph=3 tmax=5 tmin=5

162 awc=4 ph=3 tmax=5
314 elev=3 perm=4 ph=3 tmax=5
135 perm=4 ph=3 tmax=5

360 awc=4 elev=3 ph=3 tmax=5
337 perm=4 ph=3 tmax=5 tmin=5
588 elev=3 perm=4 ph=3 tmax=5 tmin=5

393 awc=4 ph=3 tmax=5 tmin=5
695 awc=4 dew=5 perm=4 ph=3 tmax=5 tmin=5

639 awc=4 elev=3 ph=3 tmax=5 tmin=5
441 awc=4 dew=5 perm=4 ph=3 tmax=5
318 awc=4 perm=4 ph=3 tmin=5

832 awc=4 dew=5 elev=3 perm=4 ph=3 tmax=5 tmin=5

671 awc=4 dew=5 elev=3 perm=4 ph=3 tmax=5

3. CASE STUDY: CONTROLLING PATTERNS
FOR HIGH VEGETATION COVER

In order to show the utility of our method for discov-
ering controlling patterns, we have constructed a fusion of
several geospatial datasets that pertain to the distribution
of topography, climate, and soil properties across the con-
tinental United States. The purpose is to identify domi-
nant factors responsible for the regions of high vegetation
cover. The datasets are summarized in Table 1. The 10 ex-
planatory variables can be divided into climate-related (av-
erage annual precipitation rate, average minimum annual
temperature, average maximum annual temperature, and
average dew point temperature), soil-related (available wa-
ter capacity, bulk density, permeability, porosity, and soil
pH), and topography-related (elevation). We have fused all
the datasets to 11 co-registered latitude-longitude grids with
a resolution of 0.5o× 0.5o. Each grid has 700 × 1253 pixels,
of which 361,882 pixels (41.3%) have values for all the 11
variables.

All the co-located datasets are subjected to a categoriza-
tion procedure with six split points resulting in seven z-
score bins (−∞,−2], (−2,−1.5], (−1.5,−0.5], (−0.5, 0.5],
(0.5, 1.5], (1.5, 2], and (2,∞), which are assigned categori-
cal labels from 1 to 7, respectively. The vegetation density
dataset is divided into two subsets, D with cl = 1 (combined
categories 6 and 7) and C with cl = 0 (combined categories
1 to 5).

3.1 Experimental Results
Setting the support threshold for a frequent pattern in D

to δ = 0.2 and the minimum growth-ratio threshold ρ =



Figure 2: Top row: Footprints of patterns #12,
#114, #162. Bottom row: Union of footprints for
the top 20 patterns. Green: high vegetation cover,
pink: footprints of patterns, dark brown: overlays
between the footprints and high vegetation cover.

10.0, we have found 780 controlling patterns. Fig. 1 1shows
the values of the growth ratio CPDP

∗
for all the 780 con-

trolling patterns plotted against the values of kP . We use
the particular choice of the influence function Ψ of Eqn. 3
using θ = 0.25, and d = 1 for the kP in Eqn. 5. Several
immediate observations can be drawn from Fig. 1: (1) all
the controlling patterns have kP ≥ 1. This means that the
complexes of controlling factors that are common in D are
also spatially focused on D as they are less common in C.
(2) There appear to be some positive correlations between
values of the growth ratio CPDP

∗
and kP . This indicates that

patterns that are more indicative of high vegetation are also
more aggregated. And (3) patterns with more attributes are
more aggregated. More specific sets of controlling factors are
restricted to more specific locations.

Table 2 shows the top 20 patterns using the traditional
definition of pattern support using Eqn. 1 and the new def-
inition of pattern support using Eqn. 4. The 1st column
gives a pattern ID number; the 2nd column shows the ac-
tual pattern; and the 3rd column gives the number of items
that match the pattern. Modification of the support def-
inition causes different values for growth ratio resulting in
different ordering of controlling factors. The patterns that
do not occur in both top 20 lists are highlighted in Table 2.
We observe that pattern #12 is absent in the top 20 pat-
terns using the new definition of pattern support, though it
is ranked as the 2nd best using the traditional definition. On
the other hand, pattern #114 has improved its rank signifi-
cantly ranking 2nd, and new patterns such as pattern #162,
emerge in the top 20 list when using the new definition of
support. We then use the mutual information measure (MI)
to check whether the footprints of patterns #114 and #162
match better with the footprints of high vegetation. Mu-
tual information has been introduced in [8] for 2D image
matching. The method tries to find the mutual information
between the two images using MI(X, Y ) = H(Y )−H(Y |X),
where X and Y are images and function H() is the entropy
function. MI(X, Y ) is a measure of the reduction of the en-
tropy of Y given X. In principle, if two images are correctly
matched, one image can give information about the other,

1Figs 1 and 2 are better viewed in color, see an electronic
color version of the paper at http://www.cs.umb.edu/∼ding.

thus their mutual information is high. The mutual informa-
tion between the footprints of high vegetation cover and pat-
terns #12, #114, #162 are 0.0188, 0.0214, and 0.0489, re-
spectively. The result shows that patterns #114 and #162,
whose ranks are increased using the new support, match
better with the regions of high vegetation. For illustration,
Figures 2 top row (a-c) depict the spatial footprints of the
three patterns #12, #114, #162. Compared with pattern
#12 in Fig. 2 top row (a), Patterns #114 in Fig. 2 top
row (b) and #162 in Fig. 2 top row (c) align better with
the footprint of high vegetation. The results indicate that
using the new definition of pattern support, we can identify
better controlling patterns than would be possible using the
traditional definition.

Figures 2 bottom row (a-b) show a comparison in the spa-
tial coverage of the top 20 patterns in Table 2. The area
shown is the southern portion of the continental United
States. There are important differences between the two
footprints, with the coverage shown in Fig. 2 bottom row
(a) being more“land filling,”exactly the effect expected to be
revealed by our method. To compare the quality of the top
20 patterns, we calculate MI between the footprint of high
vegetation cover and the union of top 20 patterns using the
traditional and new definition of support, respectively. We
obtain 0.0649 for the footprints using new pattern support
and 0.0563 for those using the traditional pattern support.
The top 20 patterns identified using our improved method
are more restricted to high vegetation regions, thus they can
better control the presence of high vegetation cover.

To summarize, we have formulated the problem of mining
controlling factors and proposed a new definition of pattern
support in the domain of geoscience based on the concept of
emerging patterns. In the case study pertaining to vegeta-
tion cover across United States our method identifies domi-
nant patterns that control high vegetation density.
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