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In this paper, we present a structure simplification framework for planar all-quad meshes
with open boundaries. Our simplification framework can handle quad meshes with
complex structures (e.g., quad meshes obtained via Catmull-Clark subdivision of the
triangle meshes) to produce simpler meshes while preserving the boundary features. To
achieve that, we introduce a set of separatrix-based semi-global operations and com-
bine them with existing local operations to develop a new simplification framework.
Additionally, we organize and order the individual simplification operations into groups
and employ ranking strategies for each group to sort these operations to produce quad
meshes with better quality and simpler structure. We provide a comprehensive evalu-
ation of our framework using different input parameters on a number of representative
planar quad meshes with various boundary configurations. To demonstrate the advan-
tages of our method, we compare it with a few existing frameworks. Our comparison
shows that our simplification framework usually produces simpler structure with faster
computation than the state-of-the-art methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

consists of regular quadrilateral elements, i.e., the interior an-
gles of the quad elements are all 90°. The regularity of quad

Quadrilateral (or quad) meshes are preferred over triangle
meshes in many engineering applications, such as modeling and
simulation of elastic materials and fluid behaviors, due to their
desired numerical properties [[1] that usually leads to more ac-
curate and faster simulations than triangle meshes. In addition,
quad meshes with a higher overall quality produce better simu-
lation results.

A (pure) quad mesh is composed entirely of quadrilateral el-
ements, and its overall quality depends on the connectivity and
shapes of the individual quad elements. An ideal quad mesh

*Corresponding author: Tel.: +1-929-530-6386;
e-mail: example@email . com (Muhammad Naeem Akram),
m.naeem.0414@gmail . com (Muhammad Naeem Akram)
"Footnote 1.

elements can be expressed in terms of valence of vertices in the
quad mesh. The valence of a vertex is defined as the number
of quad elements adjacent to that vertex. A vertex is regular
if it has a valence of 4 (or 2 on the boundary), otherwise, it is
irregular. Trregular vertices are also called singularities (Figure
[Ic). Given a valence-n singularity (n # 4), n separatrices can
be traced out along the n mesh edges adjacent to the singularity,
respectively. These separatrices, that either end at other singu-
larities or mesh boundary, partition the quad mesh into individ-
ual quadrilateral (or quad) patches (e.g., the colored patches in
Figure [Ic). This partitioning is referred to as the base complex
of the quad mesh, which is the structure of the quad mesh that
this work is focused on. A quad mesh has a simple structure if
it has a low number of singularities and a low number of quad
patches.
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(a) Quad mesh with a simple structure

(b) Quad mesh with a complex structure

(c) Base complex of a quad mesh

Fig. 1. An example illustrating same mesh with different structures: (a) a simple and ideal structure, (b) a complex structure. (c) shows the base complex
of a quad mesh. Different color patches illustrate the quad layout structure of the mesh.

Figure [I] shows examples of quad meshes for the same do-
main with a simpler structure (a) and a complex structure (b),
respectively. Quad meshes with fewer and aligned singularities
are regular or semi-regular, which are very useful for textur-
ing and high-order modeling and simulations [1]]. In the mean-
time, fewer singularities in turn improve the element quality as
the ideal angles surrounding a vertex is determined by the va-
lence of that vertex (i.e., 90° is achieved when its valence is
4). Therefore, the goal of quad mesh generation is to produce
quad meshes with good structure (or fewer singularities) and
high element quality (i.e., all elements have a close-to-regular
shape). However, despite numerous efforts, automatic gener-
ation of high-quality quad meshes for complex and arbitrary
domains remains a challenging task [1} [2].

Existing quad mesh generation techniques take an arbitrary
input and process geometric information from the input to gen-
erate a quad mesh. However, for many complex inputs, these
techniques can exhibit certain limitations and fail to produce a
quad mesh with good structure due to the lack of explicit control
of the positions and valences of the singularities. An alternative
to direct quad mesh generation methods is the structure simpli-
fication of a highly unstructured quad mesh. Two simplification
strategies are typically employed, i.e., local simplification [3]]
and global simplification [4], to procedurally cancel or merge
singularities in the quad mesh. However, local simplification
cannot guarantee to generate a globally optimal structure or a
near optimal one, while global simplification may not be able to
simplify the structure due to the constraint of boundary/feature
preservation.

Recently, Xu et al. [3] presented the preliminary results of
a new simplification approach for planar quad meshes. Their
method uses semi-global operations to simplify the structure
of the quad meshes with complex structure. The semi-global
structure simplification aims to address the limitations of lo-
cal and global simplification methods by performing simplifi-
cation operations in the regions bounded by separatrices. De-
spite the promising preliminary results, there are a number of
limitations of their pipeline. First, the simplification operations
in their pipeline are not organized and sorted, leading to sub-
optimal output and slow performance. Second, there is no local
smoothing and refinement during simplification, thus, the re-
sulting mesh could be too coarse for feature preservation and
often leads to overlapping elements at boundaries that are hard
to fix with existing optimization.

In this work, we address the limitations of the work in [5]]
and present a more robust and efficient simplification frame-

work that integrates the semi-global operations with the local
operations. In particular, we propose a strategy to organize or
group different types of simplification operations. For each type
of the semi-global simplification operations, a ranking strategy
is developed to sort the individual operations. In addition, we
include a local refinement and smoothing process in-between
simplification operations to mitigate the reduction of vertices
caused by simplification to better preserve boundary features.
The boundary features of the mesh encompass sharp edges and
corners. The new pipeline can produce better results i.e valid
all-quad meshes, than those shown in [5] with much faster com-
putation (e.g., up to 18x speedup for complex models). It can
also handle much more complex models than the pipeline in
[S]. Furthermore, we provide an option for the user to produce
inversion free quad meshes with some sacrifice in the simplic-
ity of the output structure.We have applied our framework to a
number of quad meshes with various boundary configurations
and compare it with the local simplification [3] and Xu et al.’s
method [3]] to demonstrate its advantages. A parameter study is
also reported to demonstrate the impact of different parameter
values.

2. Related Work

In the meshing literature, extensive research has been car-
ried out for the generation of quad meshes with good structure
and quality. There are two different strategies to generate quad
meshes as described in the introduction, i.e., direct quad mesh
generation and structure simplification of quad meshes. In this
section we review some of these techniques.

2.1. Direct Quad Mesh Generation

Direct quad mesh generation methods produce quad meshes
from a complex and arbitrary input, such as a triangle mesh.
The most straightforward method of generating a quad mesh
from a triangle input is through Catmull-Clark subdivision
scheme [6]. The subdivision scheme is robust and simple but
introduces a large number of singularities which are difficult
to optimize (Figure [Ib). Other methods, like the triangle-to-
quad conversion methods [3} 7] and Voronoi diagram based ap-
proaches [8| 9], usually generate unstructured quad meshes or
quad-dominant meshes that are also difficult to optimize with
existing methods. A group of direct mesh generation methods
considers the geometric information and configurations of the
input to generate quad meshes, such as quad layout construc-
tion approaches [10], the parameterization based approaches
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and the field aligned approaches. The quad layout genera-
tion initially produces coarse quadrilateral components on the
polygonal mesh using either field line tracings [[11} [12] based
on certain surface directional fields [13]], base domain simplifi-
cation [14]], curve skeleton [15]], dual loops [[16}17], parameter-
ization [18 [19], polycube-maps [20], or T-meshes from motor-
cycles [21,122] 23]]. From these coarse quad patches, the refined
quad meshes can be obtained via subdivision. In [24], a coarse
quad layout of input mesh is first obtained by tracing separa-
trices of the cross fields and then optimized through the global
simplification using chord collapsing. This hybrid approach di-
rectly simplifies the quad layout of the mesh and aims to re-
duce the T-junctions, however, for certain complex inputs, this
approach may not be able to completely optimize the quad lay-
out and eliminate all T-junctions. Parameterization-based meth-
ods [18l 25| 26} 27} 28] construct a mapping from the curved
surface to a flat 2D domain. Cutting is typically needed so that
the surface patches are equivalent to a topological disk to enable
a low distortion mapping. With this mapping, quad mesh can be
obtained trivially in the 2D domain before mapping back to the
surface. In [29], quadrangulations of 2D patches are obtained
by subdividing the surface patches into simpler basic cases with
the objective of keeping the number of irregular vertices as lit-
tle as possible. That technique was applied to mostly simple
models with simple cuts. In summary, the quad meshes gen-
erated using the quad layout computation and the parameteri-
zation based methods are usually semi-regular and need little
structure optimization. However, the local element quality may
be sub-optimal near the boundaries of the individual quad do-
mains, and the quad layout can still be very complex and too
fine if the boundary of the domain is complex.

A recent popular line of methods for quad mesh generation
is the field-aligned methods [30} 31]], starting with the seminal
mixed-integer quadrangulation technique [32]. This method ex-
plicitly controls element quality via certain guiding fields (e.g.,
frame fields or cross fields). Quadriflow [33], extends the in-
stant field-aligned method to produce meshes with fewer sin-
gularities by enforcing certain constraints. For the frame-field
based approaches, given any random input, the output quad
mesh may not have an all-quad structure resulted from the gen-
erated field. Furthermore, the field-aligned method fails to pro-
duce optimal results and preserve sharp features for planar do-
mains or open boundary meshes (Section [g)).

2.2. Structure Simplification of Quad Meshes

To address the limitations and difficulty of directly generat-
ing high quality quad meshes with simpler structure from the
input triangle meshes, an alternative is to simplify the structure
of a highly unstructured quad mesh to achieve the ideal config-
uration and simpler structure. For this purpose, various simpli-
fication techniques have been proposed, such as the local sim-
plification approaches [34} [35] [3]] and the global simplification
methods [4] 36, [37]. These strategies have been demonstrated
effective for initial valid quad meshes with reasonably good
structures. Nonetheless, local simplification cannot guarantee
to generate an optimal structure or a near optimal one, while
global simplification may not produce a boundary-conformal

structure or may not be able to simplify the structure due to the
constraint of boundary/feature preservation (Figure [Ob).

Local quad mesh simplification [34}|35]|3}/38]] aims to reduce
the amount of quad elements in a small local region via coars-
ening operations (e.g., edge rotation, diagonal collapsing, and
doublet removal), cleaning operations, or other optimization
operations. It produces quad meshes with fewer quad elements
but may not reduce the amount of singularities significantly. In
addition, these simplification operations can easily lead to the
loss of surface features if not treated properly. This is probably
part of the reasons that most examples shown in those works are
smooth surfaces with few sharp features (e.g., edges or corners)
except for the recent work by Docampo-Sanchez and Haimes
[38] that reports results on simple CAD models. To explicitly
reduce the singularities in the quad meshes, Peng et al. [39]
proposed an editing framework to modify the connectivity of a
quad mesh within a local region that usually contains a pair of
singularities. Nonetheless, this is a manual process that cannot
be applied to large quad meshes with many singularities. It also
does not address the preservation of sharp features.

Global quad mesh simplification methods aim to reduce both
structure and element complexity of the input quad meshes via
global operations. Tarini et al. [37] introduced the singular-
ity alignment technique to connect the mis-matched singulari-
ties, which cause complex structure, e.g., helical or even tangled
configurations. Similar issue in the quad meshes has been re-
ported with the field-guided quad mesh generation approaches
and was partially addressed in [40]. However, these singular-
ity alignment methods cannot be applied to a quad mesh split
from a triangle mesh because the singularities there are already
aligned. Daniels et al. [4] used the poly-chord collapsing oper-
ation to remove a sequence of quad elements at once, which not
only removes singularities but also simplifies the mesh struc-
ture. However, it cannot handle certain complex poly-chords
(e.g., poly-chords that are self-intersecting) and can easily in-
troduce high-valence singularities during collapsing. In addi-
tion, it does not preserve surface features. To overcome this
global issue, an adaptive simplification method [36] is proposed
to perform poly-chord collapsing in a local region or surface
with boundaries. However, for certain inputs, the complexity of
poly-chords can still pose an additional challenge for simplifi-
cation due to constraints of feature preservation.

Recently, Kaoji et al. [S] proposed a semi-global simplifica-
tion strategy which uses semi-global simplification operations
to resolve singularities in the local regions bounded by separa-
trices for planar quad meshes with boundaries. Their approach
can address complex mesh structure configurations, like those
often seen in the quad meshes obtained via Catmull-Clark sub-
division from triangle meshes, and significantly reduce them to
much simpler ones. However, the framework reported in [S]
is slow and the involved simplification operations are not well-
organized (or ordered), leading to sub-optimal outcomes. To
address these limitations, in this work, we propose a strategy
to organize different types of operations and order the individ-
ual operations of each type. This new strategy significantly re-
duces the simplification time while achieving comparable and
(many times) better outcomes than the previous framework. In
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addition, we include additional smoothing and refinement oper-
ations to mitigate the overlapping elements in the output simpli-
fied meshes due to the loss of vertices after simplification. The
new framework also provides an option for the user to achieve
an inversion-free output that the previous works cannot.

3. Method Overview

3.1. Features of an Ideal Planar Quad Mesh

As already described earlier, a high-quality planar quad mesh
should have a simpler structure (i.e., with fewer singularities
and fewer quad patches), while having as-regular-as-possible
quad elements. To achieve the latter, we need to constrain the
valence of singularities (i.e., either 3 or 5 for the interior sin-
gularities). In addition, a high-quality planar quad mesh should
preserve the boundary features (e.g., corners) and the shape of
the boundary. To achieve that, the following additional criteria
are needed.

1. The ideal structure should place singularities at corners (at
the boundaries) with valence either 1 or 3, depending on
the spanning angle (or discrete curvature) around them.

2. It should ensure boundary conformality, i.e., boundary
quads should align to the boundary, and each boundary
vertex has an ideal valence based on the angle around it.
The sector angle around a boundary vertex, v, is com-
puted as § = X", 6;, where n is the valence of v, and
0; represent angle between two adjacent edges of v,. The
ideal valence of v, is calculated as val;;eq = I_%J + L%J.
The ideal number of edges connected to the boundary ver-
tex should be its valizeq + 1 (see Figure[2).

3.2. Overview of Our Framework

The above criteria motivate the design of our simplification
framework. Our framework takes a valid all-quad mesh as input
and the output is a valid all-quad mesh with simplified structure
(i.e. fewer singularities and simpler base complex) that pre-
serves the open boundary (features identified according to the
criteria in[3.1)) of the planar input quad mesh. Here open bound-
ary refers to the collection of edges that are only shared by
one quad as opposed to closed boundary surface meshes where
each boundary/feature edge is shared by two quads. As a very
first step towards simplification, the simplification framework
extracts the singularities and base complex of the mesh, then
identifies the sharp boundary features (corners) that need to be
preserved during simplification. Next, it enters an iterative pro-
cess, and each iteration checks whether there are simplification
operations that can be performed. The simplification operations
that our framework provides include the semi-global simplifica-
tion based on separatrices (Section[d)) and some local operations
(Section E]) If no simplification can be performed, our frame-
work outputs the current mesh. To determine the operations
to perform, a number of criteria and constraints are checked.
These constraints can be classified into two groups (Section [7)),
i.e., the valence constraint (e.g., valence should be between 3
and 5) and the boundary constraint (e.g., boundary conformal-
ity and shape preservation). In general, the local operations

that achieve boundary conformality and cleaning operations (to
remove degeneracy) are performed before all semi-global oper-
ations. The semi-global operations are grouped and performed
based on different types of separatrices (Sectiond). Our frame-
work continues to identify and perform possible semi-global
and local simplification operations until no more singularities
can be removed without violating the valence and boundary
constraints. The detailed pipeline of our framework will be pro-
vided in Section@ In the following, we will first introduce the
semi-global operations, followed by the utilized local opera-
tions.

4. Semi-Global Simplification

Our semi-global simplification strategy is based on the fol-
lowing knowledge. There is a topological index of each singu-
larity of a quad mesh, v, that is defined as idx, = 1 — %1", where
val, is the valence of v. The index of a regular vertex is 0. Given
a local region of the quad mesh, its total index is the sum of the
individual indices of all the interior vertices. In particular, if the
total index of a local region is zero, it can be re-meshed such
that the new mesh within it is singularity-free according to the
Poincaré index theorem [41]]. One way to construct such a lo-
cal region with trivial index is via separatrices as done in vector
field simplification [42] [43]], since separatrices usually connect
nearby singularities.

In a quad mesh with boundary, four types of separatrices can
be constructed by connecting singularities of different valences.
Generally, we have separatrices that connect two low valence
singularities, separatrices that connect a low valence singular-
ity to a high valence singularity, separatrices that connect two
high valence singularities, and separatrices that end at a bound-
ary. To simplify our discussion and utilize the Poincaré index
theorem, we assume a quad mesh that consists of only valence-
3 and valence-5 singularities in the interior. This assumption
results in four basic types of separatrices: 3-3, 3-5, 5-5, and
half-separatrices, and allows us to construct local regions sur-
rounding them with trivial Poincaré index. We then design their
respective simplification operations accordingly.

4.1. Separatrix Collapsing for 3-3 Connections

These separatrices connect a pair of valence 3 singularities
directly. Figure [3a] (left) shows such an ideal configuration.
In this ideal configuration, two valence 5 singularities (yellow
dots) share the same quads as valence 3 singularities (green
dots) respectively, which enables the construction of the semi-
global region enclosing those 4 singularities whose total index
is zero.

To remove these singularities, we perform a collapsing within
the region surrounding the separatrix. There are three parallel
lines (including the separatrix) as shown in Figure [3a] which
have same number of vertices. We denote the separatrix as
L, = {vi.}, where i € {1, 2, ...,n} and n is the number of vertices
associated with the separatrix. Assume L; = {v}} and L, = {v}}
are the other two lines parallel to the separatrix. We collapse
the vertices lying on L; and L, towards the corresponding ver-
tices on L. In this way, the four singularities associated with
the separatrix are canceled.
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6 = 45, Vigeal = 1 6 =90, Vigear = 1

L A

0= 1500, Videal = 2

0= 1800' Videat = 2 0= 2700: Videal = 3

Fig. 2. Illustration of ideal valence for different boundary configurations.
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(a) 3-3 separatrix collapse operation
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(c) 5-5 separatrix split operation

»
Erl =

(b) 3-5 separatrix chord collapse operation
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L/

(d) half separatrix collapse operation

Fig. 3. Semi-global Operations based on different separatrix connections.

4.2. Chord Collapsing for 3-5 Connections

These separatrices connect a pair of valence 3 and valence
5 singularities directly. Since valence 3 and valence 5 singu-
larities have opposite indices, a semi-global region enclosing
such singularities can be constructed with trivial total index for
simplification.

To handle this configuration, a chord collapsing is performed
(Figure[3b). The chord is formed by tracing parallel edges from
the 3-5 separatrix edge until boundary is reached or a cycle is
formed. The chord can be collapsed by merging the vertices of
the parallel edges which cancels the two singularities associated
with the chord as shown in Figure Figure[3b] The details on the
chord collapsing can be found in [4]. We avoid the chord col-
lapse operation if it does not satisfy the valence and boundary
preservation constraints (Section[/) or if it self-overlaps.

4.3. Separatrix Splitting for 5-5 Connections

These separatrices connect pairs of valence-5 singularities.
Figure [3¢|(left) illustrates an ideal 5-5 separatrix configuration.
Similar to the 3-3 connection described above, the two valence-
5 singularities (yellow dots) are connected directly via the sep-
aratrix while two valence 3 singularities share the quads with
them, enabling the construction of semi-global region with triv-
ial total index.

To simplify the 5-5 separatrix, we perform splitting in the
region surrounding a 5-5 connection. In Figure the region
(purple) surrounding the separatrix (the yellow line) contains a
pair of valence-5 singularities (yellow dots) and two valence-
3 singularities (green dots). The splitting operation inserts two
lines (dark lines in Figure[3c|(right)) parallel to the original sep-
aratrix, which removes the four singularities involved.

4.4. Collapse Operations for Half-separatrices

For a quad mesh with boundaries, separatrices may not al-
ways connect two singularities. As illustrated in Figure
(left), a singularity connects with a regular vertex on the bound-
ary thus creating a half-separatrix. Half-separatrices containing
valence 3 singularity can be collapsed like the 3-3 collapsing
operation defined above(Figure [3d)), while half-separatrix con-
taining valence 5 singularity can be resolved using the split op-
eration similar to the above 5-5 split.

4.5. Generalized Separatrix Operations

What we described so far are simplification operations in the
ideal semi-global regions. However, in practice we may not
always have such an ideal region, i.e., not having the two end-
ing vertices with the desired valences as shown in Figure [3b|or
Figure For example, in the quad meshes obtained by sub-
dividing a triangle mesh, while 3-3 separatrices are prevalent,
3-5 and 5-5 are not due to the high valences at the original
vertices of the triangles. In general, 3—n (n>5) connections are
more common. To enable their simplification, we relax the con-
straint of valid valence range (i.e., all vertex valences fall in the
range [3, val,,q,]) where val,,, is provided as an input parame-
ter to the simplification framework.

5. Local operations

In addition to the semi-global operations for separatrices, lo-
cal operations are needed to address any degeneracy in the mesh
that might arise during simplification and to achieve boundary
conformality (Section [3.1). The simplification in such regions
can be achieved using the available local simplification oper-
ations introduced in the previous works [34, 35, 3| [38]]. The
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SH AR

(a) singlet collapse  (b) doublet collapse (c) diagonal collapse

= houndary

»

(d) edge rotation

Fig. 4. Illustration of the utilized local operations.

local operations incorporated in our simplification pipeline are
as follows.

Operations for removing degeneracy.

e Doublet collapse. During the simplification, doublets may
be introduced in the mesh which are detected and removed
immediately. Since a doublet is created due to a valence-
2 vertex, we merge the two involved quads to remove the
doublet as shown in Figure .

e For singlets on the flat portion of the boundary, we perform
a singlet collapse operation by collapsing the involved two
edges into one vertex, as shown in Figure .

Operations for achieving boundary conformality We per-
form edge rotation operation to achieve boundary conformal-
ity during simplification such that the boundary has as many
regular vertices as possible. For each boundary vertex, based
on its sector angle, we estimate its ideal valence, val;z., (see
Section E]) Consequently, the number of redundant edges that
need rotation is calculated as n = val, — val;4.;. Each edge ro-
tation operation reduces the valence of boundary vertex by 1,
therefore, we perform n edge rotations to achieve ideal valence
(Figure ).

Operations for mesh simplification. During simplification,
certain local regions in the mesh might not be encompassed by
any of the separatrices. Therefore, we need to perform other
local operations, such as diagonal collapsing. An ideal di-
agonal collapse operation is illustrated in Figure ffc), where
two valence-3 and two valence-5 singularities shared by a sin-
gle quad are eliminated by collapsing the diagonal containing
valence-3 singularities.

6. The Complete Simplification Pipeline

Our simplification framework combines the operations de-
scribed in Sections [] and [5]to build the complete pipeline nec-
essary for carrying out simplification. We illustrate our entire
simplification pipeline in Figure[5} The input to the pipeline is
the initial irregular quad mesh obtained through Catmul-Clark
subdivision of the original triangle mesh. Prior to simplifica-
tion, sharp features and corners on the boundary of the mesh
are detected for boundary preservation. The singularities and
their separatrices are also extracted. Next, simplification is ap-
plied in an iterative manner to gradually simplify the structure

of the mesh. Each simplification iteration is carried out by three
sets of operations in the following order:

i. Degeneracy Handling Operations:

iii.

These operations optimize the mesh connectivity by elim-
inating the degenerate elements, i.e. doublets and singlets
using the local operations, such as doublet removal and
singlet removal.

. Boundary Optimization Operations:

We perform the edge rotation operation to optimize the
boundary of the mesh. Element regularity at the boundary
is achieved through the criteria describe in Section [3]
Simplification Operations:

In this step, we perform the simplification (local, semi-
global and global) operations to reduce the singulari-
ties in the mesh. We organize the simplification oper-
ations in the following order: diagonal collapse, sepa-
ratrix collapse, separatrix split, chord collapse and half-
separatrix collapse. The ideal configurations of diagonal
collapse and separatrix operations remove four singular-
ities, whereas, the ideal configurations of chord collapse
and half-separatrix operations remove two singularities.
The greedy aspect of our framework in terms of singu-
larity removal calls for prioritization of diagonal collapse
and separatrix operations before chord collapse and half-
separatrix operations. We order the diagonal collapse op-
eration before the separatrix operations since its local na-
ture allows for the singularity removal without modifica-
tion of large areas of the mesh, thus allowing further sim-
plification by the semi-global operations in the later stages.
Figures|[6a]and[6b|show the simplification outputs obtained
by performing diagonal collapse before and after separa-
trix operations respectively. In addition, we perform the
half-separatrix operation once all other operations have
been exhausted for the sake of preserving the boundary as
much as possible. In each simplification iteration, we iden-
tify and group only one type of simplification operations.
For instance, the mesh is first checked for all candidate
diagonal collapse operations. If there are no diagonal col-
lapse operations found in the current mesh, it is checked
for the prospective separatrix collapse operations and so
on.

Once a group of simplification operations is identified,
we employ a length-based ranking strategy to prioritize
the operations. The ranking strategy is heuristic in na-
ture and analogous to the ranking criteria for simplifying
sheets in hex-mesh simplification [44]]. It aims to prior-
itize operations that cause the smaller regions to be sim-
plified first. The ranking of an operation is calculated as:

= ) length(e), where e belongs to the set of edges that
make up the separatrix and chord links. In case of diag-
onal collapse, the diagonal length is used for the ranking
strategy. We sort the candidate operations in a group in
an ascending order according to their respective rankings.
During sorting, we exclude an operation from the sorted
list if its bounded region overlaps with the bounded region
of another operation already present in the sorted list. In
this way, all simplification operations in a group which are
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Fig. 5. Detailed pipeline of our simplification framework.

(2) (b)

Fig. 6. An example illustrating the effect of ordering local operation (diag-
onal collapse) before (a) and after (b) semi-global operations respectively.
(a) has 4 singularities while (b) has 15 singularities for the same input
model.

disjoint in terms of their bounded regions are performed
in a single simplification iteration as opposed to [5], thus
avoiding large geometric distortions in the mesh and re-
ducing the time complexity of our framework.

Certain operations in the above process may distort the
meshes by a great extent. If left untreated, the mesh may be-
come tangled and get worse during further simplification. To
address this, we perform local smoothing and refinement as de-
scribed next. Note that both of these two processes are optional
in our pipeline.

6.1. Local Smoothing.

The simplification of semi-global regions may introduce a
coarse configuration in the interior and boundary which may
introduce inverted elements. We identify the vertices involved
in the simplification operations and add one ring neighborhood
of those vertices to cover the region bounded by the group of
operations executed in each simplification iteration. We then
perform the local smoothing [45] at the end of each simpli-
fication iteration to fix any inverted elements. We offer local
smoothing in our framework as an optional step and leave the

decision to the user, since it may increase the computation time
for large meshes.

6.2. Optional Local Refinement.

As the simplification progresses, the semi-global regions
bounded by the separatrices in the simplified mesh may cover
a large area. Simplifying such regions can introduce distorted
elements in the mesh especially after collapse operations. The
removal of overlapping elements introduced during simplifica-
tion is challenging since some overlapping elements can have
a positive Jacobian measure which can be regarded as non-
inverted elements by the optimization algorithms. One solu-
tion to mitigate this problem is to refine the mesh (e.g., splitting
some chords of the mesh that become too coarse for bound-
ary preservation) during simplification before the introduction
of overlapping elements. However, it is challenging to deter-
mine when refinement should be executed, since refinement at
an early stage during simplification can increase the complex-
ity of the mesh, increasing the running time for simplification
pipeline, whereas, performing refinement when the simplified
mesh is too coarse may not always be helpful since presence of
overlapped elements can worsen the quality of the mesh. There-
fore, we refine the mesh if total number of quad elements in cur-
rent mesh falls below 25% of the number of elements in input
mesh. In our experiments, refinement can sometimes lead to in-
version free simplified meshes but in some other cases it leads
to worse quality elements. Again, we leave this as an option for
the user to decide.

After the above structure simplification, we perform a feature
preserved smoothing and re-sampling, adapted from a previous
work [435]]. This smoothing optimizes the angles between edges
in the mesh and preserves the boundary features by fixing ver-
tices located at the corner-like sharp features. It also improves
the Jacobian measures of the meshes.
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Fig. 7. Some results from our simplification framework. For each pair, the left image shows the input mesh and the right is the output. Different color
regions correspond to different base complex components, and the dark curves show the structure of the base complexes.

A reference implementation of the proposed simplifica-
tion pipeline can be found at https://github.com/DaViM-Lab-
Repository/CotrikMesh.

7. Valence and Boundary Constraints

During the simplification, a number of constraints need to be
checked in addition to the ranking to ensure the output of a high
quality mesh with simpler structure.

7.1. Singularity Valence Constraint

In order to ensure that the valences of all singularities fall in
the range of [3, val,,,] after the simplification operations, we
calculate the prospective valence of the vertices involved in the
separatrix simplification operations. For the 3-3 separatrix, the
valences of the singularities diagonal to the two valence 3 sin-
gularities (Figure [#(a)) reduces by 1. For 5-5 separatrix, the
valence of singularities connected by the separatrix reduces by
1 (Figure f[c)), whereas the singularities diagonal to the sep-
aratrix singularities increases by 1. Generally, the valence of
any two vertices being collapsed in 3—3 separatrix collapse and
chord collapse is calculated as val; + val, —4. If the prospective
valences (val,) satisfy the condition: 3 <= val, <= val,,,, the
simplification operation is performed, otherwise it is skipped.
However, even after satisfying the constraints, doublets or sin-
glets may be introduced after simplification, leading to the vio-
lation of minimum valence requirement. The doublet and sin-
glet removal operations can be performed to remove these de-

generate elements. A detailed discussion on the undesired con-
figurations can be found in the supplemental document (Section

0.

7.2. Boundary Feature Preservation

Before simplification, we identify the feature vertices (e.g.,
corners) and extract the boundary feature lines. Vertices at the
corners (i.e., boundary singularities or with angles outside a
range, [6,360° — 6], 0 is set by the user) are fixed. Vertices on
sharp edges can only move along the sharp edges. Operations
that alter a corner or a sharp edge are prevented to achieve a
boundary configuration as close to the input boundary as possi-
ble. A detailed description on the handling of different scenar-
ios for boundary preservation is provided in the supplemental
document (Table 1, Section 2).

7.3. Optional Inversion-free Constraint

The above introduced semi-global and local operations may
introduce inverted quads (i.e., with negative Jacobian [2]) into
the resulting meshes, which may be hard to correct. To pre-
vent the introduction of inverted quads, similar to the work [2]],
after each collapsing operation (including 3-3 collapse, chord
collapse and diagonal collapse), we check whether the affected
quads become inverted or not. If an inverted quad is found, the
operation is reversed. In practice, we leave this as an option for
the user to choose. The default setting has this constraint turned
off. The reason for disabling this constraint by default is to en-
sure maximum simplification in terms of singularity reduction
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as most inverted elements can be fixed by the local smooth-
ing, however, certain input mesh configuration may become too
coarse after simplification and inverted elements in such places
may not be able to be improved using geometry optimization,
therefore, simplification can be avoided in such regions of the
mesh with the aid of inversion free constraint. This strong guar-
antee of inversion free outcome may affect the level of simplifi-
cation as shown in Section[8]

8. Results

We applied our simplification method to a number of quad
meshes with different geometry and topology configurations.
Figure[/| shows the results of our simplification framework ap-
plied to a number of representative quad meshes. In particular,
we achieve over 96% reduction of the singularities for these
models, and the structures in the simplified meshes are close to
their ideal structures given their boundary configurations. Ta-
ble[T]provides the statistics of the results of our method and two
other most relevant methods.

8.1. Comparison With Other Simplification Methods

A comprehensive study of the comparison between the re-
sults obtained from our simplification framework and other
mesh generation methods is as follows:

Previous semi-global simplification: Our simplification
pipeline has three key differences from the previous semi-global
simplification work [3]]. /) The ordering of operations in our
pipeline (Section [6) is different than [5]. We perform all clean-
ing operations ahead of all other operations and diagonal col-
lapse operation is ordered before semi-global operations as
opposed to [5]. 2) We group each type of operation (Sec-
tion[6) such that independent regions (non-overlapping regions)
bounded by each type of operation are performed at once in
contrast to the simplification pipeline in [5] where only one
type of operation is performed in each simplification iteration.
In this way, the time complexity of our pipeline is reduced to
a great extent, see Table|l} 3) We employ a length based rank-
ing strategy to order simplification operations which achieves
increased singularities reduction. Figure [8a]shows a simplified
result reported in [S] and the result obtained using our simplifi-
cation pipeline Figure[8b] While exhibiting similar structure, all
resulting meshes with our new method have equal or fewer sin-
gularities than those with the method in [5]. The new method
also improves the Jacobian metric for some resulting meshes
compared to the ones produced by the method of [5].

Local Simplification: Usually, local operations can be applied
to a quad mesh that is split from a triangle mesh, while the
global operations, such as chord collapsing, cannot because
they may produce singularities with valences not falling in the
range [3, val,,,,]. Singularity alignment is usually applied to a
closed surface, while our method targets an open surface with
boundary. Also, most singularities in our input meshes are
aligned (i.e., connecting with other singularities). Therefore,
it is not suitable to compare our results to the simplification ob-
tained using singularity alignment. Nonetheless, we compare

Fig. 8. Comparison of previous semi-global simplification work[5] with
our semi-global simplification strategy. (a) shows the result from previ-
ous work. The reported singularities for this result are 175 whereas, the
result from our simplification pipeline (b) has 145 singularities.

the results generated by our simplification strategy to local sim-
plification strategy proposed by [3]]. Since their original method
does not focus on meshes with open boundaries, we made some
adjustments so it can preserve boundary features and achieve
boundary conformality. We calculate the total singularities for
both simplification strategies and report the minimum scaled
Jacobian values. As seen in Figure [9] the obtained structure
is not as simple as our results. Table |1| reports the statistics
for the comparison between the results generated through local
simplification and those with our simplification framework. It
is observed that our method outperforms local simplification in
terms of singularity reduction to a great extent. Our method also
improves the Jacobian metric of the individual elements, while
having a slightly larger Hausdorff distance to the input shapes.
This is understandable as our method significantly reduces the
number of singularities, leading to fewer elements (or samples)
at the boundaries.

Global Simplification: Global simplification usually performs
the chord collapse operation along with other operations to op-
timize the structure of the mesh. However, as mentioned earlier,
performing global operations on a highly unstructured mesh
may produce singularities outside optimal range. In [4], a rank-
ing strategy is defined to improve the singularity valence while
optimizing the structure. We modify their strategy for the pla-
nar meshes and pair it with edge rotation for boundary con-
formality. Figure [I0] shows the result obtained through global
simplification and our result using the mazewheel_1 mesh.

Quadrangulation of 2D Patches: In [29]], quadrangulation of
2D patches is obtained through subdivision into simple basic
patches with an emphasis on introducing as few singularities
as possible within those basic patches. We demonstrate the ef-
fectiveness of our framework in Figure where Figures|[11a
and show the quadrangulation of two 2D patches as pre-
sented in [29], while Figures and show the structures
of the patches obtained through our simplification framework.
From the comparison, we see that our simplification achieves
simpler structures with better placement of singularities. This
is because the subdivision strategy used by [29] may lead to a
locally optimal result (i.e., optimal within a sub-patch) but not
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Table 1. Performance of our simplification method

Input Local Method [3] Kaoji et. al Ours
Min. Avg. Min. Avg. Min. Avg.
Scaled Scaled Haursdorft Scaled Scaled Haursdorff Scaled Scaled Haursdorft
Model #S #S Jacobian Jacobian Dist. #S Jacobian Jacobian Dist. Time(s) | #S Jacobian Jacobian Dist. Time(s)
Patch 1 195 64 0.435062  0.813715  0.00016 4 0.956264  0.992745  0.00735 0.47 4 0.997924  0.999526  0.00140 0.39
Patch 2 269 95 0.636886  0.886676 0 4 0.999351  0.999887 0 0.65 4 1 1 0 0.43
Patch 3 2428 | 1238 0.631782  0.876612  0.000170 18 0.352553 0918613  0.00046 29.49 10 0.0647535 0.909919  0.03793 7.93
Patch 4 1791 | 781  0.627532  0.898935  0.00055 13 0.368196  0.832329  0.00962 15.96 9 0.348614  0.870761  0.00818 241
Patch 5 919 413 0.607521  0.886647  0.00046 17 -0.0742107 0.843955  0.01132 5.08 14 0.138939  0.802023  0.02975 1.8
1 hole 230 99 0.524566  0.861475  0.00197 0 0.989097 0.99407 0.00400 1.08 0 0.991053  0.994188  0.00527 0.31
2 holes 539 300 0 0.849616  0.00304 4 0.630725  0.910972  0.01636 4.04 4 0.748057  0.971484  0.010686 0.89
3 holes 417 148 0.676705 0.880316  0.00215 4 0.661058  0.942534  0.00432 3.07 4 0.685901  0.946452  0.00550 0.63
3 holes square 523 208  0.652941 0.887485 0 12 0.695252  0.915355 0 2.06 12 0.677243  0.928474 0 0.85
2 holes 2 squares | 1825 | 922  0.479384 0.863472  0.00067 20 -0.134864  0.834113 0 15.46 20 0.230834  0.926504  0.03026 4.33
6 holes 2 squares | 1112 | 435  0.520637  0.87084 0.00045 23 0.224303 0.87921 0.00558 8.78 23 0.280634  0.898758  0.00234 2.99
8 holes 2109 | 1089  0.484588  0.862253  0.00056 18 0.253169 0.90472 0.00079 19.10 16  0.620603  0.903053  0.00151 55
10 holes 1137 | 456  0.647599 0913045  0.00027 22 0.0956317  0.83831 0.00377 65.68 18  0.469836  0.943661  0.00140 55
Mazewheel 1 23628 | 8484 0.0531367 0.891381 0 175 0.076333  0.809203 0 834.18 | 145 0.0451114 0.827077  0.00662 259.54
Mazewheel 6 11446 | 4093  0.62016  0.907099  0.00011 84 0.378568  0.924225  0.00055 1064.22 | 78  0.376601 0916187  0.00172 68.22
Mazewheel 8 14315 | 5023  0.617715 0.915379  0.00028 103 -0.368346  0.90156 0.02407 1584.72 | 77 0.0258166 0.970718  0.00546 114.22
Mazewheel 19 5618 | 1996 0.670187  0.91499 0.00024 23 0.454705  0.908444  0.00197 19995 | 16  0.106829 0.927656  0.05070 26.23
T
- I
/“ am
O\ H -
(@ (b) ©
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|
!
§
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Fig. 9. Comparison of local simplification with our semi-global simplification strategy. (a) and (d) show the input quad-meshes split from respective
triangle meshes, (b) and (e) represent outputs with base complex from local simplification and (c) and (f) represent the outputs with base complex obtained

through our simplification framework.

a globally optimal one.

Quadriflow: While Quadriflow [33] works well on surface
meshes, results for the planar cases (Figure [I2)) are sub opti-
mal and may fail to capture the boundary features of the input
meshes. Moreover, results from our framework exhibit element
size adaptivity as opposed to uniform element sizes in Quadri-
flow (14400 faces to preserve input features). Figure[T2b]shows
the result from Quadriflow through parameter tuning that al-
most captures the features of the input mesh with 32 singulari-
ties, whereas our result (Figure[I2c) preserves the features with

similar singularities but lesser element count.

8.2. Impact of Parameters

The most crucial parameter of our framework that can be
tuned by the user is the angle threshold 6 for feature preserva-
tion. Higher values for the angle threshold can put a limit on the
simplification process since the boundary is preserved as much
as possible while lower angle threshold values can oversimplify
certain regions in the mesh. Table [2]represents the singularities
in the output mesh for different angle threshold 6 in different
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Fig. 10. Comparison of global simplification [4] with our semi-global sim-
plification strategy. (a) represents output with base complex from the
global simplification and (b) represents the output with base complex ob-
tained through our simplification framework.

(d)
(d)

Fig. 11. Comparison of the quadrangulation produced by [29] of two
patches with our result. (a) has 14 singularities while our result (b) has
12; in the meantime, (c) has 20 singularities and our result (d) has 18 sin-
gularities.

models. Figure [I3]shows the effect of different values for 6 on
simplification extent. For the 3 holes model, it can be seen that
the number of singularities in the result using 8 = 150 is the
least compared to other values of 6 (sub-figures and [T3d).
For the patch extracted from mazewheel model, using the lower
value for 0 causes some features to be lost. Therefore, 6 can be
tuned by users to achieve the best simplification results while
preserving the features.

8.3. Impact of Ranking the Operations

In our implementation, separatrix connections are built in the
order in which singularities in the mesh are encountered. We it-
erate through the mesh vertices, identify singularities and build
separatrix connections. Therefore, without a ranking strategy,
the groups of simplification operations are sorted in a random
order [5]. In our pipeline, we order the operations according
to a length based ranking strategy as described in Section [6]
Figure [T4] shows the simplification results obtained for a model
with and without the ranking strategy. It is evident that with

Table 2. Impact of the angle threshold 6 for boundary preservation

#Singularities
Model Input | 6=150° | 155° | 160° | 165°
Square 269 4 4 4 4
1 hole 230 0 0 0 6
2 holes 539 4 24 24 25
3 holes 417 4 4 4 7
2 holes 2 squares | 1825 19 49 49 49
6 holes 2 squares | 1112 21 54 54 54
8 holes 2109 16 62 62 62
10 holes 1137 18 72 72 72

ranking in place, the number of singularities in the final result
[T4B)is less than the result obtained without any ranking for the
simplification operations [T4a]

8.4. Impact of Different Triangle Inputs

We study the impact of different triangle inputs for the same
model on the simplification of quad meshes obtained through
Catmull-Clark subdivision using our framework. Some exam-
ple results are shown in Figure T3] In general, for models with
simple boundary configurations, the input triangle meshes have
little impact to the simplification result as shown by the one
hole example in Figure [T5] For more complex models, the tri-
angulation has some impact to the simplification, as shown by
the mechanic model in Figure[T3] In this example, the two sim-
plification results (Figure [T5d] and [T3h) have slightly different
structures, while having similar numbers of singularities. The
difference of the two structures is mostly caused by the slight
difference of the positions and valences of some singularities.

8.5. Option of Inversion-free Output

As mentioned in Section our framework offers an op-
tion for the user to achieve a guaranteed inversion-free output.
However, the resulting mesh using this strategy may have more
singularities than the results produced without inversion-free
guarantee. We have applied this strategy to produce inversion
free simplified meshes for certain complex examples. Figure[16]
shows a region of the mazewheel-19 model, produced with (a)
and without (b) inversion free guarantee. It can be seen that@
contains convex quad elements with a minimum and average
scaled Jacobian values of 0.107 and 0.928. In contrast, there
are some overlapping elements in the simplified mesh with the
inversion-free strategy turned off [I6b] which are difficult to fix
using optimization, hence, the minimum and average scaled Ja-
cobian values are calculated as -0.265 and 0.896, respectively.

In summary, our hybrid simplification framework addresses
the limitations of global and local operations and can simplify
a quad mesh to a near optimal structure. In addition, singular-
ity alignment is implicitly achieved via the above simplification
operations without an explicit treatment.

9. Summary and Future Work

We proposed an effective simplification method for planar
quad meshes with boundaries that is mainly based on semi-
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(a)

()

Fig. 12. Comparison of Quadriflow result (b) with our semi-global simplification strategy (c) given an input mesh (a).

(a) Input (b) 8 =150

() Input (f) 0 =150

(c) 8 =160 (d)6 =170

(h) 6 =170

(2)0 =160

Fig. 13. Comparison of outputs produced using different values of 6 for sharp feature (or corner) extraction. The 3 hole model (top row) and the mazewheel
model (bottom) are used. As can be seen, with a small 6 value (i.e., (b) and (f)), the structure is the simplest, yet important features may be lost ((f)). With
increasing 6 value, the features of the shape are better preserved (i.e., (h)), but the simplified structure is more complex than the one with a small 6.

Fig. 14. Comparison of the results obtained with and without ranking strat-
egy for simplification operations. The number of singularities for the re-
sult in (a) without any ranking, are 65, whereas, the result (b) using the
proposed ranking has 53 singularities.

global separatrix operations and a few local operations. These
operations are organized into groups and are sorted to achieve
an optimal result with fast computation. Our framework pre-

serves the boundary features and produces singularities in the
user-specified valence limit. Our framework also provides op-
tion for the user to achieve an inversion-free output. We have
applied our simplification framework to a number of planar
quad meshes with different boundary configurations to demon-
strate its effectiveness. We also compared our results with
the previous semi-global simplification framework and other
quad mesh simplification and quad mesh generation methods
to demonstrate its advantages.

With the proposed method, the practitioners (or engineers)
can start with designing their (CAD) models using triangular
meshes or other simpler quad-mesh generation approaches that
are robust. They can then use our method to convert these initial
meshes into high quality quad-meshes with simpler structures
(and with fewer singularities) that are often preferred by higher-
order finite element methods and isogeometric analysis [23].
Limitations. There are a few places in which our framework
can be improved. First, the utilized simple ranking strategy
based on the width of the regions for collapsing may not be
optimal. Thus, some simplification results may not be optimal
(e.g., the upper-left corner of Figure[Oc). Also, as the simplifi-
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(e) Input

(b)
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Fig. 15. Comparison of outputs produced using different triangle inputs as sources for our simplification framework. As can be seen, our framework
produces similar result for simple models (e.g., (a), (b), (e), (f)), while it may lead to different structures for complex shapes if different triangulations are

used (e.g., (¢), (d), (g), (h)).

Fig. 16. Comparison of results produced with (a) and without (b) inversion-
free guarantee. The result in (a) has 103 singularities, while (b) has 17.

(@ (b)

Fig. 17. Simplification result for a surface quad mesh using our simplifi-
cation framework. (a) represents the input and (b) shows the simplified
mesh.

cation progresses, some boundary features may still be lost due
to fewer elements around those features (e.g., the lower right
example in Figure [7). Second, our algorithm may not place
the resultant singularities to their optimal locations, which may
be addressed using certain guidance fields (e.g., cross or frame
fields) derived from boundaries. One way to utilize the frame

fields for optimal singularity placement would be to prioritize
and select operations that contain singularities that most align
with the frame field. For each type of operation, e.g., collapse,
split, rotate, etc., the singularities with most optimal placement
can be retained while other singularities involved in such op-
erations can be eliminated. Third, our current framework con-
centrates mainly on 2D meshes with open boundaries and does
not directly apply to closed surface meshes. For surface quad
mesh inputs, the half separatrix operations are not valid, how-
ever, a normal separatrix that crosses the boundary can be con-
sidered as two half separatrices on each side of the boundary
region connected via boundary edges. To preserve the mesh
features, we avoid the semi-global and global operations in-
volving boundary regions which restricts the extent of simplifi-
cation on the mesh. In addition, the curved regions of the sur-
face mesh can become distorted following simplification and
additional processing may be required to recover the surface
shape. Figure[T7b] shows the simplified mesh obtained through
our simplification framework. It can be observed that the resul-
tant mesh contains fewer singularities as compared the the input
but is still quite unstructured nevertheless. In the future, we plan
to address the above limitations and extend our simplification
pipeline to handle surface quad meshes and hex-meshes.
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