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A B S T R A C T

In this paper, we present a structure simplification framework for planar all-quad meshes
with open boundaries. Our simplification framework can handle quad meshes with
complex structures (e.g., quad meshes obtained via Catmull-Clark subdivision of the
triangle meshes) to produce simpler meshes while preserving the boundary features. To
achieve that, we introduce a set of separatrix-based semi-global operations and com-
bine them with existing local operations to develop a new simplification framework.
Additionally, we organize and order the individual simplification operations into groups
and employ ranking strategies for each group to sort these operations to produce quad
meshes with better quality and simpler structure. We provide a comprehensive evalu-
ation of our framework using different input parameters on a number of representative
planar quad meshes with various boundary configurations. To demonstrate the advan-
tages of our method, we compare it with a few existing frameworks. Our comparison
shows that our simplification framework usually produces simpler structure with faster
computation than the state-of-the-art methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

Quadrilateral (or quad) meshes are preferred over triangle2

meshes in many engineering applications, such as modeling and3

simulation of elastic materials and fluid behaviors, due to their4

desired numerical properties [1] that usually leads to more ac-5

curate and faster simulations than triangle meshes. In addition,6

quad meshes with a higher overall quality produce better simu-7

lation results.8

A (pure) quad mesh is composed entirely of quadrilateral el-9

ements, and its overall quality depends on the connectivity and10

shapes of the individual quad elements. An ideal quad mesh11
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consists of regular quadrilateral elements, i.e., the interior an- 12

gles of the quad elements are all 90◦. The regularity of quad 13

elements can be expressed in terms of valence of vertices in the 14

quad mesh. The valence of a vertex is defined as the number 15

of quad elements adjacent to that vertex. A vertex is regular 16

if it has a valence of 4 (or 2 on the boundary), otherwise, it is 17

irregular. Irregular vertices are also called singularities (Figure 18

1c). Given a valence-n singularity (n , 4), n separatrices can 19

be traced out along the n mesh edges adjacent to the singularity, 20

respectively. These separatrices, that either end at other singu- 21

larities or mesh boundary, partition the quad mesh into individ- 22

ual quadrilateral (or quad) patches (e.g., the colored patches in 23

Figure 1c). This partitioning is referred to as the base complex 24

of the quad mesh, which is the structure of the quad mesh that 25

this work is focused on. A quad mesh has a simple structure if 26

it has a low number of singularities and a low number of quad 27

patches. 28
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(a) Quad mesh with a simple structure (b) Quad mesh with a complex structure (c) Base complex of a quad mesh

Fig. 1. An example illustrating same mesh with different structures: (a) a simple and ideal structure, (b) a complex structure. (c) shows the base complex
of a quad mesh. Different color patches illustrate the quad layout structure of the mesh.

Figure 1 shows examples of quad meshes for the same do-1

main with a simpler structure (a) and a complex structure (b),2

respectively. Quad meshes with fewer and aligned singularities3

are regular or semi-regular, which are very useful for textur-4

ing and high-order modeling and simulations [1]. In the mean-5

time, fewer singularities in turn improve the element quality as6

the ideal angles surrounding a vertex is determined by the va-7

lence of that vertex (i.e., 90◦ is achieved when its valence is8

4). Therefore, the goal of quad mesh generation is to produce9

quad meshes with good structure (or fewer singularities) and10

high element quality (i.e., all elements have a close-to-regular11

shape). However, despite numerous efforts, automatic gener-12

ation of high-quality quad meshes for complex and arbitrary13

domains remains a challenging task [1, 2].14

Existing quad mesh generation techniques take an arbitrary15

input and process geometric information from the input to gen-16

erate a quad mesh. However, for many complex inputs, these17

techniques can exhibit certain limitations and fail to produce a18

quad mesh with good structure due to the lack of explicit control19

of the positions and valences of the singularities. An alternative20

to direct quad mesh generation methods is the structure simpli-21

fication of a highly unstructured quad mesh. Two simplification22

strategies are typically employed, i.e., local simplification [3]23

and global simplification [4], to procedurally cancel or merge24

singularities in the quad mesh. However, local simplification25

cannot guarantee to generate a globally optimal structure or a26

near optimal one, while global simplification may not be able to27

simplify the structure due to the constraint of boundary/feature28

preservation.29

Recently, Xu et al. [5] presented the preliminary results of30

a new simplification approach for planar quad meshes. Their31

method uses semi-global operations to simplify the structure32

of the quad meshes with complex structure. The semi-global33

structure simplification aims to address the limitations of lo-34

cal and global simplification methods by performing simplifi-35

cation operations in the regions bounded by separatrices. De-36

spite the promising preliminary results, there are a number of37

limitations of their pipeline. First, the simplification operations38

in their pipeline are not organized and sorted, leading to sub-39

optimal output and slow performance. Second, there is no local40

smoothing and refinement during simplification, thus, the re-41

sulting mesh could be too coarse for feature preservation and42

often leads to overlapping elements at boundaries that are hard43

to fix with existing optimization.44

In this work, we address the limitations of the work in [5]45

and present a more robust and efficient simplification frame-46

work that integrates the semi-global operations with the local 47

operations. In particular, we propose a strategy to organize or 48

group different types of simplification operations. For each type 49

of the semi-global simplification operations, a ranking strategy 50

is developed to sort the individual operations. In addition, we 51

include a local refinement and smoothing process in-between 52

simplification operations to mitigate the reduction of vertices 53

caused by simplification to better preserve boundary features. 54

The boundary features of the mesh encompass sharp edges and 55

corners. The new pipeline can produce better results i.e valid 56

all-quad meshes, than those shown in [5] with much faster com- 57

putation (e.g., up to 18x speedup for complex models). It can 58

also handle much more complex models than the pipeline in 59

[5]. Furthermore, we provide an option for the user to produce 60

inversion free quad meshes with some sacrifice in the simplic- 61

ity of the output structure.We have applied our framework to a 62

number of quad meshes with various boundary configurations 63

and compare it with the local simplification [3] and Xu et al.’s 64

method [5] to demonstrate its advantages. A parameter study is 65

also reported to demonstrate the impact of different parameter 66

values. 67

2. Related Work 68

In the meshing literature, extensive research has been car- 69

ried out for the generation of quad meshes with good structure 70

and quality. There are two different strategies to generate quad 71

meshes as described in the introduction, i.e., direct quad mesh 72

generation and structure simplification of quad meshes. In this 73

section we review some of these techniques. 74

2.1. Direct Quad Mesh Generation 75

Direct quad mesh generation methods produce quad meshes 76

from a complex and arbitrary input, such as a triangle mesh. 77

The most straightforward method of generating a quad mesh 78

from a triangle input is through Catmull-Clark subdivision 79

scheme [6]. The subdivision scheme is robust and simple but 80

introduces a large number of singularities which are difficult 81

to optimize (Figure 1b). Other methods, like the triangle-to- 82

quad conversion methods [3, 7] and Voronoi diagram based ap- 83

proaches [8, 9], usually generate unstructured quad meshes or 84

quad-dominant meshes that are also difficult to optimize with 85

existing methods. A group of direct mesh generation methods 86

considers the geometric information and configurations of the 87

input to generate quad meshes, such as quad layout construc- 88

tion approaches [10], the parameterization based approaches 89
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and the field aligned approaches. The quad layout genera-1

tion initially produces coarse quadrilateral components on the2

polygonal mesh using either field line tracings [11, 12] based3

on certain surface directional fields [13], base domain simplifi-4

cation [14], curve skeleton [15], dual loops [16, 17], parameter-5

ization [18, 19], polycube-maps [20], or T-meshes from motor-6

cycles [21, 22, 23]. From these coarse quad patches, the refined7

quad meshes can be obtained via subdivision. In [24], a coarse8

quad layout of input mesh is first obtained by tracing separa-9

trices of the cross fields and then optimized through the global10

simplification using chord collapsing. This hybrid approach di-11

rectly simplifies the quad layout of the mesh and aims to re-12

duce the T-junctions, however, for certain complex inputs, this13

approach may not be able to completely optimize the quad lay-14

out and eliminate all T-junctions. Parameterization-based meth-15

ods [18, 25, 26, 27, 28] construct a mapping from the curved16

surface to a flat 2D domain. Cutting is typically needed so that17

the surface patches are equivalent to a topological disk to enable18

a low distortion mapping. With this mapping, quad mesh can be19

obtained trivially in the 2D domain before mapping back to the20

surface. In [29], quadrangulations of 2D patches are obtained21

by subdividing the surface patches into simpler basic cases with22

the objective of keeping the number of irregular vertices as lit-23

tle as possible. That technique was applied to mostly simple24

models with simple cuts. In summary, the quad meshes gen-25

erated using the quad layout computation and the parameteri-26

zation based methods are usually semi-regular and need little27

structure optimization. However, the local element quality may28

be sub-optimal near the boundaries of the individual quad do-29

mains, and the quad layout can still be very complex and too30

fine if the boundary of the domain is complex.31

A recent popular line of methods for quad mesh generation32

is the field-aligned methods [30, 31], starting with the seminal33

mixed-integer quadrangulation technique [32]. This method ex-34

plicitly controls element quality via certain guiding fields (e.g.,35

frame fields or cross fields). Quadriflow [33], extends the in-36

stant field-aligned method to produce meshes with fewer sin-37

gularities by enforcing certain constraints. For the frame-field38

based approaches, given any random input, the output quad39

mesh may not have an all-quad structure resulted from the gen-40

erated field. Furthermore, the field-aligned method fails to pro-41

duce optimal results and preserve sharp features for planar do-42

mains or open boundary meshes (Section 8).43

2.2. Structure Simplification of Quad Meshes44

To address the limitations and difficulty of directly generat-45

ing high quality quad meshes with simpler structure from the46

input triangle meshes, an alternative is to simplify the structure47

of a highly unstructured quad mesh to achieve the ideal config-48

uration and simpler structure. For this purpose, various simpli-49

fication techniques have been proposed, such as the local sim-50

plification approaches [34, 35, 3] and the global simplification51

methods [4, 36, 37]. These strategies have been demonstrated52

effective for initial valid quad meshes with reasonably good53

structures. Nonetheless, local simplification cannot guarantee54

to generate an optimal structure or a near optimal one, while55

global simplification may not produce a boundary-conformal56

structure or may not be able to simplify the structure due to the 57

constraint of boundary/feature preservation (Figure 9b). 58

Local quad mesh simplification [34, 35, 3, 38] aims to reduce 59

the amount of quad elements in a small local region via coars- 60

ening operations (e.g., edge rotation, diagonal collapsing, and 61

doublet removal), cleaning operations, or other optimization 62

operations. It produces quad meshes with fewer quad elements 63

but may not reduce the amount of singularities significantly. In 64

addition, these simplification operations can easily lead to the 65

loss of surface features if not treated properly. This is probably 66

part of the reasons that most examples shown in those works are 67

smooth surfaces with few sharp features (e.g., edges or corners) 68

except for the recent work by Docampo-Sanchez and Haimes 69

[38] that reports results on simple CAD models. To explicitly 70

reduce the singularities in the quad meshes, Peng et al. [39] 71

proposed an editing framework to modify the connectivity of a 72

quad mesh within a local region that usually contains a pair of 73

singularities. Nonetheless, this is a manual process that cannot 74

be applied to large quad meshes with many singularities. It also 75

does not address the preservation of sharp features. 76

Global quad mesh simplification methods aim to reduce both 77

structure and element complexity of the input quad meshes via 78

global operations. Tarini et al. [37] introduced the singular- 79

ity alignment technique to connect the mis-matched singulari- 80

ties, which cause complex structure, e.g., helical or even tangled 81

configurations. Similar issue in the quad meshes has been re- 82

ported with the field-guided quad mesh generation approaches 83

and was partially addressed in [40]. However, these singular- 84

ity alignment methods cannot be applied to a quad mesh split 85

from a triangle mesh because the singularities there are already 86

aligned. Daniels et al. [4] used the poly-chord collapsing oper- 87

ation to remove a sequence of quad elements at once, which not 88

only removes singularities but also simplifies the mesh struc- 89

ture. However, it cannot handle certain complex poly-chords 90

(e.g., poly-chords that are self-intersecting) and can easily in- 91

troduce high-valence singularities during collapsing. In addi- 92

tion, it does not preserve surface features. To overcome this 93

global issue, an adaptive simplification method [36] is proposed 94

to perform poly-chord collapsing in a local region or surface 95

with boundaries. However, for certain inputs, the complexity of 96

poly-chords can still pose an additional challenge for simplifi- 97

cation due to constraints of feature preservation. 98

Recently, Kaoji et al. [5] proposed a semi-global simplifica- 99

tion strategy which uses semi-global simplification operations 100

to resolve singularities in the local regions bounded by separa- 101

trices for planar quad meshes with boundaries. Their approach 102

can address complex mesh structure configurations, like those 103

often seen in the quad meshes obtained via Catmull-Clark sub- 104

division from triangle meshes, and significantly reduce them to 105

much simpler ones. However, the framework reported in [5] 106

is slow and the involved simplification operations are not well- 107

organized (or ordered), leading to sub-optimal outcomes. To 108

address these limitations, in this work, we propose a strategy 109

to organize different types of operations and order the individ- 110

ual operations of each type. This new strategy significantly re- 111

duces the simplification time while achieving comparable and 112

(many times) better outcomes than the previous framework. In 113
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addition, we include additional smoothing and refinement oper-1

ations to mitigate the overlapping elements in the output simpli-2

fied meshes due to the loss of vertices after simplification. The3

new framework also provides an option for the user to achieve4

an inversion-free output that the previous works cannot.5

3. Method Overview6

3.1. Features of an Ideal Planar Quad Mesh7

As already described earlier, a high-quality planar quad mesh8

should have a simpler structure (i.e., with fewer singularities9

and fewer quad patches), while having as-regular-as-possible10

quad elements. To achieve the latter, we need to constrain the11

valence of singularities (i.e., either 3 or 5 for the interior sin-12

gularities). In addition, a high-quality planar quad mesh should13

preserve the boundary features (e.g., corners) and the shape of14

the boundary. To achieve that, the following additional criteria15

are needed.16

1. The ideal structure should place singularities at corners (at17

the boundaries) with valence either 1 or 3, depending on18

the spanning angle (or discrete curvature) around them.19

2. It should ensure boundary conformality, i.e., boundary20

quads should align to the boundary, and each boundary21

vertex has an ideal valence based on the angle around it.22

The sector angle around a boundary vertex, vb, is com-23

puted as θ =
∑n

i=1 θi, where n is the valence of vb and24

θi represent angle between two adjacent edges of vb. The25

ideal valence of vb is calculated as valideal = ⌊
θ

90 ⌋+ ⌊
θ%90

45 ⌋.26

The ideal number of edges connected to the boundary ver-27

tex should be its valideal + 1 (see Figure 2).28

3.2. Overview of Our Framework29

The above criteria motivate the design of our simplification30

framework. Our framework takes a valid all-quad mesh as input31

and the output is a valid all-quad mesh with simplified structure32

(i.e. fewer singularities and simpler base complex) that pre-33

serves the open boundary (features identified according to the34

criteria in 3.1) of the planar input quad mesh. Here open bound-35

ary refers to the collection of edges that are only shared by36

one quad as opposed to closed boundary surface meshes where37

each boundary/feature edge is shared by two quads. As a very38

first step towards simplification, the simplification framework39

extracts the singularities and base complex of the mesh, then40

identifies the sharp boundary features (corners) that need to be41

preserved during simplification. Next, it enters an iterative pro-42

cess, and each iteration checks whether there are simplification43

operations that can be performed. The simplification operations44

that our framework provides include the semi-global simplifica-45

tion based on separatrices (Section 4) and some local operations46

(Section 5). If no simplification can be performed, our frame-47

work outputs the current mesh. To determine the operations48

to perform, a number of criteria and constraints are checked.49

These constraints can be classified into two groups (Section 7),50

i.e., the valence constraint (e.g., valence should be between 351

and 5) and the boundary constraint (e.g., boundary conformal-52

ity and shape preservation). In general, the local operations53

that achieve boundary conformality and cleaning operations (to 54

remove degeneracy) are performed before all semi-global oper- 55

ations. The semi-global operations are grouped and performed 56

based on different types of separatrices (Section 4). Our frame- 57

work continues to identify and perform possible semi-global 58

and local simplification operations until no more singularities 59

can be removed without violating the valence and boundary 60

constraints. The detailed pipeline of our framework will be pro- 61

vided in Section 6. In the following, we will first introduce the 62

semi-global operations, followed by the utilized local opera- 63

tions. 64

4. Semi-Global Simplification 65

Our semi-global simplification strategy is based on the fol- 66

lowing knowledge. There is a topological index of each singu- 67

larity of a quad mesh, v, that is defined as idxv = 1− valv
4 , where 68

valv is the valence of v. The index of a regular vertex is 0. Given 69

a local region of the quad mesh, its total index is the sum of the 70

individual indices of all the interior vertices. In particular, if the 71

total index of a local region is zero, it can be re-meshed such 72

that the new mesh within it is singularity-free according to the 73

Poincaré index theorem [41]. One way to construct such a lo- 74

cal region with trivial index is via separatrices as done in vector 75

field simplification [42, 43], since separatrices usually connect 76

nearby singularities. 77

In a quad mesh with boundary, four types of separatrices can 78

be constructed by connecting singularities of different valences. 79

Generally, we have separatrices that connect two low valence 80

singularities, separatrices that connect a low valence singular- 81

ity to a high valence singularity, separatrices that connect two 82

high valence singularities, and separatrices that end at a bound- 83

ary. To simplify our discussion and utilize the Poincaré index 84

theorem, we assume a quad mesh that consists of only valence- 85

3 and valence-5 singularities in the interior. This assumption 86

results in four basic types of separatrices: 3–3, 3–5, 5–5, and 87

half-separatrices, and allows us to construct local regions sur- 88

rounding them with trivial Poincaré index. We then design their 89

respective simplification operations accordingly. 90

4.1. Separatrix Collapsing for 3–3 Connections 91

These separatrices connect a pair of valence 3 singularities 92

directly. Figure 3a (left) shows such an ideal configuration. 93

In this ideal configuration, two valence 5 singularities (yellow 94

dots) share the same quads as valence 3 singularities (green 95

dots) respectively, which enables the construction of the semi- 96

global region enclosing those 4 singularities whose total index 97

is zero. 98

To remove these singularities, we perform a collapsing within 99

the region surrounding the separatrix. There are three parallel 100

lines (including the separatrix) as shown in Figure 3a which 101

have same number of vertices. We denote the separatrix as 102

Ls = {vi
s}, where i ∈ {1, 2, ..., n} and n is the number of vertices 103

associated with the separatrix. Assume L1 = {vi
1} and L2 = {vi

2} 104

are the other two lines parallel to the separatrix. We collapse 105

the vertices lying on L1 and L2 towards the corresponding ver- 106

tices on Ls. In this way, the four singularities associated with 107

the separatrix are canceled. 108
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Fig. 2. Illustration of ideal valence for different boundary configurations.

(a) 3-3 separatrix collapse operation (b) 3-5 separatrix chord collapse operation

(c) 5-5 separatrix split operation (d) half separatrix collapse operation

Fig. 3. Semi-global Operations based on different separatrix connections.

4.2. Chord Collapsing for 3–5 Connections1

These separatrices connect a pair of valence 3 and valence2

5 singularities directly. Since valence 3 and valence 5 singu-3

larities have opposite indices, a semi-global region enclosing4

such singularities can be constructed with trivial total index for5

simplification.6

To handle this configuration, a chord collapsing is performed7

(Figure 3b). The chord is formed by tracing parallel edges from8

the 3–5 separatrix edge until boundary is reached or a cycle is9

formed. The chord can be collapsed by merging the vertices of10

the parallel edges which cancels the two singularities associated11

with the chord as shown in Figure Figure 3b. The details on the12

chord collapsing can be found in [4]. We avoid the chord col-13

lapse operation if it does not satisfy the valence and boundary14

preservation constraints (Section 7) or if it self-overlaps.15

4.3. Separatrix Splitting for 5–5 Connections16

These separatrices connect pairs of valence-5 singularities.17

Figure 3c (left) illustrates an ideal 5-5 separatrix configuration.18

Similar to the 3-3 connection described above, the two valence-19

5 singularities (yellow dots) are connected directly via the sep-20

aratrix while two valence 3 singularities share the quads with21

them, enabling the construction of semi-global region with triv-22

ial total index.23

To simplify the 5–5 separatrix, we perform splitting in the24

region surrounding a 5–5 connection. In Figure 3c, the region25

(purple) surrounding the separatrix (the yellow line) contains a26

pair of valence-5 singularities (yellow dots) and two valence-27

3 singularities (green dots). The splitting operation inserts two28

lines (dark lines in Figure 3c (right)) parallel to the original sep-29

aratrix, which removes the four singularities involved.30

4.4. Collapse Operations for Half-separatrices 31

For a quad mesh with boundaries, separatrices may not al- 32

ways connect two singularities. As illustrated in Figure 3d 33

(left), a singularity connects with a regular vertex on the bound- 34

ary thus creating a half-separatrix. Half-separatrices containing 35

valence 3 singularity can be collapsed like the 3–3 collapsing 36

operation defined above(Figure 3d), while half-separatrix con- 37

taining valence 5 singularity can be resolved using the split op- 38

eration similar to the above 5–5 split. 39

4.5. Generalized Separatrix Operations 40

What we described so far are simplification operations in the 41

ideal semi-global regions. However, in practice we may not 42

always have such an ideal region, i.e., not having the two end- 43

ing vertices with the desired valences as shown in Figure 3b or 44

Figure 3c. For example, in the quad meshes obtained by sub- 45

dividing a triangle mesh, while 3-3 separatrices are prevalent, 46

3–5 and 5–5 are not due to the high valences at the original 47

vertices of the triangles. In general, 3–n (n>5) connections are 48

more common. To enable their simplification, we relax the con- 49

straint of valid valence range (i.e., all vertex valences fall in the 50

range [3, valmax]) where valmax is provided as an input parame- 51

ter to the simplification framework. 52

5. Local operations 53

In addition to the semi-global operations for separatrices, lo- 54

cal operations are needed to address any degeneracy in the mesh 55

that might arise during simplification and to achieve boundary 56

conformality (Section 3.1). The simplification in such regions 57

can be achieved using the available local simplification oper- 58

ations introduced in the previous works [34, 35, 3, 38]. The 59
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Fig. 4. Illustration of the utilized local operations.

local operations incorporated in our simplification pipeline are1

as follows.2

Operations for removing degeneracy.3

• Doublet collapse. During the simplification, doublets may4

be introduced in the mesh which are detected and removed5

immediately. Since a doublet is created due to a valence-6

2 vertex, we merge the two involved quads to remove the7

doublet as shown in Figure 4b.8

• For singlets on the flat portion of the boundary, we perform9

a singlet collapse operation by collapsing the involved two10

edges into one vertex, as shown in Figure 4a.11

Operations for achieving boundary conformality We per-12

form edge rotation operation to achieve boundary conformal-13

ity during simplification such that the boundary has as many14

regular vertices as possible. For each boundary vertex, based15

on its sector angle, we estimate its ideal valence, valideal (see16

Section 3). Consequently, the number of redundant edges that17

need rotation is calculated as n = valv − valideal. Each edge ro-18

tation operation reduces the valence of boundary vertex by 1,19

therefore, we perform n edge rotations to achieve ideal valence20

(Figure 4d).21

Operations for mesh simplification. During simplification,22

certain local regions in the mesh might not be encompassed by23

any of the separatrices. Therefore, we need to perform other24

local operations, such as diagonal collapsing. An ideal di-25

agonal collapse operation is illustrated in Figure 4(c), where26

two valence-3 and two valence-5 singularities shared by a sin-27

gle quad are eliminated by collapsing the diagonal containing28

valence-3 singularities.29

6. The Complete Simplification Pipeline30

Our simplification framework combines the operations de-31

scribed in Sections 4 and 5 to build the complete pipeline nec-32

essary for carrying out simplification. We illustrate our entire33

simplification pipeline in Figure 5. The input to the pipeline is34

the initial irregular quad mesh obtained through Catmul-Clark35

subdivision of the original triangle mesh. Prior to simplifica-36

tion, sharp features and corners on the boundary of the mesh37

are detected for boundary preservation. The singularities and38

their separatrices are also extracted. Next, simplification is ap-39

plied in an iterative manner to gradually simplify the structure40

of the mesh. Each simplification iteration is carried out by three 41

sets of operations in the following order: 42

i. Degeneracy Handling Operations: 43

These operations optimize the mesh connectivity by elim- 44

inating the degenerate elements, i.e. doublets and singlets 45

using the local operations, such as doublet removal and 46

singlet removal. 47

ii. Boundary Optimization Operations: 48

We perform the edge rotation operation to optimize the 49

boundary of the mesh. Element regularity at the boundary 50

is achieved through the criteria describe in Section 5. 51

iii. Simplification Operations: 52

In this step, we perform the simplification (local, semi- 53

global and global) operations to reduce the singulari- 54

ties in the mesh. We organize the simplification oper- 55

ations in the following order: diagonal collapse, sepa- 56

ratrix collapse, separatrix split, chord collapse and half- 57

separatrix collapse. The ideal configurations of diagonal 58

collapse and separatrix operations remove four singular- 59

ities, whereas, the ideal configurations of chord collapse 60

and half-separatrix operations remove two singularities. 61

The greedy aspect of our framework in terms of singu- 62

larity removal calls for prioritization of diagonal collapse 63

and separatrix operations before chord collapse and half- 64

separatrix operations. We order the diagonal collapse op- 65

eration before the separatrix operations since its local na- 66

ture allows for the singularity removal without modifica- 67

tion of large areas of the mesh, thus allowing further sim- 68

plification by the semi-global operations in the later stages. 69

Figures 6a and 6b show the simplification outputs obtained 70

by performing diagonal collapse before and after separa- 71

trix operations respectively. In addition, we perform the 72

half-separatrix operation once all other operations have 73

been exhausted for the sake of preserving the boundary as 74

much as possible. In each simplification iteration, we iden- 75

tify and group only one type of simplification operations. 76

For instance, the mesh is first checked for all candidate 77

diagonal collapse operations. If there are no diagonal col- 78

lapse operations found in the current mesh, it is checked 79

for the prospective separatrix collapse operations and so 80

on. 81

Once a group of simplification operations is identified, 82

we employ a length-based ranking strategy to prioritize 83

the operations. The ranking strategy is heuristic in na- 84

ture and analogous to the ranking criteria for simplifying 85

sheets in hex-mesh simplification [44]. It aims to prior- 86

itize operations that cause the smaller regions to be sim- 87

plified first. The ranking of an operation is calculated as: 88

rop =
∑

length(e), where e belongs to the set of edges that 89

make up the separatrix and chord links. In case of diag- 90

onal collapse, the diagonal length is used for the ranking 91

strategy. We sort the candidate operations in a group in 92

an ascending order according to their respective rankings. 93

During sorting, we exclude an operation from the sorted 94

list if its bounded region overlaps with the bounded region 95

of another operation already present in the sorted list. In 96

this way, all simplification operations in a group which are 97
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Fig. 5. Detailed pipeline of our simplification framework.

(a) (b)

Fig. 6. An example illustrating the effect of ordering local operation (diag-
onal collapse) before (a) and after (b) semi-global operations respectively.
(a) has 4 singularities while (b) has 15 singularities for the same input
model.

disjoint in terms of their bounded regions are performed1

in a single simplification iteration as opposed to [5], thus2

avoiding large geometric distortions in the mesh and re-3

ducing the time complexity of our framework.4

Certain operations in the above process may distort the5

meshes by a great extent. If left untreated, the mesh may be-6

come tangled and get worse during further simplification. To7

address this, we perform local smoothing and refinement as de-8

scribed next. Note that both of these two processes are optional9

in our pipeline.10

6.1. Local Smoothing.11

The simplification of semi-global regions may introduce a12

coarse configuration in the interior and boundary which may13

introduce inverted elements. We identify the vertices involved14

in the simplification operations and add one ring neighborhood15

of those vertices to cover the region bounded by the group of16

operations executed in each simplification iteration. We then17

perform the local smoothing [45] at the end of each simpli-18

fication iteration to fix any inverted elements. We offer local19

smoothing in our framework as an optional step and leave the20

decision to the user, since it may increase the computation time 21

for large meshes. 22

6.2. Optional Local Refinement. 23

As the simplification progresses, the semi-global regions 24

bounded by the separatrices in the simplified mesh may cover 25

a large area. Simplifying such regions can introduce distorted 26

elements in the mesh especially after collapse operations. The 27

removal of overlapping elements introduced during simplifica- 28

tion is challenging since some overlapping elements can have 29

a positive Jacobian measure which can be regarded as non- 30

inverted elements by the optimization algorithms. One solu- 31

tion to mitigate this problem is to refine the mesh (e.g., splitting 32

some chords of the mesh that become too coarse for bound- 33

ary preservation) during simplification before the introduction 34

of overlapping elements. However, it is challenging to deter- 35

mine when refinement should be executed, since refinement at 36

an early stage during simplification can increase the complex- 37

ity of the mesh, increasing the running time for simplification 38

pipeline, whereas, performing refinement when the simplified 39

mesh is too coarse may not always be helpful since presence of 40

overlapped elements can worsen the quality of the mesh. There- 41

fore, we refine the mesh if total number of quad elements in cur- 42

rent mesh falls below 25% of the number of elements in input 43

mesh. In our experiments, refinement can sometimes lead to in- 44

version free simplified meshes but in some other cases it leads 45

to worse quality elements. Again, we leave this as an option for 46

the user to decide. 47

After the above structure simplification, we perform a feature 48

preserved smoothing and re-sampling, adapted from a previous 49

work [45]. This smoothing optimizes the angles between edges 50

in the mesh and preserves the boundary features by fixing ver- 51

tices located at the corner-like sharp features. It also improves 52

the Jacobian measures of the meshes. 53
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Fig. 7. Some results from our simplification framework. For each pair, the left image shows the input mesh and the right is the output. Different color
regions correspond to different base complex components, and the dark curves show the structure of the base complexes.

A reference implementation of the proposed simplifica-1

tion pipeline can be found at https://github.com/DaViM-Lab-2

Repository/CotrikMesh.3

7. Valence and Boundary Constraints4

During the simplification, a number of constraints need to be5

checked in addition to the ranking to ensure the output of a high6

quality mesh with simpler structure.7

7.1. Singularity Valence Constraint8

In order to ensure that the valences of all singularities fall in9

the range of [3, valmax] after the simplification operations, we10

calculate the prospective valence of the vertices involved in the11

separatrix simplification operations. For the 3–3 separatrix, the12

valences of the singularities diagonal to the two valence 3 sin-13

gularities (Figure 4(a)) reduces by 1. For 5–5 separatrix, the14

valence of singularities connected by the separatrix reduces by15

1 (Figure 4(c)), whereas the singularities diagonal to the sep-16

aratrix singularities increases by 1. Generally, the valence of17

any two vertices being collapsed in 3–3 separatrix collapse and18

chord collapse is calculated as val1+val2−4. If the prospective19

valences (valp) satisfy the condition: 3 <= valp <= valmax, the20

simplification operation is performed, otherwise it is skipped.21

However, even after satisfying the constraints, doublets or sin-22

glets may be introduced after simplification, leading to the vio-23

lation of minimum valence requirement. The doublet and sin-24

glet removal operations can be performed to remove these de-25

generate elements. A detailed discussion on the undesired con- 26

figurations can be found in the supplemental document (Section 27

1). 28

7.2. Boundary Feature Preservation 29

Before simplification, we identify the feature vertices (e.g., 30

corners) and extract the boundary feature lines. Vertices at the 31

corners (i.e., boundary singularities or with angles outside a 32

range, [θ, 360◦ − θ], θ is set by the user) are fixed. Vertices on 33

sharp edges can only move along the sharp edges. Operations 34

that alter a corner or a sharp edge are prevented to achieve a 35

boundary configuration as close to the input boundary as possi- 36

ble. A detailed description on the handling of different scenar- 37

ios for boundary preservation is provided in the supplemental 38

document (Table 1, Section 2). 39

7.3. Optional Inversion-free Constraint 40

The above introduced semi-global and local operations may 41

introduce inverted quads (i.e., with negative Jacobian [2]) into 42

the resulting meshes, which may be hard to correct. To pre- 43

vent the introduction of inverted quads, similar to the work [2], 44

after each collapsing operation (including 3-3 collapse, chord 45

collapse and diagonal collapse), we check whether the affected 46

quads become inverted or not. If an inverted quad is found, the 47

operation is reversed. In practice, we leave this as an option for 48

the user to choose. The default setting has this constraint turned 49

off. The reason for disabling this constraint by default is to en- 50

sure maximum simplification in terms of singularity reduction 51
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as most inverted elements can be fixed by the local smooth-1

ing, however, certain input mesh configuration may become too2

coarse after simplification and inverted elements in such places3

may not be able to be improved using geometry optimization,4

therefore, simplification can be avoided in such regions of the5

mesh with the aid of inversion free constraint. This strong guar-6

antee of inversion free outcome may affect the level of simplifi-7

cation as shown in Section 8.8

8. Results9

We applied our simplification method to a number of quad10

meshes with different geometry and topology configurations.11

Figure 7 shows the results of our simplification framework ap-12

plied to a number of representative quad meshes. In particular,13

we achieve over 96% reduction of the singularities for these14

models, and the structures in the simplified meshes are close to15

their ideal structures given their boundary configurations. Ta-16

ble 1 provides the statistics of the results of our method and two17

other most relevant methods.18

8.1. Comparison With Other Simplification Methods19

A comprehensive study of the comparison between the re-20

sults obtained from our simplification framework and other21

mesh generation methods is as follows:22

Previous semi-global simplification: Our simplification23

pipeline has three key differences from the previous semi-global24

simplification work [5]. 1) The ordering of operations in our25

pipeline (Section 6) is different than [5]. We perform all clean-26

ing operations ahead of all other operations and diagonal col-27

lapse operation is ordered before semi-global operations as28

opposed to [5]. 2) We group each type of operation (Sec-29

tion 6) such that independent regions (non-overlapping regions)30

bounded by each type of operation are performed at once in31

contrast to the simplification pipeline in [5] where only one32

type of operation is performed in each simplification iteration.33

In this way, the time complexity of our pipeline is reduced to34

a great extent, see Table 1. 3) We employ a length based rank-35

ing strategy to order simplification operations which achieves36

increased singularities reduction. Figure 8a shows a simplified37

result reported in [5] and the result obtained using our simplifi-38

cation pipeline Figure 8b. While exhibiting similar structure, all39

resulting meshes with our new method have equal or fewer sin-40

gularities than those with the method in [5]. The new method41

also improves the Jacobian metric for some resulting meshes42

compared to the ones produced by the method of [5].43

Local Simplification: Usually, local operations can be applied44

to a quad mesh that is split from a triangle mesh, while the45

global operations, such as chord collapsing, cannot because46

they may produce singularities with valences not falling in the47

range [3, valmax]. Singularity alignment is usually applied to a48

closed surface, while our method targets an open surface with49

boundary. Also, most singularities in our input meshes are50

aligned (i.e., connecting with other singularities). Therefore,51

it is not suitable to compare our results to the simplification ob-52

tained using singularity alignment. Nonetheless, we compare53

(a) (b)

Fig. 8. Comparison of previous semi-global simplification work[5] with
our semi-global simplification strategy. (a) shows the result from previ-
ous work. The reported singularities for this result are 175 whereas, the
result from our simplification pipeline (b) has 145 singularities.

the results generated by our simplification strategy to local sim- 54

plification strategy proposed by [3]. Since their original method 55

does not focus on meshes with open boundaries, we made some 56

adjustments so it can preserve boundary features and achieve 57

boundary conformality. We calculate the total singularities for 58

both simplification strategies and report the minimum scaled 59

Jacobian values. As seen in Figure 9, the obtained structure 60

is not as simple as our results. Table 1 reports the statistics 61

for the comparison between the results generated through local 62

simplification and those with our simplification framework. It 63

is observed that our method outperforms local simplification in 64

terms of singularity reduction to a great extent. Our method also 65

improves the Jacobian metric of the individual elements, while 66

having a slightly larger Hausdorff distance to the input shapes. 67

This is understandable as our method significantly reduces the 68

number of singularities, leading to fewer elements (or samples) 69

at the boundaries. 70

Global Simplification: Global simplification usually performs 71

the chord collapse operation along with other operations to op- 72

timize the structure of the mesh. However, as mentioned earlier, 73

performing global operations on a highly unstructured mesh 74

may produce singularities outside optimal range. In [4], a rank- 75

ing strategy is defined to improve the singularity valence while 76

optimizing the structure. We modify their strategy for the pla- 77

nar meshes and pair it with edge rotation for boundary con- 78

formality. Figure 10 shows the result obtained through global 79

simplification and our result using the mazewheel 1 mesh. 80

Quadrangulation of 2D Patches: In [29], quadrangulation of 81

2D patches is obtained through subdivision into simple basic 82

patches with an emphasis on introducing as few singularities 83

as possible within those basic patches. We demonstrate the ef- 84

fectiveness of our framework in Figure 11, where Figures 11a 85

and 11c show the quadrangulation of two 2D patches as pre- 86

sented in [29], while Figures 11b and 11d show the structures 87

of the patches obtained through our simplification framework. 88

From the comparison, we see that our simplification achieves 89

simpler structures with better placement of singularities. This 90

is because the subdivision strategy used by [29] may lead to a 91

locally optimal result (i.e., optimal within a sub-patch) but not 92
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Table 1. Performance of our simplification method
Input Local Method [3] Kaoji et. al [5] Ours

Min. Avg. Min. Avg. Min. Avg.

Scaled Scaled Haursdorff Scaled Scaled Haursdorff Scaled Scaled Haursdorff

Model #S #S Jacobian Jacobian Dist. #S Jacobian Jacobian Dist. Time(s) #S Jacobian Jacobian Dist. Time(s)

Patch 1 195 64 0.435062 0.813715 0.00016 4 0.956264 0.992745 0.00735 0.47 4 0.997924 0.999526 0.00140 0.39
Patch 2 269 95 0.636886 0.886676 0 4 0.999351 0.999887 0 0.65 4 1 1 0 0.43
Patch 3 2428 1238 0.631782 0.876612 0.000170 18 0.352553 0.918613 0.00046 29.49 10 0.0647535 0.909919 0.03793 7.93
Patch 4 1791 781 0.627532 0.898935 0.00055 13 0.368196 0.832329 0.00962 15.96 9 0.348614 0.870761 0.00818 2.41
Patch 5 919 413 0.607521 0.886647 0.00046 17 -0.0742107 0.843955 0.01132 5.08 14 0.138939 0.802023 0.02975 1.8
1 hole 230 99 0.524566 0.861475 0.00197 0 0.989097 0.99407 0.00400 1.08 0 0.991053 0.994188 0.00527 0.31
2 holes 539 300 0 0.849616 0.00304 4 0.630725 0.910972 0.01636 4.04 4 0.748057 0.971484 0.010686 0.89
3 holes 417 148 0.676705 0.880316 0.00215 4 0.661058 0.942534 0.00432 3.07 4 0.685901 0.946452 0.00550 0.63

3 holes square 523 208 0.652941 0.887485 0 12 0.695252 0.915355 0 2.06 12 0.677243 0.928474 0 0.85
2 holes 2 squares 1825 922 0.479384 0.863472 0.00067 20 -0.134864 0.834113 0 15.46 20 0.230834 0.926504 0.03026 4.33
6 holes 2 squares 1112 435 0.520637 0.87084 0.00045 23 0.224303 0.87921 0.00558 8.78 23 0.280634 0.898758 0.00234 2.99

8 holes 2109 1089 0.484588 0.862253 0.00056 18 0.253169 0.90472 0.00079 19.10 16 0.620603 0.903053 0.00151 5.5
10 holes 1137 456 0.647599 0.913045 0.00027 22 0.0956317 0.83831 0.00377 65.68 18 0.469836 0.943661 0.00140 5.5

Mazewheel 1 23628 8484 0.0531367 0.891381 0 175 0.076333 0.809203 0 834.18 145 0.0451114 0.827077 0.00662 259.54
Mazewheel 6 11446 4093 0.62016 0.907099 0.00011 84 0.378568 0.924225 0.00055 1064.22 78 0.376601 0.916187 0.00172 68.22
Mazewheel 8 14315 5023 0.617715 0.915379 0.00028 103 -0.368346 0.90156 0.02407 1584.72 77 0.0258166 0.970718 0.00546 114.22

Mazewheel 19 5618 1996 0.670187 0.91499 0.00024 23 0.454705 0.908444 0.00197 199.95 16 0.106829 0.927656 0.05070 26.23

(a) (b) (c)

(d) (e) (f)

Fig. 9. Comparison of local simplification [3] with our semi-global simplification strategy. (a) and (d) show the input quad-meshes split from respective
triangle meshes, (b) and (e) represent outputs with base complex from local simplification and (c) and (f) represent the outputs with base complex obtained
through our simplification framework.

a globally optimal one.1

Quadriflow: While Quadriflow [33] works well on surface2

meshes, results for the planar cases (Figure 12) are sub opti-3

mal and may fail to capture the boundary features of the input4

meshes. Moreover, results from our framework exhibit element5

size adaptivity as opposed to uniform element sizes in Quadri-6

flow (14400 faces to preserve input features). Figure 12b shows7

the result from Quadriflow through parameter tuning that al-8

most captures the features of the input mesh with 32 singulari-9

ties, whereas our result (Figure 12c) preserves the features with10

similar singularities but lesser element count. 11

8.2. Impact of Parameters 12

The most crucial parameter of our framework that can be 13

tuned by the user is the angle threshold θ for feature preserva- 14

tion. Higher values for the angle threshold can put a limit on the 15

simplification process since the boundary is preserved as much 16

as possible while lower angle threshold values can oversimplify 17

certain regions in the mesh. Table 2 represents the singularities 18

in the output mesh for different angle threshold θ in different 19
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(a) (b)

Fig. 10. Comparison of global simplification [4] with our semi-global sim-
plification strategy. (a) represents output with base complex from the
global simplification and (b) represents the output with base complex ob-
tained through our simplification framework.

(a) (b)

(c) (d)

Fig. 11. Comparison of the quadrangulation produced by [29] of two
patches with our result. (a) has 14 singularities while our result (b) has
12; in the meantime, (c) has 20 singularities and our result (d) has 18 sin-
gularities.

models. Figure 13 shows the effect of different values for θ on1

simplification extent. For the 3 holes model, it can be seen that2

the number of singularities in the result using θ = 150 is the3

least compared to other values of θ (sub-figures 13c and 13d).4

For the patch extracted from mazewheel model, using the lower5

value for θ causes some features to be lost. Therefore, θ can be6

tuned by users to achieve the best simplification results while7

preserving the features.8

8.3. Impact of Ranking the Operations9

In our implementation, separatrix connections are built in the10

order in which singularities in the mesh are encountered. We it-11

erate through the mesh vertices, identify singularities and build12

separatrix connections. Therefore, without a ranking strategy,13

the groups of simplification operations are sorted in a random14

order [5]. In our pipeline, we order the operations according15

to a length based ranking strategy as described in Section 6.16

Figure 14 shows the simplification results obtained for a model17

with and without the ranking strategy. It is evident that with18

Table 2. Impact of the angle threshold θ for boundary preservation
#Singularities

Model Input θ = 150◦ 155◦ 160◦ 165◦

Square 269 4 4 4 4

1 hole 230 0 0 0 6

2 holes 539 4 24 24 25

3 holes 417 4 4 4 7

2 holes 2 squares 1825 19 49 49 49

6 holes 2 squares 1112 21 54 54 54

8 holes 2109 16 62 62 62

10 holes 1137 18 72 72 72

ranking in place, the number of singularities in the final result 19

14b is less than the result obtained without any ranking for the 20

simplification operations 14a. 21

8.4. Impact of Different Triangle Inputs 22

We study the impact of different triangle inputs for the same 23

model on the simplification of quad meshes obtained through 24

Catmull-Clark subdivision using our framework. Some exam- 25

ple results are shown in Figure 15. In general, for models with 26

simple boundary configurations, the input triangle meshes have 27

little impact to the simplification result as shown by the one 28

hole example in Figure 15. For more complex models, the tri- 29

angulation has some impact to the simplification, as shown by 30

the mechanic model in Figure 15. In this example, the two sim- 31

plification results (Figure 15d and 15h) have slightly different 32

structures, while having similar numbers of singularities. The 33

difference of the two structures is mostly caused by the slight 34

difference of the positions and valences of some singularities. 35

8.5. Option of Inversion-free Output 36

As mentioned in Section 7.3, our framework offers an op- 37

tion for the user to achieve a guaranteed inversion-free output. 38

However, the resulting mesh using this strategy may have more 39

singularities than the results produced without inversion-free 40

guarantee. We have applied this strategy to produce inversion 41

free simplified meshes for certain complex examples. Figure 16 42

shows a region of the mazewheel-19 model, produced with (a) 43

and without (b) inversion free guarantee. It can be seen that 16a 44

contains convex quad elements with a minimum and average 45

scaled Jacobian values of 0.107 and 0.928. In contrast, there 46

are some overlapping elements in the simplified mesh with the 47

inversion-free strategy turned off 16b, which are difficult to fix 48

using optimization, hence, the minimum and average scaled Ja- 49

cobian values are calculated as -0.265 and 0.896, respectively. 50

In summary, our hybrid simplification framework addresses 51

the limitations of global and local operations and can simplify 52

a quad mesh to a near optimal structure. In addition, singular- 53

ity alignment is implicitly achieved via the above simplification 54

operations without an explicit treatment. 55

9. Summary and Future Work 56

We proposed an effective simplification method for planar 57

quad meshes with boundaries that is mainly based on semi- 58
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(a) (b) (c)

Fig. 12. Comparison of Quadriflow result (b) with our semi-global simplification strategy (c) given an input mesh (a).

(a) Input (b) θ = 150 (c) θ = 160 (d) θ = 170

(e) Input (f) θ = 150 (g) θ = 160 (h) θ = 170

Fig. 13. Comparison of outputs produced using different values of θ for sharp feature (or corner) extraction. The 3 hole model (top row) and the mazewheel
model (bottom) are used. As can be seen, with a small θ value (i.e., (b) and (f)), the structure is the simplest, yet important features may be lost ((f)). With
increasing θ value, the features of the shape are better preserved (i.e., (h)), but the simplified structure is more complex than the one with a small θ.

(a) (b)

Fig. 14. Comparison of the results obtained with and without ranking strat-
egy for simplification operations. The number of singularities for the re-
sult in (a) without any ranking, are 65, whereas, the result (b) using the
proposed ranking has 53 singularities.

global separatrix operations and a few local operations. These1

operations are organized into groups and are sorted to achieve2

an optimal result with fast computation. Our framework pre-3

serves the boundary features and produces singularities in the 4

user-specified valence limit. Our framework also provides op- 5

tion for the user to achieve an inversion-free output. We have 6

applied our simplification framework to a number of planar 7

quad meshes with different boundary configurations to demon- 8

strate its effectiveness. We also compared our results with 9

the previous semi-global simplification framework and other 10

quad mesh simplification and quad mesh generation methods 11

to demonstrate its advantages. 12

With the proposed method, the practitioners (or engineers) 13

can start with designing their (CAD) models using triangular 14

meshes or other simpler quad-mesh generation approaches that 15

are robust. They can then use our method to convert these initial 16

meshes into high quality quad-meshes with simpler structures 17

(and with fewer singularities) that are often preferred by higher- 18

order finite element methods and isogeometric analysis [23]. 19

Limitations. There are a few places in which our framework 20

can be improved. First, the utilized simple ranking strategy 21

based on the width of the regions for collapsing may not be 22

optimal. Thus, some simplification results may not be optimal 23

(e.g., the upper-left corner of Figure 9c). Also, as the simplifi- 24
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(a) (b) (c) (d)

(e) Input (f) (g) (h)

Fig. 15. Comparison of outputs produced using different triangle inputs as sources for our simplification framework. As can be seen, our framework
produces similar result for simple models (e.g., (a), (b), (e), (f)), while it may lead to different structures for complex shapes if different triangulations are
used (e.g., (c), (d), (g), (h)).

(a) (b)

Fig. 16. Comparison of results produced with (a) and without (b) inversion-
free guarantee. The result in (a) has 103 singularities, while (b) has 17.

(a) (b)

Fig. 17. Simplification result for a surface quad mesh using our simplifi-
cation framework. (a) represents the input and (b) shows the simplified
mesh.

cation progresses, some boundary features may still be lost due1

to fewer elements around those features (e.g., the lower right2

example in Figure 7). Second, our algorithm may not place3

the resultant singularities to their optimal locations, which may4

be addressed using certain guidance fields (e.g., cross or frame5

fields) derived from boundaries. One way to utilize the frame6

fields for optimal singularity placement would be to prioritize 7

and select operations that contain singularities that most align 8

with the frame field. For each type of operation, e.g., collapse, 9

split, rotate, etc., the singularities with most optimal placement 10

can be retained while other singularities involved in such op- 11

erations can be eliminated. Third, our current framework con- 12

centrates mainly on 2D meshes with open boundaries and does 13

not directly apply to closed surface meshes. For surface quad 14

mesh inputs, the half separatrix operations are not valid, how- 15

ever, a normal separatrix that crosses the boundary can be con- 16

sidered as two half separatrices on each side of the boundary 17

region connected via boundary edges. To preserve the mesh 18

features, we avoid the semi-global and global operations in- 19

volving boundary regions which restricts the extent of simplifi- 20

cation on the mesh. In addition, the curved regions of the sur- 21

face mesh can become distorted following simplification and 22

additional processing may be required to recover the surface 23

shape. Figure 17b shows the simplified mesh obtained through 24

our simplification framework. It can be observed that the resul- 25

tant mesh contains fewer singularities as compared the the input 26

but is still quite unstructured nevertheless. In the future, we plan 27

to address the above limitations and extend our simplification 28

pipeline to handle surface quad meshes and hex-meshes. 29
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