
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

BatchCrypt: Efficient Homomorphic
Encryption for Cross-Silo Federated Learning

Chengliang Zhang, Suyi Li, Junzhe Xia, and Wei Wang, Hong Kong University of
Science and Technology; Feng Yan, University of Nevada, Reno; Yang Liu, WeBank

https://www.usenix.org/conference/atc20/presentation/zhang-chengliang

BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo
Federated Learning

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan†, Yang Liu‡

HKUST, †University of Nevada, Reno, ‡WeBank
{czhangbn, slida, jxiaaf, weiwa}@cse.ust.hk, fyan@unr.edu, yangliu@webank.com

Abstract
Cross-silo federated learning (FL) enables organizations

(e.g., financial or medical) to collaboratively train a machine
learning model by aggregating local gradient updates from
each client without sharing privacy-sensitive data. To ensure
no update is revealed during aggregation, industrial FL frame-
works allow clients to mask local gradient updates using ad-
ditively homomorphic encryption (HE). However, this results
in significant cost in computation and communication. In our
characterization, HE operations dominate the training time,
while inflating the data transfer amount by two orders of mag-
nitude. In this paper, we present BatchCrypt, a system solution
for cross-silo FL that substantially reduces the encryption and
communication overhead caused by HE. Instead of encrypting
individual gradients with full precision, we encode a batch
of quantized gradients into a long integer and encrypt it in
one go. To allow gradient-wise aggregation to be performed
on ciphertexts of the encoded batches, we develop new quan-
tization and encoding schemes along with a novel gradient
clipping technique. We implemented BatchCrypt as a plug-
in module in FATE, an industrial cross-silo FL framework.
Evaluations with EC2 clients in geo-distributed datacenters
show that BatchCrypt achieves 23×-93× training speedup
while reducing the communication overhead by 66×-101×.
The accuracy loss due to quantization errors is less than 1%.

1 Introduction

Building high-quality machine learning (ML) models requires
collecting a massive amount of training data from diverse
sources. However, in many industries, data is dispersed and
locked in multiple organizations (e.g., banks, hospitals, and
institutes), where data sharing is strictly forbidden due to
the growing concerns about data privacy and confidentiality
as well as violating the government regulations [12, 17, 45].
Cross-silo federated learning (FL) [27,61] offers an appealing
solution to break “data silos” among organizations, where
participating clients collaboratively learn a global model by
uploading their local gradient updates to a central server for
aggregation, without sharing privacy-sensitive data.

To ensure that no client reveals its update during aggrega-
tion, many approaches have been proposed [9, 37, 47, 48, 52].
Among them additively homomorphic encryption (HE), no-
tably the Paillier crytosystem [46], is particularly attractive in
the cross-silo setting [37,48,61], as it provides a strong privacy
guarantee at no expense of learning accuracy loss (§2). With
HE, gradient aggregation can be performed on ciphertexts
without decrypting them in advance. HE has been adopted
in many cross-silo FL applications [13, 23, 37, 38, 44], and
can be easily plugged into the existing FL frameworks to aug-
ment the popular parameter server architecture [33]. Before
the training begins, an HE key-pair is synchronized across all
clients through a secure channel. During training, each client
encrypts its gradient updates using the public key and uploads
the ciphertexts to a central server. The server aggregates the
encrypted gradients from all clients and dispatches the result
to each of them. A client decrypts the aggregated gradients
using the private key, updates its local model, and proceeds
to the next iteration. As clients only upload the encrypted
updates, no information can be learned by the server or an
external party during data transfer and aggregation.

Although HE provides a strong privacy guarantee for cross-
silo FL, it performs complex cryptographic operations (e.g.,
modular multiplications and exponentiations) that are ex-
tremely expensive to compute. Our testbed characterization
(§3) shows that more than 80% of the training iteration time
is spent on encryption/decryption. To make matters worse,
encryption yields substantially larger ciphertexts, inflating the
amount of data transfer by over 150× than plaintext learning.
The significant overhead of HE in encryption and communi-
cation has become a major roadblock to facilitating cross-silo
FL. According to our contacts at WeBank [57], most of their
FL applications cannot afford to use the encrypted gradients
and are limited to scenarios with less stringent privacy require-
ments (e.g., FL across departments or trustworthy partners).

In this paper, we tackle the encryption and communication
bottlenecks created by HE with a simple batch encryption
technique. That is, a client first quantizes its gradient values
into low-bit integer representations. It then encodes a batch
of quantized values to a long integer and encrypts it in one go.

USENIX Association 2020 USENIX Annual Technical Conference 493

Compared with encrypting individual gradient values of full
precision, batch encryption significantly reduces the encryp-
tion overhead and data transfer amount. Although this idea
has been briefly mentioned in the previous work [37, 48], the
treatment is rather informal without a viable implementation.
In fact, to enable batch encryption in cross-silo FL, there are
two key technical challenges that must be addressed, which,
to our knowledge, remains open.

First, a feasible batch encryption scheme should allow us
to directly sum up the ciphertexts of two batches, and the
result, when decrypted, matches that of performing gradient-
wise aggregation on the two batches in the clear. We show that
although it is viable to tweak the generic quantization scheme
to meet such need, it has many limitations as it is not designed
for aggregation. Instead, we design a customized quantiza-
tion scheme that quantizes gradient values to signed integers
uniformly distributed in a symmetric range. Moreover, to sup-
port gradient-wise aggregation in a simple additive form, and
that the addition does not cause overflow to corrupt the en-
coded gradients, we develop a new batch encoding scheme
that adopts two’s compliment representation with two sign
bits for quantized values. We also use padding and advance
scaling to avoid overflow in addition. All these techniques
allow gradient aggregation to be performed on ciphertexts of
the encoded batches, without decryption first.

Second, as gradients values are unbounded, they need to
be clipped before quantization, which critically determines
the learning performance [5, 41]. However, it remains unclear
how to choose the clipping thresholds in the cross-silo setting.
We propose an efficient analytical model dACIQ by extend-
ing ACIQ [5], a state-of-the-art clipping technique for ML
over centralized data, to cross-silo FL over decentralized data.
dACIQ allows us to choose optimal clipping thresholds with
the minimum cumulative error.

We have implemented our solution BatchCrypt in
FATE [18], a secure computing framework released by We-
Bank [57] to facilitate FL among organizations. Our im-
plementation can be easily extended to support other opti-
mization schemes for distributed ML such as local-update
SGD [22, 35, 56], model averaging [40], and relaxed syn-
chronization [24, 34, 62], all of which can benefit from
BatchCrypt when applied to cross-silo FL. We evaluate
BatchCrypt with nine participating clients geo-distributed in
five AWS EC2 datacenters across three continents. These
clients collaboratively learn three ML models of various
sizes: a 3-layer fully-connected neural network with FM-
NIST dataset [60], AlexNet [32] with CIFAR10 dataset [31],
and a text-generative LSTM model [25] with Shakespeare
dataset [55]. Compared with the stock implementation of
FATE, BatchCrypt accelerates the training of the three mod-
els by 23×, 71×, and 93×, respectively, where more salient
speedup can be achieved for more complex models. In the
meantime, the communication overhead is reduced by 66×,
71×, and 101×, respectively. The significant benefits of

BatchCrypt come at no cost of model quality, with a neg-
ligible accuracy loss less than 1%. BatchCrypt1 offers the
first efficient implementation that enables HE in a cross-silo
FL framework with low encryption and communication cost.

2 Background and Related Work

In this section, we highlight the stringent privacy requirements
posed by cross-silo federated learning. We survey existing
techniques for meeting these requirements.

2.1 Cross-Silo Federated Learning

According to a recent survey [27], federated learning (FL) is
a scenario where multiple clients collaboratively train a ma-
chine learning (ML) model with the help of a central server;
each client transfers local updates to the server for imme-
diate aggregation, without having its raw data leaving the
local storage. Depending on the application scenarios, fed-
erated learning can be broadly categorized into cross-device
FL and cross-silo FL. In the cross-device setting, the clients
are a large number of mobile or IoT devices with limited
computing power and unreliable communications [27, 30, 39].
In contrast, the clients in the cross-silo setting are a small
number of organizations (e.g., financial and medical) with re-
liable communications and abundant computing resources in
datacenters [27, 61]. We focus on cross-silo FL in this paper.

Compared with the cross-device setting, cross-silo FL has
significantly more stringent requirements on privacy and learn-
ing performance [27,61]. First, the final trained model should
be exclusively released to those participating organizations—
no external party, including the central server, can have access
to the trained model. Second, the strong privacy guarantee
should not be achieved at a cost of learning accuracy. Third,
as an emerging paradigm, cross-silo FL is undergoing fast in-
novations in both algorithms and systems. A desirable privacy
solution should impose minimum constraints on the underly-
ing system architecture, training mode (e.g., synchronous and
asynchronous), and learning algorithms.

2.2 Privacy Solutions in Federated Learning

Many strategies have been proposed to protect the privacy
of clients for federated learning. We briefly examine these
solutions and comment on their suitability to cross-silo FL.

Secure Multi-Party Computation (MPC) allows multiple
parties to collaboratively compute an agreed-upon function
with private data in a way that each party knows nothing
except its input and output (i.e., zero-knowledge guarantee).
MPC utilizes carefully designed computation and synchro-
nization protocols between clients. Such protocols have strong
privacy guarantees, but are difficult to implement efficiently

1BatchCrypt is open-sourced and can be found at https://github.com/
marcoszh/BatchCrypt

494 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/marcoszh/BatchCrypt
https://github.com/marcoszh/BatchCrypt

Figure 1: The architecture of cross-silo FL system, where HE
is implemented as a pluggable module on the clients.

in a geo-distributed scenario like cross-silo FL [61]. Devel-
opers have to carefully engineer the ML algorithms and di-
vide the computation among parties to fit the MPC paradigm,
which may lower the privacy guarantees for better perfor-
mance [16, 42, 43].

Differential Privacy (DP) is another common tool that can
be combined with model averaging and SGD to facilitate
secure FL [47, 52]. It ensures the privacy of each individ-
ual sample in the dataset by injecting noises. A recent work
proposes to employ selective parameter update [52] atop dif-
ferential privacy to navigate the tradeoff between data privacy
and learning accuracy. Although DP can be efficiently imple-
mented, it exposes plain gradients to the central server during
aggregation. Later study shows that one can easily recover the
information from gradients [48]. While such privacy breach
and the potential accuracy drop might be tolerable for mobile
users in cross-device FL, they raise significant concerns for
participating organizations in cross-silo FL.

Secure Aggregation [9] is proposed recently to ensure that
the server learns no individual updates from any clients but
the aggregated updates only. While secure aggregation has
been successfully deployed in cross-device FL, it falls short
in cross-silo FL for two reasons. First, it allows the central
server to see the aggregated gradients, based on which the
information about the trained model can be learned by an
external entity (e.g., public cloud running the central server).
Second, in each iteration, clients must synchronize secret
keys and zero-sum masks, imposing a strong requirement of
synchronous training.

Homomorphic Encryption (HE) allows certain computa-
tion (e.g., addition) to be performed directly on ciphertexts,
without decrypting them first. Many recent works [13, 37,
38, 48] advocate the use of additively HE schemes, notably
Paillier [46], as the primary means of privacy guarantee in
cross-silo FL: each client transfers the encrypted local updates
to the server for direct aggregation; the result is then sent back
to each client for local decryption. HE meets the three require-
ments of cross-silo FL. First, it protects the trained model
from being learned by any external parties including the server

as update aggregation is performed on ciphertexts. Second,
it incurs no learning accuracy loss, as no noise is added to
the model updates during the encryption/decryption process.
Third, HE directly applies to the existing learning systems,
requiring no modifications other than encrypting/decrypting
updates. It hence imposes no constraints to the synchroniza-
tion schemes and the learning algorithms. However, as we
shall show in §3, HE introduces significant overhead to com-
putation and communication.

Summary To summarize, each of these privacy-preserving
techniques has its pros and cons. MPC is able to provide
strong privacy guarantees, but requires expert efforts to re-
engineer existing ML algorithms. DP can be adopted easily
and efficiently, but has the downside of weaker privacy guar-
antee and potential accuracy loss. Secure aggregation is an
effective way to facilitate large-scale cross-device FL, but may
not be suitable for cross-silo FL as it exposes the aggregated
results to third parties and incurs high synchronization cost.
HE can be easily adopted to provide strong privacy guarantees
without algorithm modifications or accuracy loss. However,
the high computation and communication overheads make it
impractical for production deployment at the moment.

2.3 Cross-Silo FL Platform with HE
Fig. 1 depicts a typical cross-silo FL system [27,37,61], where
HE is implemented as a pluggable module on the clients. The
aggregator is the server which coordinates the clients and
aggregates their encrypted gradients. Note that in this work,
we assume the aggregator is honest-but-curious, a common
threat model used in the existing FL literature [9, 38, 52].
The communications between all parties (the clients and

the aggregator) are secured by cryptographic protocols such
as SSL/TLS, so that no third party can learn the messages
being transferred. Before the training starts, the aggregator
randomly selects a client as the leader who generates an HE
key-pair and synchronizes it to all the other clients. The leader
also initializes the ML model and sends the model weights
to all the other clients. Upon receiving the HE key-pair and
the initial weights, the clients start training. In an iteration,
each client computes the local gradient updates (1©), encrypts
them with the public key (2©), and transfers the results to the
aggregator. The aggregator waits until the updates from all the
clients are received. It then adds them up and dispatches the
results to all clients (3©). A client then decrypts the aggregated
gradients (4©) and uses it to update the local model (5©).

This architecture design follows the classic distributed
SGD pattern. So the existing theories and optimizations in-
cluding flexible synchronization [24, 34, 62] and local update
SGD [22,35,56] naturally apply. Moreover, as model updating
is performed on the client’s side using the plaintext gradient
aggregation, we can adopt state-of-the-art adaptive optimizers
such as Adam [28] for faster convergence—a huge advan-
tage over the existing proposal [48] that applies encrypted
gradients directly on the encrypted global model in the server.

USENIX Association 2020 USENIX Annual Technical Conference 495

3 Characterizing Performance Bottlenecks
In this section, we characterize the performance of cross-silo
FL with three real applications driven by deep learning models
in a geo-distributed setting. We show that encryption and com-
munication come as two prohibitive bottlenecks that impede
the adoption of FL among organizations. We survey possible
solutions in the literature and discuss their inefficiency. To
our knowledge, we are the first to present a comprehensive
characterization for cross-silo FL in a realistic setting.

3.1 Characterization Results
Cross-silo FL is usually performed in multiple geo-distributed
datacenters of participating organizations [27, 61]. Our char-
acterization is carried out in a similar scenario where nine
EC2 clients in five geo-distributed datacenters collaboratively
training three ML models of various sizes, including FMNIST,
CIFAR, and LSTM (Table 3). Unless otherwise specified, we
configure synchronous training, where no client can proceed
to the next iteration until the (encrypted) updates from all
clients have been aggregated. We defer the detailed descrip-
tion of the cluster setup and the ML models to §6.1.

We base our study in FATE (Federated AI Technology
Enabler) [18], a secure compute framework developed by
WeBank [57] to drive its FL applications with the other in-
dustry partners. To our knowledge, FATE is the only open-
source cross-silo FL framework deployed in production en-
vironments. FATE has a built-in support to the Pailler cryp-
tosystem [46] (key size set to 2048 bits by default), arguably
the most popular additively HE scheme [50]. Our results also
apply to the other partially HE cryptosystems.

Encryption and Communication Overhead We start our
characterization by comparing two FL scenarios, with and
without HE. We find that the use of HE results in exceedingly
long training time with dramatically increased data transfer.
More specifically, when HE is enabled, we measured the av-
erage training iteration time 211.9s, 2725.7s, and 8777.7s for
FMNIST, CIFAR, and LSTM, respectively. Compared with
directly transferring the plaintext updates, the iteration time is
extended by 96×, 135×, and 154×, respectively. In the mean-
time, when HE is (not) in use, we measured 1.1GB (6.98MB),
13.1GB (85.89MB), and 44.1GB (275.93MB) data transfer
between clients and aggregator in one iteration on average for
FMNIST, CIFAR, and LSTM, respectively. To sum up, the
use of HE increases both the training time and the network
footprint by two orders of magnitude. Such performance over-
head becomes even more significant for complex models with
a large number of weights (e.g., LSTM).

Deep Dive To understand the sources of the significant over-
head caused by HE, we examine the training process of the
three models in detail, where we sample an iteration and
depict in Fig. 2 the breakdown of the iteration time spent
on different operations on the client’s side (left) and on the
aggregator’s side (right), respectively.

comp
enc

idl
dec

idl
col

agg
dis

F C L

0

50

100

p
e
rc

e
n
ta

g
e

(a) Client: compute,
encrypt, idle, decrypt

F C L

0

50

100

p
e
rc

e
n
ta

g
e

(b) Aggregator: idle, collect,
aggregate, dispatch

Figure 2: Iteration time breakdowns of FMNIST, CIFAR, and
LSTM for a client and the aggregator.

As illustrated in Fig. 2a, on the client’s side, HE-related
operations dominate the training time in all three applications.
In particular, a client spent around 60% of the iteration time
on gradient encryption (yellow), 20% on decryption (dark
purple), and another 20% on data transfer and idle waiting
for the gradient aggregation to be returned2 (light purple). In
comparison, the time spent on the actual work for computing
the gradients becomes negligible (< 0.5%).

When it comes to the aggregator (Fig. 2b), most of the time
(> 70%) is wasted on idle waiting for a client to send in the
encrypted gradients (orange). Collecting the gradients from
all clients (yellow) and dispatching the aggregated results to
each party (dark purple) also take a significant amount of time,
as clients are geo-distributed and may not start transferring (or
receiving) at the same time. The actual computation time for
gradient aggregation (light purple) only accounts for less than
10% of the iteration span. Our deep-dive profiling identifies
encryption and decryption as the two dominant sources of the
exceedingly long training time.

Why is HE So Expensive? In additively HE cryptosystems
such as Paillier [46], encryption and decryption both involve
multiple modular multiplications and exponentiation opera-
tions with a large exponent and modulus (usually longer than
512 bits) [50], making them extremely expensive to compute.
Encryption also yields significantly larger ciphertexts, which,
in turn, causes a huge communication overhead for data trans-
fer. In additively HE schemes such as Paillier, a ciphertext
takes roughly the same number of bits as the key size, irre-
spective of the plaintext size. As of 2019, the minimum secure
key size for Paillier is 2048 [6], whilst a gradient is typically
a 32-bit floating point. This already translates to 64× size
inflation after encryption.

We further benchmark the computation overhead and the
inflated ciphertexts of Paillier with varying key sizes. We
use python-paillier [15] to encrypt and then decrypt
900K 32-bit floating points. Table 1 reports the results on

2Due to the synchronization barrier, a client needs to wait for all the other
clients to finish transferring updates to the aggregator.

496 2020 USENIX Annual Technical Conference USENIX Association

Table 1: Benchmarking Paillier HE with various key sizes.

Key size Plaintext Ciphertext Encryption Decryption
1024 6.87MB 287.64MB 216.87s 68.63s
2048 6.87MB 527.17MB 1152.98s 357.17s
3072 6.87MB 754.62MB 3111.14s 993.80s

a c5.4xlarge instance. As the key size increases (higher se-
curity), both the computation overhead and the size of cipher-
texts grow linearly. Since Paillier can only encrypt integers,
floating point values have to be scaled beforehand, and their
exponents information contribute further to data inflation.

Summary The prohibitive computation and communication
overhead caused by HE, if not properly addressed, would
lead to two serious economic consequences. First, given the
dominance of HE operations, accelerating model computation
using high-end hardware devices (e.g., GPUs and TPUs) is no
longer relevant—a huge waste of the massive infrastructure
investments in clients’ datacenters. Second, the overwhelm-
ing network traffics across geo-distributed datacenters incurs
skyrocketing Internet data charges, making cross-silo FL eco-
nomically unviable. In fact, in WeBank, production FL appli-
cations may choose to turn off HE if the security requirement
is not so strict.

3.2 Potential Solutions and Their Inefficiency
Hardware-Accelerated HE HE process can be accelerated
using software or hardware solutions. However, typical HE
cryptosystems including Paillier have limited interleaving
independent operations, thus the potential speedup of a single
HE operation is quite limited. In fact, it is reported that a
specialized FPGA can only accelerate Paillier encryption by
3× [50]. Moreover, simply accelerating the encryption itself
does not help reduce the communication overhead.

Reducing Communication Overhead As accelerating HE
itself does not clear the barrier of adopting HE in FL, what
if we reduce the amount of data to encrypt in the first place?
Since data inflation is mainly caused by the mismatch be-
tween the lengths of plaintexts and ciphertexts, an intuitive
idea would be batching as many gradients together as possible
to form a long plaintext, so that the amount of encryption op-
erations will reduce greatly. However, the challenge remains
how to maintain HE’s additive property after batching without
modifying ML algorithms or hurting the learning accuracy.

While some prior works have explored the idea of joining
multiple values together to reduce HE overhead, they give
no viable implementation of batch encryption for cross-silo
FL. [48] makes a false assumption that quantization is loss-
less, and uses adaptive optimizer Adam in its simulation even
though its design does not support that. With only plain SGD
available, [48] requires tedious learning rate scheduling tun-
ing to achieve similar results of advanced optimizers [59].
The naive batching given in [37] cannot be correctly imple-
mented as homomorphic additivity is not retained. In fact,

none of these works have systematically studied the impact of
batching. Gazelle [26] and SEAL [51] adopt the SIMD (single
instruction multiple data) technique to speed up HE. However,
such approach only applies to lattice-based HE schemes [11]
and is restricted by their unique properties. For instance, it
incurs dramatic computational complexity for lattice-based
HE schemes to support more levels of multiplication [26].
Besides, these works only accelerate integer cryptographic
operations. How to maintain the training accuracy in cross-
silo FL context remains an open problem.

4 BatchCrypt
In this section, we describe our solution for gradient batching.
We begin with the technical challenges. We first show that
gradient quantization is required to enable batching. We then
explain that generic quantization scheme lacks flexibility and
efficiency to support general ML algorithms, which calls for
an appropriately designed encoding and batching scheme;
to prevent model quality degradation, an efficient clipping
method is also needed. We name our solution BatchCrypt,
a method that co-designs quantization, batch encoding, and
analytical quantization modeling to boost computation speed
and communication efficiency while preserving model quality
in cross-silo FL with HE.

4.1 Why is HE Batching for FL a Problem?
On the surface, it seems straightforward to implement gradient
batching. In fact, batching has been used to speed up queries
over integers in a Paillier-secured database [19]. However, this
technique only applies to non-negative integers [19]. In order
to support floating numbers, the values have to be reordered
and grouped by their exponents [19]. Such constraints are
the key to preserving HE’s additivity of batched ciphertexts—
that is, the sum of two batched ciphertexts, once decrypted,
should match the results of element-wise adding plaintext
values in the two groups. Gazelle and SEAL [26, 51] employ
SIMD technique to meet this requirement, but the approach is
limited to lattice-based cryptosystems. We aspire to propose
a universal batching method for all additively homomorphic
cryptosystems.

Why Quantization is Needed? Gradients are signed float-
ing values and must be ordered by their corresponding model
weights, for which we cannot simply rearrange them by expo-
nents. The only practical approach is to use integer represen-
tations of gradients in the batch, which requires quantization.

Existing Quantization Schemes ML algorithms are re-
silient to update noise and able to converge with gradients of
limited precision [10]. Fig. 3a illustrates how generic gradient
quantization scheme can be used in HE batching. Notably,
since there is no bit-wise mapping between a ciphertext and
its plaintext, permutation within ciphertexts is not allowed—
only plain bit-by-bit addition between batched integers is
available. Assume a gradient g in [−1,1] is quantized into an

USENIX Association 2020 USENIX Annual Technical Conference 497

+

=

11 111 111100 00 000 000100

11 000 001000 11 111 100100

…

z bit padding r bit value quantized
value

-1

-126

+1

-7

00

00 …

11 000 0001 11 111 101000
-127 -6

00 …01

+

=

0111 111000 1000 000100

0000 000100 0111 100000

…
126

1

129

120

00

00 …

0111 1111 1111 100100
127 249

00 …00

sign bit

(a) generic quantization (b) BatchCrypt

original
value

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

-0.0079

-0.9921

-1

0.0079

-0.0551

-0.0475

Figure 3: An illustration of a generic quantization scheme and
BatchCrypt. The latter preserves additivity during batching,
with the sign bits highlighted within values.

8-bit unsigned integer. Let [·] denote the standard rounding
function. The quantized value of g is

Q(g) = [255∗ (g−min)/(max−min)],

where max = 1 and min =−1. Suppose n quantized gradients
are summed up. The result, denoted by qn, is dequantized as

Q−1(qn) = qn ∗ (max−min)/255+n∗min.

Referring to Fig. 3a, gradients of a client (floating numbers
in blue) are first quantized and then batch joined into a large
integer. To aggregate the gradients of two clients, we simply
sum up the two batched integers, locate the added gradients
at the same bit positions as in the two batches (8-bit integers
in red), and dequantize them to obtain the aggregated results.

Such a generic quantization scheme, though simple to im-
plement, does not support aggregation well and has many
limitations when applied to batched gradient aggregation.

(1) It is restrictive. In order to dequantize the results, it
must know how many values are aggregated. This poses extra
barriers to flexible synchronization, where the number of
updates is constantly changing, sometimes even unavailable.

(2) It overflows easily in aggregation. As values are quan-
tized into positive integers, aggregating them is bound to over-
flow quickly as the sum grows larger. To prevent overflow,
batched ciphertexts have to be decrypted after a few additions
and encrypted again in prior work [48].

(3) It does not differentiate positive overflows from neg-
ative. Once overflow occurs, the computation has to restart.
Should we be able to tell them apart, a saturated value could
have been used instead of discarding the results.

4.2 HE Batching for Gradients
Unsatisfied with the generic quantization technique, we aspire
to devise a batching solution tailored to gradient aggregation.
Our scheme should have the following desirable properties:
(1) it preserves the additivity of HE; (2) it is more resilient to
overflows and can distinguish positive overflows from nega-
tive ones; (3) it is generally applicable to existing ML algo-
rithms and optimization techniques; (4) it is flexible enough
that one can dequantize values directly without additional
information, such as the number of values aggregated.

Gradient Quantization Existing works use gradient com-
pression techniques to reduce network traffic in distributed
training [1,29,36,58]. These quantization methods are mainly
used to compress values for transmission [58] or accelerate
inference where only multiplication is needed [5]. However,
they are not designed for gradient aggregation, and we cannot
perform computations over the compressed gradients effi-
ciently, making them inadequate for FL. We scrutinize the
constraints posed by our design objectives, and summarize
the stemed requirements for quantization as follows:

• Signed Integers: Gradients should be quantized into
signed integers. In this way, positive and negative values
can cancel each other out in gradient aggregation, mak-
ing it less prone to overflowing than quantizing gradients
into unsigned integers.

• Symmetric Range: To make values with opposite signs
cancel each other out, the quantized range must be sym-
metrical. Violating this requirement may lead to an incor-
rect aggregation result. For example, if we map [−1,1] to
[−128,127], then −1+1 would become −128+127 =
−1 after quantization.

• Uniform Quantization: Literature shows that non-
uniform quantization schemes have better compression
rates as gradients have non-uniform distribution [1, 7].
However, we are unable to exploit the property as addi-
tions over quantized values are required.

BatchCrypt We now propose an efficient quantization
scheme BatchCrypt that meets all the requirements above.
Assume that we quantize a gradient in [−α,α] into an r-bit in-
teger. Instead of mapping the whole range all together, we uni-
formly map [−α,0] and [0,α] to [−(2r−1),0] and [0,2r−1],
respectively. Note that the value 0 ends up with two codes in
our design. Prior work shows that 16-bit quantization (r = 16)
is sufficient to achieve near lossless gradient quantization [21].
We will show in §6 that such a moderate quantization width
is sufficient to enable efficient batching in FL setting.

With quantization figured out, the challenge remains how
to encode the quantized values so that signed additively arith-
metic is correctly enabled—once the batched long integer
is encrypted, we cannot distinguish the sign bits from the
value bits during aggregation. Inspired by how modern CPUs
handle signed integer computations, we use two’s comple-
ment representation in our encoding. By doing so, the sign
bits can engage in the addition just like the value bits. We
further use the two sign bits to differentiate between the pos-
itive and negative overflows. We illustrate an example of
BatchCrypt in Fig. 3b. By adding the two batched long in-
tegers, BatchCrypt gets the correct aggregation results for
−1+(−126) and +1+(−7), respectively.

BatchCrypt achieves our requirements by co-designing
quantization and encoding: no additional information is
needed to dequantize the aggregated results besides the batch
itself; positive and negative values are able to offset each
other; the signs of overflow can be identified. Compared

498 2020 USENIX Annual Technical Conference USENIX Association

⍺0-⍺

quantization
noise

clipping
noise

clipping
noise

Figure 4: A typical layer gradient distribution. α is the clip-
ping threshold.

with the batching methods in [26, 51], BatchCrypt’s batching
scheme is generally applicable to all additively HE cryptosys-
tems’ and fully HE cryptosystems’ additive operations.

4.3 dACIQ: Analytical Clipping for FL

Our previous discussion has assumed gradients in a bounded
range (§4.2). In practice, however, gradients may go un-
bounded and need to be clipped before quantization. Also, gra-
dients from different layers have different distributions [58].
We thus need to quantize layers individually [1, 58]. More-
over, prior works show that gradients from the same layer have
a bell-shaped distribution which is near Gaussian [2, 7, 53].
Such property can be exploited for efficient gradient compres-
sion [1, 58]. Finally, gradients require stochastic rounding
during quantization [21, 36, 58], as it stochastically preserves
diminishing information compared to round-to-nearest.

Layer-wise quantization and stochastic rounding can be
easily applied, yet it remains unclear how to find the optimal
clipping thresholds in the FL setting. As shown in Fig. 4,
clipping is the process of saturating the outlaying gradients
beyond a threshold α. If α is set too large, the quantization
resolution becomes too low. On the other hand, if α gets too
small, most of the range information from outlaying gradients
has to be discarded.

In general, there are two ways to set the clipping threshold,
profiling-based methods and analytical modeling. Profiling-
based clipping selects a sample dataset to obtain a sample
gradient distribution. Thresholds are then assessed with met-
rics such as KL divergence [41] and convergence rate [58].
However, such approach is impractical in FL for three reasons.
First, finding a representative dataset in FL can be difficult,
as clients usually have non-i.i.d. data, plus it breaks the data
silo. Second, the gradient range narrows slowly as the training
progresses [14], so clipping needs to be calibrated constantly,
raising serious overhead concerns. Third, the profiling results
are specific to the training models and datasets. Once the
models or the datasets change, new profiling is needed. For
both practicality and cost considerations, BatchCrypt instead
adopts analytical modeling.

As shown in Fig. 4, the accumulated noise comes from
two sources. Quantization noise refers to the error induced
by rounding within the clipping range (the light blue area),
while clipping noise refers to the saturated range beyond the
clipping threshold (the gray area). To model the accumulated
noise from both quantization and clipping, state-of-the-art
clipping technique ACIQ [5] assumes that they follow a Gaus-

sian distribution. However, ACIQ cannot be directly applied
to BatchCrypt for two reasons. First, it employs a generic
asymmetric quantization, which is not the case in BatchCrypt;
second, in FL, gradients are not available at one place in
plaintext to conduct distribution fitting.

We address these problems by extending ACIQ clipping to
the distributed FL setting, which we call dACIQ. In particu-
lar, we adopt stochastic rounding with an r-bit quantization
width. Assume that gradients follow Gaussian distribution
X ∼ N(0,σ2). Let qi be the i-th quantization level. We com-
pute the accumulated error in BatchCrypt as follows:

E[(X−Q(X))2] =
∫ −α

−∞

f (x) · (x+α)2dx+
∫

∞

α

f (x) · (x−α)2dx

+
2r−3

∑
i=0

∫ qi+1

qi
f (x) · [(x−qi)

2 · (qi+1− x
4

) + (x−qi+1)
2 · (x−qi

4
)]dx

≈ α2 +σ2

2
· [1− er f (

α√
2σ

)]− α ·σ · e−
α2

2·σ2

√
2π

+
2α2 · (2r−2)

3 ·23r ,

(1)
where the first and the second terms account for the clipping
noise, and the third the rounding noise. As long as we know
σ, we can then derive the optimal threshold α from Eq. (1).
We omit the detailed derivations in the interest of space.

Gaussian Fitting Now that we have Eq. (1), we still need to
figure out how to fit gradients into a Gaussian distribution in
the FL setting. Traditionally, to fit Gaussian parameters µ and
σ, Maximum Likelihood Estimation and Bayesian Inference
can be used. They require information including the size of
observation set, its sum, and its sum of squares. As an ML
model may have up to millions of parameters, calculating
these components as well as transferring them over Internet is
prohibitively expensive. As a result, dACIQ adopts a simple,
yet effective Gaussian fitting method proposed in [4]. The
method only requires the size of observation set and its max
and min, with the minimum computational and communica-
tion overhead. We later show that such light-weight fitting
does not affect model accuracy in §6.

Advance Scaling With multiple clients in FL, it is essential
to prevent overflows from happening. Thanks to clipping,
the gradient range is predetermined before encryption. Let m
be the number of clients. If m is available, we could employ
advance scaling by setting the quantization range to m times
of the clipping range, so that the sum of gradients from all
clients will not overflow.

4.4 BatchCrypt: Putting It All Together
Putting it all together, we summarize the workflow of
BatchCrypt in Algorithm 1.

Initialization The aggregator randomly selects one client as
the leader. The leader client generates the HE key-pair and
initializes the model weights. The key-pair and model weights
are then synchronized with the other client workers.

Training After initialization, there is no differentiation be-
tween the leader and the other workers. Clients compute gra-

USENIX Association 2020 USENIX Annual Technical Conference 499

Algorithm 1 HE FL BatchCrypt
Aggregator:
1: function INITIALIZE
2: Issue INITIALIZELEADER() to the randomly selected leader
3: Issue INITIALIZEOTHER() to the other clients
4: function STARTSTRAINING
5: for epoch e = 0,1,2, ...,E do
6: Issue WORKERSTARTSEPOCH(e) to all clients
7: for all training batch t = 0,1,2, · · · ,T do
8: Collect gradients range and size
9: Return clipping values α calculated by dACIQ

10: Collect, sum up all g(e,t)i into g(e,t), and dispatch it

Client Worker: i = 1,2, . . . ,m
– r: quantization bit width, bs: BatchCrypt batch size

1: function INITIALIZELEADER
2: Generate HE key-pair pub_key and pri_key
3: Initialize the model to train w
4: Send pub_key, pri_key, and w to other clients
5: function INITIALIZEOTHER
6: Receive HE key-pair pub_key and pri_key
7: Receive the initial model weights w
8: function WORKERSTARTSEPOCH(e)
9: for all training batch t = 0,1,2, · · · ,T do

10: Compute gradients g(e,t)i based on w

11: Send per-layer range and size of g(e,t)i to aggregator
12: Receive the layer-wise clipping values α’s
13: Clip g(e,t)i with corresponding α, quantize g(e,t)i into r bits, with

quantization range setting to mα . Advance scaling
14: Batch g(e,t)i with bs layer by layer

15: Encrypt batched g(e,t)i with pri_key

16: Send encrypted g(e,t)i to aggregator
17: Collect g(e,t) from aggregator, and decrypt with pub_key
18: Apply decrypted g(e,t) to w

dients and send the per-layer gradient range and size to the
aggregator. The aggregator estimates the Gaussian parameters
first and then calculates the layer-wise clipping thresholds as
described in § 4.3. Clients then quantize the gradients with
range scaled by the number of clients, and encrypt the quan-
tized values using BatchCrypt. Note that advanced scaling
utilizing the number of clients is used to completely avoid
overflowing. However, Algorithm 1 is still viable even without
that information, as BatchCrypt supports overflow detection.
The encrypted gradients are gathered at the aggregator and
summed up before returning to the clients.

5 Implementation
We have implemented BatchCrypt atop FATE (v1.1) [18].
While we base our implementation on FATE, nothing pre-
cludes it from being extended to the other frameworks such
as TensorFlow Federated [20] and PySyft [49].

Overview Our implementation follows the paradigm de-
scribed in Algorithm 1, as most of the efforts are made on the
client side. Fig. 5 gives an overview of the client architecture.

BatchCrypt consists of dACIQ, Quantizer, two’s Compli-
ments Codec, and Batch Manager. dACIQ is responsible for

Client Worker

ML backend

TensorFlow

FATE

HE Mgr. Comm. Mgr.

BatchCrypt

dACIQ Quantizer
Dist. Fitting

Initializer

Encrypt

Remote

GetMXNet

2’s Comp. Codec Batch Mgr.

Advance Scaler

Quantize / Dequantize

Encode / Decode

Numba Parallel

Batch / Unbatch

Joblib Parallel

…

Clipping

Figure 5: The architecture of a client worker in BatchCrypt.

Gaussian fitting and clipping threshold calculation. Quan-
tizer takes the thresholds and scales them to quantize the
clipped values into signed integers. Quantizer also performs
dequantization. Two’s Compliments Codec translates between
a quantized value’s true form and two’s compliment form with
two sign bits. Given the large volume of data to encode, we
adopt Numba to enable faster machine codes and massive par-
allelism. Finally, Batch Manager is in charge of batching and
unbatching gradients in their two’s compliment form, it re-
members data’s original shape before batching and restores it
during unbatching. Batch Manager utilizes joblib to exploit
computing resources by multiprocessing. FATE is used as
an infrastructure to conduct FL, in which all the underlying
ML computations are written with TensorFlow v1.14 opti-
mized for our machines shipped with AWS DLAMI [3]. FATE
adopts the open-sourced python-paillier as the Paillier
HE implementation. We again employ joblib to parallel the
operations here. FATE’s Communication Manager conducts
the SSL/TLS secured communication with gRPC. During our
characterizations and evaluations, the CPUs are always fully
utilized during Paillier operations and BatchCrypt process.

Model Placement In the typical parameter server architec-
ture, model weights are placed on the server side, while we
purposely place weights on the worker side in BatchCrypt.
Prior work [48] employs the traditional setup: clients encrypt
the initialized weights with HE and send them to the aggre-
gator first; the aggregator applies the received encrypted gra-
dients to the weights encrypted with the same HE key. Such
placement has two major drawbacks. First, keeping weights
on the aggregator requires re-encryption. Since new gradi-
ents are constantly applied to weights, the model has to be
sent back to the clients to decrypt and re-encrypt to avoid
overflows from time to time, resulting in a huge overhead.
Second, applying encrypted gradients prevents the use of so-
phisticated ML optimizers. State-of-the-art ML models are
usually trained with adaptive optimizers [28] that scale the
learning rates according to the gradient itself. By keeping the
model weights on the client side, BatchCrypt can examine the
aggregated plaintext gradients, enabling the use of advanced
optimizers like Adam, whereas on the aggregator side, one
can only adopt plain SGD.

500 2020 USENIX Annual Technical Conference USENIX Association

Table 2: Network bandwidth (Mbit/sec) between aggregator
and clients in different regions.

Region Ore. TYO. N.VA. LDN HK
Uplink (Mbps) 9841 116 165 97 81
Downlink (Mbps) 9841 122 151 84 84

6 Evaluation
In this section, we evaluate the performance of BatchCrypt
with real ML models trained in geo-distributed datacenters.
We first examine the learning accuracy loss caused by our
quantization scheme (§6.2). We then evaluate the computation
and communication benefits BatchCrypt brings as well as
how its performance compares to the ideal plaintext learning
(§6.3). We then assess how BatchCrypt’s speedup may change
with various batch sizes (§6.4). Finally, we demonstrate the
significant cost savings achieved by BatchCrypt (§6.5).

6.1 Methodology
Setting We consider a geo-distributed FL scenario where
nine clients collaboratively train an ML model in five AWS
EC2 datacenters located in Tokyo, Hong Kong, London,
N. Virginia, and Oregon, respectively. We launched two
compute-optimized c5.4xlarge instances (16 vCPUs and
32 GB memory) as two clients in each datacenter except
that in Oregon, where we ran only one client. Note that we
opt to not use GPU instances because computation is not a
bottleneck. We ran one aggregator in the Oregon datacenter
using a memory-optimized r5.4xlarge instance (16 vCPUs
and 128 GB memory) in view of the large memory footprint
incurred during aggregation. To better outline the network het-
erogeneity caused by geo-locations, we profiled the network
bandwidth between the aggregator and the client instances.
Our profiling results are summarized in Table 2. We adopt
Pailler cryptosystem in our evaluation as it is widely adopted
in FL [50], plus batching over it is not supported by Gazelle
or SEAL [26, 51]. We expect our results also apply to other
cryptosystems as BatchCrypt offers a generic solution.

Benchmarking Models As there is no standard benchmark-
ing suites for cross-silo FL, we implemented three representa-
tive ML applications in FATE v1.1. Our first application is a
3-layer fully-connected neural network trained over FMNIST
dataset [60], where we set the training batch size to 128 and
adopt Adam optimizer. In the second application, we train
AlexNet [32] using CIFAR10 dataset [31], with batch size
128 and RMSprop optimizer with 10−6 decay. The third appli-
cation is an LSTM model [25] with Shakespeare dataset [55],
where we set the batch size to 64 and adopt Adam optimizer.
Other LSTM models that are easier to validate have signifi-
cantly more weights. Training them to convergence is beyond
our cloud budget. As summarized in Table 3, all three appli-
cations are backed by deep learning models of various sizes
and cover common learning tasks such as image classifica-
tion and text generation. For each application, we randomly

Table 3: Summary of models used in characterizations.

FMNIST CIFAR LSTM
Network 3-layer FC AlexNet [32] LSTM [25]
Weights 101.77K 1.25M 4.02M
Dataset FMNIST [60] CIFAR10 [31] Shakespeare [55]
Task Image class. Image class. Text generation

0 100

Epochs

0.7

0.8

0.9

A
c
c
u
ra

c
y

plain
8 bits
16 bits
32 bits

(a) FMNIST test acc.

0 200

Epochs

0.0

0.3

0.6

0.9

A
c
c
u
ra

c
y

(b) CIFAR test acc.

10 20

Epochs

0.0

0.1

0.2

L
o
s
s

(c) LSTM train loss

Figure 6: The quality of trained model with different quanti-
zation bit widths in BatchCrypt.

partition its training dataset across nine clients. We configure
synchronous training unless otherwise specified.

6.2 Impact of BatchCrypt’s Quantization

We first evaluate the impact of our quantization scheme, and
see how quantization bit width could affect the model qual-
ity. We report the test accuracy for FMNIST and CIFAR
workloads to see how BatchCrypt’s quantization affects the
classification top-1 accuracy. Training loss is used for LSTM
as the dataset is unlabelled and has no test set. We simulated
the training with nine clients using BatchCrypt’s quantization
scheme including dACIQ clipping. The simulation scripts are
also open-sourced for public access. We set the quantization
bit width to 8, 16, and 32, respectively, and compare the re-
sults against plain training (no encryption) as the baseline.
We ran the experiments until convergence, which is achieved
when the accuracy or loss does not reach a new record for
three consecutive epochs.

Fig. 6 depicts the results. For FMNIST, plain baseline
reaches peak accuracy 88.62% at the 40th epoch, while the
8-bit, 16-bit, and 32-bit quantized training reach 88.67%,
88.37%, and 88.58% at the 122nd, 68th, and 32nd epoch, re-
spectively. For CIFAR, plain baseline reaches peak accuracy
73.97% at the 285th epoch, while the 8-bit, 16-bit, and 32-
bit quantized training reach 71.47%, 74.04%, and 73.91% at
the 234th, 279th, and 280th epoch, respectively. Finally, for
LSTM, plain baseline reaches bottom loss 0.0357 at the 20th

epoch, while the 8-bit, 16-bit, and 32-bit quantized training
reach 0.1359, 0.0335, and 0.0386 at the 29th, 23rd, and 22nd

epoch, respectively. We hence conclude that, with appropriate
quantization bit width, BatchCrypt’s quantization has negli-
gible negative impact on the trained model quality. Even in

USENIX Association 2020 USENIX Annual Technical Conference 501

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

126

40 46

212

1.6 6.6 0.7 9.1

stock

batch

(a) FMNIST worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 165

11
35

211

4.3 0.2 4.6 9.1

(b) FMNIST aggregator

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

1558

653 511

2726

16.6 11.3 7.9 38.5

(c) CIFAR worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 1904

153
654

2711

29.3 1.1 8.1 38.5

(d) CIFAR aggregator

encrypt idle
decrypt

overall

ti
m

e
 (

s
)

5077

2092 1605

8777

51.3 20.3 20.8 94.6

(e) LSTM worker

idle agg.
transfer

overall

ti
m

e
 (

s
) 6005

736
1778

8519

73.7 3.3 17.3 94.2

(f) LSTM aggregator

Figure 7: Breakdown of training iteration time under stock
FATE and BatchCrypt, where “idle” measures the idle waiting
time of a worker and “agg.” measures the gradient aggregation
time on the aggregator. Note that model computation is left
out here as it contributes little to the iteration time.

the case where the quantized version requires more epochs to
converge, we later show that such overhead can be more than
compensated by the speedup from BatchCrypt.

Although 8-bit quantization performs poorly for CIFAR
and LSTM, it is worth notice that, longer bit width does not
necessarily lead to higher model quality. In fact, quantized
training sometimes achieves better results. Prior quantiza-
tion work has observed similar phenomenon [63], where the
stochasticity introduced by quantization can work as a regular-
izer to reduce overfitting, similar to a dropout layer [54]. Just
like the dropout rate, quantization bit width acts as a trade-off
knob for how much information is retained and how much
stochasticity is introduced.

In summary, with apt bit width, our gradient quantization
scheme does not adversely affect the trained model quality. In
contrast, existing batching scheme introduces 5% of quality
drop [37]. Thus, quantization-induced error is not a concern
for the adoption of BatchCrypt.

6.3 Effectiveness of BatchCrypt
BatchCrypt vs. FATE We next evaluate the effectiveness
of BatchCrypt in real deployment. We set the quantization
bit width to 16 as it achieves a good performance (§6.2). The

batch size is set to 100, in which we pad two zeros between
the two adjacent values. We report two metrics: the iteration
time breakdown together with the network traffic. We ran the
experiments for 50 iterations, and present the averaged results
against those measured with the stock FATE implementation
in Figs. 7 and 8. We see in Fig. 2 that BatchCrypt significantly
speeds up a training iteration: 23.3× for FMNIST, 70.8×
for CIFAR, and 92.8× for LSTM. Iteration time breakdown
further shows that our implementation reduces the cost of HE
related operations by close to 100×, while the communication
time is substantially reduced as well (“idle” in worker and
“transfer” in aggregator).

We next refer to Fig. 8, where we see that BatchCrypt re-
duces the network footprint by up to 66×, 71×, and 101× for
FMNIST, CIFAR, and LSTM, respectively. Note that FATE
adopts grpc as the communication vehicle whose limit on pay-
load forces segmenting encrypted weights into small chunks
before transmission. By reducing the size of data to transfer,
BatchCrypt alleviates the segmenting induced overhead (meta-
data, checksum, etc.), so it is possible to observe a reduction
greater than the batch size.

Our experiments also show that BatchCrypt achieves more
salient improvements for larger models. First, encryption re-
lated operations take up more time in larger models, leaving
more potential space for BatchCrypt. Second, since layers are
batched separately, larger layers have higher chances forming
long batches. BatchCrypt’s speedup can be up to two orders
of magnitude, which easily offset the extra epochs needed for
convergence caused by quantization (§6.2).

stock batch

0

2000

tr
a
ff

ic
 (

M
B

)

1097

17

snd

rcv

(a) FMNIST

stock batch

0

1000

tr
a
ff

ic
 (

1
0

 M
B

) 1341

19

(b) CIFAR

stock batch

0

5000

tr
a
ff

ic
 (

1
0

 M
B

)

4516

45

(c) LSTM

FMNIST
CIFAR

LSTM

0

100

re
d
u
c
ti

o
n
 (

ti
m

e
s
)

66.0 70.5

101.2

(d) Reduction

Figure 8: Comparison of the network traffic incurred in one
training iteration using the stock FATE implementation and
BatchCrypt.

BatchCrypt vs. Plaintext Learning We next compare
BatchCrypt with the plain distributed learning where no en-
cryption is involved—an ideal baseline that offers the optimal
performance. Fig. 9 depicts the iteration time and the network

502 2020 USENIX Annual Technical Conference USENIX Association

FMNIST
 CIFAR LSTM

ti
m

e
 (

s
)

9

38

95

5.5 9.8 12.8

batch

plain

(a) Time

FMNIST
 CIFAR LSTM

tr
a
ff

ic
 (

M
B

)

2

21

49

0.8

9.5

30.7

(b) Communication

Figure 9: Time and communication comparisons of one iter-
ation on workers between BatchCrypt and plain distributed
learning without encryption.

Table 4: Projected total training time and network traffic usage
until convergence for the three models. The converged test
accuracy for FMNIST, CIFAR as well as loss for LSTM and
their corresponding epoch numbers are listed in the table.

Model Mode Epochs Acc./Loss Time (h) Traffic (GB)

FMNIST
stock 40 88.62% 122.5 2228.3
batch 68 88.37% 8.9 58.7
plain 40 88.62% 3.2 11.17

CIFAR
stock 285 73.97% 9495.6 16422.0
batch 279 74.04% 131.3 227.8
plain 285 73.97% 34.2 11.39

LSTM
stock 20 0.0357 8484.4 15347.3
batch 23 0.0335 105.2 175.9
plain 20 0.0357 12.3 10.4

footprint under the two implementations. While encryption re-
mains the major bottleneck, BatchCrypt successfully reduces
the overhead by an order of magnitude, making it practical
to achieve the same training results as the plain distributed
setting. Note that encrypted numbers in FATE each carries
redundant information such as public keys, thus causing the
communication inflation compared with the plain version.
Such inflation can be reduced if FATE employs some opti-
mized implementation.

Training to Convergence Our previous studies mainly fo-
cus on a single iteration. Compared with stock FATE and plain
distributed learning, BatchCrypt requires a different number
of iterations to converge. We hence evaluate their end-to-end
performance by training ML models till convergence. As this
would take exceedingly long time and high cost if performed
in real deployment, we instead utilize our simulation in §6.2
and iteration profiling results to project the total time and
network traffic needed for convergence.

Table 4 lists our projection results of the three solu-
tions. Compared with the stock implementation in FATE,
BatchCrypt dramatically reduces the training time towards
convergence by 13.76×, 72.32×, and 80.65× for FMNIST,
CIFAR, and LSTM, respectively. In the meantime, the net-
work footprints shrink by 37.96×, 72.01×, 87.23×, respec-
tively. We stress that these performance improvements are
achieved without degrading the trained model quality. On the
other hand, BatchCrypt only slows down the overall training

comp
enc

idl
dec

idl
col

agg
dis

8 16 32

0

100

200

ti
m

e
 (

s
)

58

95

176

(a) Worker: compute, encrypt,
idle, decrypt

8 16 32

0

100

200

ti
m

e
 (

s
)

58

94

174

(b) Aggregator: idle, collect,
aggregate, dispatch

8 16 32

0

500

1000

tr
a
ff

ic
 (

M
B

)

308
446

911snd

rcv

(c) Aggregator traffic

Figure 10: Breakdown of iteration time and communication
traffic of BatchCrypt with LSTM model with various quantiza-
tion bit widths in one iteration. The corresponding batch sizes
for bit width 8, 16, and 32 are 200, 100, and 50, respectively.

time by 1.78×, 2.84×, and 7.55× for the three models com-
pared with plain learning—which requires no encryption and
hence achieves the fastest possible training convergence. In
summary, BatchCrypt significantly reduces both the compu-
tation and communication overhead caused by HE, enabling
efficient HE for cross-silo FL in production environments.

6.4 Batching Efficiency
We have shown in §6.2 that ML applications have different
levels of sensitivity towards gradient quantization. It is hence
essential that BatchCrypt can efficiently batch quantized val-
ues irrespective of the chosen quantization bit width. Given an
HE key, the longest plaintext it can encrypt is determined by
the key size, so the shorter the quantization width is, the larger
the batch size is, and the higher the potential speedup could be.
We therefore look into how our BatchCrypt implementation
can exploit such batching speedup.

We evaluate BatchCrypt by varying the batch size. In partic-
ular, we train the LSTM model on the geo-distributed clients
with different quantization widths 8, 16, and 32. The corre-
sponding batch sizes are set respectively to 200, 100, and 50.
We ran the experiments for 50 iterations, and illustrate the
average statistics in Fig. 10. Figs. 10a and 10b show the time
breakdown in the three experiments. It is clear that employ-
ing a shorter quantization bit width enables a larger batch
size, thus leading to a shorter training time. Note that the
speedup going from 8-bit to 16-bit is smaller compared with
that from 16-bit to 32-bit, because HE operations become less
of a bottleneck with larger batch size. Fig. 10c depicts the

USENIX Association 2020 USENIX Annual Technical Conference 503

stock batch

0

2000

C
o
s
t

($
)

1126

80

ins

net

(a) FMNIST

stock batch

0

5000

10000

C
o
s
t

(1
0

 $
) 8355

116

(b) CIFAR

stock batch

0

5000

C
o
s
t

(1
0

 $
) 7467

93

(c) LSTM

FMNIST
CIFAR LSTM

0

100
p
e
rc

e
n
ta

g
e 92.9 98.6 98.8

(d) Savings

Figure 11: Total cost until convergence between FATE’s stock
implementation and BatchCrypt, instance and network costs
are highlighted separately.

accumulated network traffic incurred in one iteration, which
follows a similar trend as that of the iteration time. In con-
clusion, BatchCrypt can efficiently exploit batching thanks to
its optimized quantization. Similar to [26, 51], BatchCrypt’s
batching scheme reduces both the computation and commu-
nication cost linearly as the batch size increases. In fact, if
lattice-based HE algorithms are adopted, one can replace
BatchCrypt’s batching scheme with that of [26, 51], and still
benefit from BatchCrypt’s accuracy-preserving quantization.

6.5 Cost Benefits
The reduced computation and communication overheads en-
able significant cost savings: sustained high CPU usage leads
to high power consumption, while ISPs charge for bulk data
transfer over the Internet. As our evaluations were conducted
in EC2, which provides a runtime environment similar to the
organization’s own datacenters, we perform cost analysis un-
der the AWS pricing scheme. The hourly rate of our cluster
is $8.758, while the network is charged based on outbound
traffic for $0.042, $0.050, $0.042, $0.048, $0.055 per GB for
the regions listed in Table 2.

We calculate the total cost for training until convergence in
Table 4 and depict the results in Fig. 11. As both computation
and communication are reduced substantially, BatchCrypt
achieves huge cost savings over FATE. While the instance
cost reduction is the same as the overall speedup in Table 4,
BatchCrypt lowers the network cost by 97.4%, 98.6% and
98.8% for FMNIST, CIFAR, and LSTM, respectively.

7 Discussion
Local-update SGD & Model Averaging Local-update
SGD & model averaging is another common approach to
reducing the communication overhead for FL [22, 40], where
the aggregator collects and averages model weights before

propagating them back to clients. Since there are only addition
operations involved, BatchCrypt can be easily adopted.

Split Model Inference In many FL scenarios with restric-
tive privacy requirement, a trained model is split across
clients, and model inference involves coordination of all those
clients [23, 61]. BatchCrypt can be used to accelerate the
encryption and transmission of the intermediate inference
results.

Flexible Synchronization There have been many efforts in
amortizing the communication overhead in distributed SGD
by removing the synchronization barriers [24, 34, 62]. Al-
though we only evaluate BatchCrypt’s performance in syn-
chronous SGD, our design allows it to take advantage of the
flexible synchronization schemes proposed in the literature.
This is not possible with Secure Aggregation [9].

Potential on Large Models Recent research and our eval-
uations show that more sophisticated ML models are more
resilient to quantization noise. In fact, certain models are
able to converge even with 1- or 2-bit quantization [8, 58].
The phenomenon promises remarkable improvement with
BatchCrypt, which we will explore in our future work.

Applicability in Vertical FL Vertical FL requires compli-
cated operations like multiplying ciphertext matrices [38, 61].
Batching over such computation is beyond BatchCrypt’s cur-
rent capability. We will leave it as a future work.

8 Concluding Remark

In this paper, we have systematically studied utilizing HE to
implement secure cross-silo FL. We have shown that HE re-
lated operations create severe bottlenecks on computation and
communication. To address this problem, we have presented
BatchCrypt, a system solution that judiciously quantizes gra-
dients, encodes a batch of them into long integers, and per-
forms batch encryption to dramatically reduce the encryption
overhead and the total volume of ciphertext. We have imple-
mented BatchCrypt in FATE and evaluated its performance
with popular machine learning models across geo-distributed
datacenters. Compared with the stock FATE, BatchCrypt ac-
celerates the training convergence by up to 81× and reduces
the overall traffic by 101×, saving up to 99% cost when de-
ployed in cloud environments.

Acknowledgement

We thank our shepherd, Brandon Lucia, and the anonymous
reviewers for their valuable feedbacks that help improve the
quality of this work. This work was supported in part by RGC
ECS grant 26213818, WeBank-HKUST research collabora-
tion grant 2019, NSF CCF-1756013 and NSF IIS-1838024.
Chengliang Zhang was supported by the Hong Kong PhD
Fellowship Scheme.

504 2020 USENIX Annual Technical Conference USENIX Association

References
[1] ALISTARH, D., GRUBIC, D., LI, J., TOMIOKA, R., AND VOJNOVIC,

M. Qsgd: Communication-efficient sgd via gradient quantization and
encoding. In NeurIPS (2017).

[2] ANDERSON, A. G., AND BERG, C. P. The high-dimensional geometry
of binary neural networks. In ICLR (2018).

[3] Aws deep learning ami. https://aws.amazon.com/
machine-learning/amis/, 2019.

[4] BANNER, R., HUBARA, I., HOFFER, E., AND SOUDRY, D. Scalable
methods for 8-bit training of neural networks. In NeurIPS (2018).

[5] BANNER, R., NAHSHAN, Y., AND SOUDRY, D. Post training 4-
bit quantization of convolutional networks for rapid-deployment. In
NeurIPS (2019).

[6] BARKER, E., BARKER, W., BURR, W., POLK, W., AND SMID, M.
Recommendation for key management part 1: General (revision 3).
NIST special publication 800, 57 (2012), 1–147.

[7] BASKIN, C., SCHWARTZ, E., ZHELTONOZHSKII, E., LISS, N.,
GIRYES, R., BRONSTEIN, A. M., AND MENDELSON, A. Uniq: Uni-
form noise injection for non-uniform quantization of neural networks.
arXiv preprint arXiv:1804.10969 (2018).

[8] BERNSTEIN, J., WANG, Y.-X., AZIZZADENESHELI, K., AND
ANANDKUMAR, A. signsgd: Compressed optimisation for non-convex
problems. arXiv preprint arXiv:1802.04434 (2018).

[9] BONAWITZ, K., IVANOV, V., KREUTER, B., MARCEDONE, A.,
MCMAHAN, H. B., PATEL, S., RAMAGE, D., SEGAL, A., AND SETH,
K. Practical secure aggregation for privacy-preserving machine learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (2017), ACM, pp. 1175–1191.

[10] BOTTOU, L., AND BOUSQUET, O. The tradeoffs of large scale learning.
In NeurIPS (2008).

[11] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (leveled)
fully homomorphic encryption without bootstrapping. ACM Transac-
tions on Computation Theory (TOCT) 6, 3 (2014), 1–36.

[12] California Consumer Privacy Act (CCPA). https://oag.ca.gov/
privacy/ccpa, 2018.

[13] CHENG, K., FAN, T., JIN, Y., LIU, Y., CHEN, T., AND YANG, Q.
Secureboost: A lossless federated learning framework. arXiv preprint
arXiv:1901.08755 (2019).

[14] COURBARIAUX, M., BENGIO, Y., AND DAVID, J.-P. Training deep
neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

[15] DATA61, C. Python paillier library. https://github.com/data61/
python-paillier, 2013.

[16] DU, W., HAN, Y. S., AND CHEN, S. Privacy-preserving multivariate
statistical analysis: Linear regression and classification. In Proceedings
of the 2004 SIAM international conference on data mining (2004),
SIAM, pp. 222–233.

[17] Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation).
https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016.

[18] FATE (Federated AI Technology Enabler). https://github.com/
FederatedAI/FATE, 2019.

[19] GE, T., AND ZDONIK, S. Answering aggregation queries in a secure
system model. In VLDB (2007).

[20] Tensorflow Federated. https://www.tensorflow.org/federated,
2019.

[21] GUPTA, S., AGRAWAL, A., GOPALAKRISHNAN, K., AND
NARAYANAN, P. Deep learning with limited numerical preci-
sion. In ICML (2015).

[22] HADDADPOUR, F., KAMANI, M. M., MAHDAVI, M., AND CADAMBE,
V. Local sgd with periodic averaging: Tighter analysis and adaptive
synchronization. In NeurIPS (2019).

[23] HARDY, S., HENECKA, W., IVEY-LAW, H., NOCK, R., PATRINI, G.,
SMITH, G., AND THORNE, B. Private federated learning on verti-
cally partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:1711.10677 (2017).

[24] HO, Q., CIPAR, J., CUI, H., LEE, S., KIM, J. K., GIBBONS, P. B.,
GIBSON, G. A., GANGER, G., AND XING, E. P. More effective
distributed ml via a stale synchronous parallel parameter server. In
NeurIPS (2013).

[25] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[26] JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASAN, A.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th {USENIX} Security Symposium ({USENIX} Security
18) (2018), pp. 1651–1669.

[27] KAIROUZ, P., MCMAHAN, H. B., AVENT, B., BELLET, A., BENNIS,
M., BHAGOJI, A. N., BONAWITZ, K., CHARLES, Z., CORMODE, G.,
CUMMINGS, R., ET AL. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977 (2019).

[28] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[29] KOLOSKOVA, A., STICH, S. U., AND JAGGI, M. Decentralized
stochastic optimization and gossip algorithms with compressed com-
munication. In ICML (2019).

[30] KONEČNỲ, J., MCMAHAN, H. B., RAMAGE, D., AND RICHTÁRIK,
P. Federated optimization: Distributed machine learning for on-device
intelligence. arXiv preprint arXiv:1610.02527 (2016).

[31] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of
features from tiny images. Tech. rep., Citeseer, 2009.

[32] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet
classification with deep convolutional neural networks. In NeurIPS
(2012).

[33] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A.,
JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND SU, B.-Y. Scaling
distributed machine learning with the parameter server. In OSDI (2014),
USENIX.

[34] LIAN, X., HUANG, Y., LI, Y., AND LIU, J. Asynchronous parallel
stochastic gradient for nonconvex optimization. In NeurIPS (2015).

[35] LIN, T., STICH, S. U., PATEL, K. K., AND JAGGI, M. Don’t use large
mini-batches, use local sgd. arXiv preprint arXiv:1808.07217 (2018).

[36] LIN, Y., HAN, S., MAO, H., WANG, Y., AND DALLY, W. J. Deep
gradient compression: Reducing the communication bandwidth for
distributed training. arXiv preprint arXiv:1712.01887 (2017).

[37] LIU, C., CHAKRABORTY, S., AND VERMA, D. Secure model fusion
for distributed learning using partial homomorphic encryption. In
Policy-Based Autonomic Data Governance. Springer, 2019, pp. 154–
179.

[38] LIU, Y., CHEN, T., AND YANG, Q. Secure federated transfer learning.
arXiv preprint arXiv:1812.03337 (2018).

[39] MCMAHAN, H. B., MOORE, E., RAMAGE, D., HAMPSON, S., ET AL.
Communication-efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629 (2016).

[40] MCMAHAN, H. B., MOORE, E., RAMAGE, D., AND Y ARCAS, B. A.
Federated learning of deep networks using model averaging. ArXiv
abs/1602.05629 (2016).

[41] MIGACZ, S. 8-bit inference with tensorrt. In GPU technology confer-
ence (2017), vol. 2, p. 7.

USENIX Association 2020 USENIX Annual Technical Conference 505

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://www.tensorflow.org/federated

[42] MOHASSEL, P., AND RINDAL, P. Aby 3: a mixed protocol frame-
work for machine learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (2018), ACM,
pp. 35–52.

[43] MOHASSEL, P., AND ZHANG, Y. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy (SP) (2017), IEEE, pp. 19–38.

[44] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., JOYE, M.,
BONEH, D., AND TAFT, N. Privacy-preserving ridge regression on
hundreds of millions of records. In 2013 IEEE Symposium on Security
and Privacy (2013), IEEE, pp. 334–348.

[45] Cybersecurity Law of the People’s Republic of China. http://www.
lawinfochina.com/display.aspx?id=22826&lib=law, 2017.

[46] PAILLIER, P. Public-key cryptosystems based on composite degree
residuosity classes. In International Conference on the Theory and
Applications of Cryptographic Techniques (1999), Springer, pp. 223–
238.

[47] PATHAK, M., RANE, S., AND RAJ, B. Multiparty differential privacy
via aggregation of locally trained classifiers. In NeurIPS (2010).

[48] PHONG, L. T., AONO, Y., HAYASHI, T., WANG, L., AND MORIAI, S.
Privacy-preserving deep learning via additively homomorphic encryp-
tion. IEEE Transactions on Information Forensics and Security 13, 5
(2018), 1333–1345.

[49] RYFFEL, T., TRASK, A., DAHL, M., WAGNER, B., MANCUSO, J.,
RUECKERT, D., AND PASSERAT-PALMBACH, J. A generic framework
for privacy preserving deep learning. arXiv preprint arXiv:1811.04017
(2018).

[50] SAN, I., AT, N., YAKUT, I., AND POLAT, H. Efficient paillier crypto-
processor for privacy-preserving data mining. Security and communi-
cation networks 9, 11 (2016), 1535–1546.

[51] Microsoft SEAL (release 3.5). https://github.com/Microsoft/
SEAL, Apr. 2020. Microsoft Research, Redmond, WA.

[52] SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security (2015), ACM, pp. 1310–1321.

[53] SOUDRY, D., HUBARA, I., AND MEIR, R. Expectation backprop-
agation: Parameter-free training of multilayer neural networks with
continuous or discrete weights. In NeurIPS (2014).

[54] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I.,
AND SALAKHUTDINOV, R. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research
15, 1 (2014), 1929–1958.

[55] Text generation with an rnn. https://www.tensorflow.org/
tutorials/text/text_generation, 2019.

[56] WANG, J., AND JOSHI, G. Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd. arXiv
preprint arXiv:1810.08313 (2018).

[57] WeBank. https://www.webank.com/en/, 2019.

[58] WEN, W., XU, C., YAN, F., WU, C., WANG, Y., CHEN, Y., AND LI,
H. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In NeurIPS (2017).

[59] WILSON, A. C., ROELOFS, R., STERN, M., SREBRO, N., AND
RECHT, B. The marginal value of adaptive gradient methods in ma-
chine learning. In NeurIPS (2017), pp. 4148–4158.

[60] XIAO, H., RASUL, K., AND VOLLGRAF, R. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms, 2017.

[61] YANG, Q., LIU, Y., CHEN, T., AND TONG, Y. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 10, 2 (2019), 12.

[62] ZHANG, C., TIAN, H., WANG, W., AND YAN, F. Stay fresh: Specula-
tive synchronization for fast distributed machine learning. In ICDCS
(2018), IEEE.

[63] ZHOU, S., WU, Y., NI, Z., ZHOU, X., WEN, H., AND ZOU, Y. Dorefa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

506 2020 USENIX Annual Technical Conference USENIX Association

http://www.lawinfochina.com/display.aspx?id=22826&lib=law
http://www.lawinfochina.com/display.aspx?id=22826&lib=law
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.tensorflow.org/tutorials/text/text_generation
https://www.tensorflow.org/tutorials/text/text_generation
https://www.webank.com/en/

	Introduction
	Background and Related Work
	Cross-Silo Federated Learning
	Privacy Solutions in Federated Learning
	Cross-Silo FL Platform with HE

	Characterizing Performance Bottlenecks
	Characterization Results
	Potential Solutions and Their Inefficiency

	BatchCrypt
	Why is HE Batching for FL a Problem?
	HE Batching for Gradients
	dACIQ: Analytical Clipping for FL
	BatchCrypt: Putting It All Together

	Implementation
	Evaluation
	Methodology
	Impact of BatchCrypt's Quantization
	Effectiveness of BatchCrypt
	Batching Efficiency
	Cost Benefits

	Discussion
	Concluding Remark

