
Vector Field Visualization:

Introduction

What is a Vector Field?

Why It is Important?

Vector Fields in Engineering and Science

Automotive design
[Chen et al. TVCG07,TVCG08]

Weather study [Bhatia and Chen et al. TVCG11]

4Oil spill trajectories [Tao et al. EMI2010]
Aerodynamics around missiles [Kelly et al. Vis06]

Vector Field Design in Computer Graphics

5

Parameterization

[Ray et al. TOG2006]

River simulation [Chenney SCA2004]

Painterly Rendering [Zhang et al. TOG2006]

Smoke simulation [Shi and Yu TOG2005]

Shape Deformation
[von Funck et al. 2006]

Texture Synthesis [Chen et al. TVCG11b]

Why is It Challenging?
• to effectively visualize both magnitude + direction, often

simultaneously

• large data sets

• time-dependent data

magnitude only direction only

Classification of Visualization Techniques

• Direct: overview of vector field, minimal computation, e.g. glyphs, color

mapping

• Texture-based: covers domain with a convolved texture, e.g., Spot Noise,

LIC, ISA, IBFV(S)

• Geometric: a discrete object(s) whose geometry reflects flow

characteristics, e.g. streamlines

• Feature-based: both automatic and interactive feature-based techniques,

e.g. flow topology

Flow Data

Data sources:

• flow simulation:
• airplane- / ship- / car-design

• weather simulation (air-, sea-flows)

• medicine (blood flows, etc.)

• flow measurement:
• wind tunnels, water channels

• optical measurement techniques

• flow models (analytic):
• differential equation systems

(dynamic systems)

Source: simtk.org

Source: speedhunter.com

Source: zfm.ethz.ch

Flow Data

Simulation:

• flow: estimate (partial) differential equation systems

• set of samples (n-dims. of data), e.g., given on a curvilinear grid

• most important primitive: tetrahedron and hexahedron (cell)

• could be adaptive grids

Analytic:

• flow: analytic formula, differential equation systems dx/dt
(dynamical system)

• evaluated where ever needed

Measurement:

• vectors: taken from instruments, often computed on a uniform grid

• optical methods + image recognition, e.g.: PIV (particle image
velocimetry)

Notes on Computational Fluid Dynamics

• We often visualize Computational Fluid

Dynamics (CFD) simulation data

• CFD is the discipline of predicting flow

behavior, quantitatively

• data is (often) the result of a

simulation of flow through or

around an object of interest

some characteristics of CFD data:

• large, often gigabytes

• Unsteady, i.e. time-dependent

• unstructured, adaptive resolution grids

• Smooth field

Comparison with Reality

Experiment

Simulation

2D vs. 2.5D Surfaces vs. 3D

2D flow visualization
• 2Dx2D flows

• models, flow layers (2D section through 3D)

2.5D, i.e. surface flow visualization
• 3D flows around obstacles

• boundary flows on manifold surfaces (locally 2D)

3D flow visualization
• 3Dx3D flows

• simulations, 3D models

2D/Surfaces/3D – Examples

2D

Surface

3D

Steady vs. Time-dependent

Steady (time-independent) flows:

• flow itself constant over time

• v(x), e.g., laminar flows

• well understood behaviors

• simpler case for visualization

Time-dependent (unsteady) flows:

• flow itself changes over time

• v(x,t), e.g., combustion flow, turbulent flow

• more complex cases

• no uniform theory to characterize them yet!

Time-

independent

(steady) Data

• Dataset sizes over years:

Time-

dependent

(unsteady)

Data

• Dataset sizes over time:

Experimental Flow

Visualization

Optical Methods, etc.

With Smoke or Dye

• Injection of dye, smoke,
particles

• Optical methods:
• transparent object with

complex distribution of light
refraction index

• Streaks, shadows

Large Scale Dying

Source: weathergraphics.com

Source: ishtarsgate.com

Direct Methods

Direct FlowVis with Arrows

Properties:

• direct FlowVis

• frequently used!

• normalized arrows

vs. velocity coding

• 2D: quite useful,

3D: often problematic

• often difficult to

understand, mentally

integrate (time component

missing)

Arrows in 2D

Scaled arrows vs. color-coded arrows

Arrows in 3D

Common problems:

• ambiguity

• Perspective shortening

• 1D objects generally
difficult to grasp in 3D

Remedy:

• 3D-Arrows
(are of some help)

24

http://cs.swan.ac.uk/~csbob/te

aching/csM07-vis/

Arrows in 3D

Compromise:
arrows only in layers

http://cs.swan.ac.uk/

Geometric-based Methods:

Integral curves and surfaces

Direct vs. Geometric FlowVis

Direct flow visualization:

• overview of current state of flow

• visualization with vectors popular

• arrows, icons, glyph techniques

Geometric flow visualization:

• use of intermediate objects,

e.g., after vector field integration over time

• visualization of development over time

• streamlines, stream surfaces

• analogous to indirect (vs. direct) volume visualization

Streamlines – Theory
Correlations:
• flow data v: derivative information

• dx/dt = v(x);
spatial points x∈Rn, Time t∈R, flow vectors v∈Rn

• streamline s: integration over time, also called trajectory,
solution, curve
• s(t) = s0 + ∫0≤u≤t v(s(u)) du;

seed point s0, integration variable u

• Property:
• uniqueness

• difficulty: result s also in the integral ⇒ analytical solution
usually impossible.

Streamlines – Practice

Basic approach:

• theory: s(t) = s0 + ∫0≤u≤t v(s(u)) du

• practice: numerical integration

• idea:
(very) locally, the solution is (approx.) linear

• Euler integration:
follow the current flow vector v(si) from the current streamline point
si for a very small time (dt) and therefore distance

Euler integration: si+1 = si + v(si) · dt,
integration of small steps (dt very small)

Euler Integration – Example

2D model data:

vx = dx/dt = −y

vy = dy/dt = x/2

Sample arrows:

True
solution:
ellipses.

0 1 2 3 4

0

1

2

Euler Integration – Example

�Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

�New point s1 = s0 + v(s0) · dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

�New point s2 = s1 + v(s1) · dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

�s3 = (23/16| -5/8)T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

�s4 = (7/4 | -17/64)T ≈ (1.75 | -0.27)T;
v(s4) = (17/64|7/8)T ≈ (0.27 |0.88)T;

0 1 2 3 4

0

1

2

Euler Integration – Example

�s9 ≈ (0.20 |1.69)T;
v(s9) ≈ (-1.69 |0.10)T;

0 1 2 3 4

0

1

2

Euler Integration – Example

�s14 ≈ (-3.22 | -0.10)T;
v(s14) ≈ (0.10 | -1.61)T;

0 1 2 3 4

0

1

2

Euler Integration – Example

�s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4

0

1

2

Euler Integration – Example

�dt smaller (1/4): more steps, more exact.
s36 ≈ (0.04 | -1.74)T; v(s36) ≈ (1.74 |0.02)T;

�36 steps

0 1 2 3 4

0

1

2

Comparison Euler, Step Sizes

Euler
quality is
proportional
to dt

Euler Example – Error Table

dt #steps error

1/2 19 ~200%
1/4 36 ~75%
1/10 89 ~25%
1/100 889 ~2%
1/1000 8889 ~0.2%

�

RK-2 – A Quick Round

RK-2: even with dt = 1 (9 steps)
better
than Euler
with dt = 1/8
(72 steps)

RK-4 vs. Euler, RK-2

Even better: fourth order RK:

• four vectors a, b, c, d

• one step is a convex combination:
si+1 = si + (a + 2·b + 2·c + d)/6

• vectors:
a = dt·v(si) … original vector
b = dt·v(si+a/2) … RK-2 vector
c = dt·v(si+b/2) … use RK-2 …
d = dt·v(si+c) … and again

Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Integration, Conclusions

Summary:

• analytic determination of streamlines usually not possible

• hence: numerical integration

• various methods available

(Euler, Runge-Kutta, etc.)

• Euler: simple, imprecise, esp. with small dt

• RK: more accurate in higher orders

• furthermore: adaptive methods, implicit methods, etc.

Streamline Placement

in 2D

Problem: Choice of Seed Points

Streamline placement:

• If regular grid used: very irregular result

Overview of Algorithm

Idea: streamlines should not lie too close to one another

Approach:

• choose a seed point with distance dsep from an already
existing streamline

• forward- and backward-integration until distance dtest is
reached (or …).

• two parameters:

• dsep … start distance

• dtest … minimum distance

Algorithm – Pseudo-Code

• Compute initial streamline, put it into a queue

• current streamline = initial streamline

• WHILE not finished DO:

TRY: get new seed point which is dsep away from current streamline

IF successful THEN

compute new streamline AND put to queue

ELSE IF no more streamline in queue THEN

exit loop

ELSE next streamline in queue becomes current streamline

Streamline Termination

When to stop streamline integration:

• when distance to neighboring streamline ≤ dtest

• when streamline leaves flow domain

• when streamline runs into fixed point (v = 0)

• when streamline gets too near to itself (loop)

• after a certain amount of maximal steps

New Streamlines

Different Streamline Densities

Variations of dsep relative to image width:

6% 3% 1.5%

dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep

Tapering and Glyphs

Thickness in
relation to
distance

Directional
glyphs:

54

http://cs.swan.ac.uk/~csbob/te

aching/csM07-vis/

Literature

For more information, please see:
• B. Jobard & W. Lefer: “Creating Evenly-Spaced

Streamlines of Arbitrary Density” in Proceedings of
8th Eurographics Workshop on Visualization in Scientific
Computing, April 1997, pp. 45-55

• Data Visualization: Principles and Practice, Chapter
6: Vector Visualization by A. Telea, AK Peters 2008

FlowVis Videos available on Bob's web page.

http://cs.swan.ac.uk/

Acknowledgment

Thanks for the materials

• Prof. Robert S. Laramee, Swansea University,

UK

