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Abstract—With most of today’s systems being highly dis-
tributed, from data centers to cloud and storage clusters, there is
a prevalent need for robust methodologies for work consolidation
to improve load balancing but also to optimize non-traditional
performance measures. Such alternative measures may include
power savings, e.g., it may be desirable to shut down a lowly
utilized node by moving some or all of its work to another node.
In this paper, we present a methodology for distributed work
consolidation that keeps track of the workload in the various
nodes of the cluster and makes intelligent decisions on how
much work to move from a sender node to a receiver node
in order to minimally “affect” the performance of the receiver
node or alternatively limit any performance degradation due to
consolidation in a controlled way. The proposed methodology is
based on continuously monitoring the workload on sender and
receiver nodes, collecting lightweight statistics in the form of
histograms of coarse granularity, and deciding when and how to
initiate the work transfer. Extensive experimentation using trace-
driven simulation confirms the robustness of the methodology.

I. INTRODUCTION

The volume of digitally stored data has grown rapidly and
continues to grow with a tremendous pace with the expectation
of reaching a total of 35 zetabytes by 2020 [1]. Data centers
host most of these data and efficient operation requires meeting
power consumption, performance, data reliability, availability,
and integrity targets that may change during the lifetime of
the system. As workload demands and system targets vary,
there is a need to make data server resources available on
demand in a robust and transparent way. For example, if the
aim is to consume as little power as possible while maintaining
specific service level objectives, when work intensity decreases
it is natural to aim at consolidating work into a smaller set of
available resources in order to allow the rest to be taken off-
line such that power consumption is reduced [2], [3].

Storage is one of the main components of a data center and
it consumes about 20 to 30 percent of the total power, making
work consolidation in storage systems important and relevant.
Since data is not all accessed simultaneously, it is common
to have an underutilized or even idle storage system [4], [5],
[6], making the storage component a promising one for power
savings. To this end, there have been efforts in developing
techniques that exploit idleness in a storage system and its
devices by taking off-line portions of it without impacting
data availability or violating performance targets [7], [8], [9],
[10]. Even more, there have been efforts that aim at increasing
idleness in selective storage devices or systems by redirecting

portions of the workload [11], [12] or the entire working set
from a set of storage devices to another [13] in order to open
more opportunities for power savings.

Consolidation of a storage workload to a limited set of
devices is undoubtedly beneficial for power consumption but
may come at a dear cost: performance of the storage system
may suffer. Striking a balance between consistently meeting
service level objectives and power savings is difficult given
that future workload demands are seldom known a priori.
Judicious selection of which resources to consolidate and on
which nodes to initiate power savings is not an easy task. Using
simplistic measures such as average node utilization to guide
consolidation can result in lamentable system operation, as we
show later in this paper. The question now becomes, where to
shift data, how much data to shift, and from which senders to
which receivers.

In this paper, we present a solution to the above problem by
using a quantitative framework that estimates (i.e., predicts)
the performance of consolidated storage workloads in the
available nodes in the cluster. The predicted consolidated node
performance is paired with projected power savings at each
node [7] to enable a cluster-wide identification of the nodes
that if put off-line can bring the highest power savings, while
performance of the storage devices that serve their redirected
workload does not degrade beyond a pre-defined response time
target.

By pairing the framework that predicts performance of a
storage node serving consolidated workload with the frame-
work that estimates power saving capabilities in a storage
node, we enable the storage system to determine whether
consolidation can be effective. The framework is based on
data monitoring at the device level that is routinely done on
storage systems and its estimations are lightweight, i.e., they
are based on simple histogram scanning that is used as input
to simple equations. A critical component is the use of a look-
up table that couples arrival intensities and service demands
on each node with average expected service time. This look-
up table is continuously changing as workload evolves, by
continuously “learning” how performance depends on the
changing workload. Finally, the framework can be deployed
on every node, making this approach highly distributed, thus
highly scalable.

This paper is organized as follows. In Section II we give
an overview of the framework that estimates power saving
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capabilities in a storage device such as a disk drive. In
Section III we develop the methodology that learns the de-
pendencies between the arrival, service, and response times
in a storage device. Section IV presents an extensive set of
trace-driven experiments that demonstrates the robustness of
the framework. We conclude and discuss future directions in
Section VI.

II. BACKGROUND

In this section, we give an overview of a methodology that
demonstrates how a storage device such as the disk drive can
identify its own capabilities for power savings [7] as well as
how this methodology is used to define how to increase power
saving capabilities via workload shaping [11], i.e., redirecting
part of workload (or the entire workload) to other nodes in the
cluster.

The above methodologies take into consideration the fact
that power saving modes in disk drives impact performance.
Performance degrades because if a request comes and finds
the disk in a power saving mode, it needs to wait for the disk
to come back up, which may take up to 20 seconds. This
waiting time is several orders of magnitude higher than the
average service time in a disk drive. As a result, for high-
end systems with stringent performance targets, if scheduled
naively, power saving modes may cause a significant drop in
performance.

A. Estimating Power Savings Capabilities in Disk Drives

In [7], an analytic framework is proposed to estimate the
capabilities for power savings in a disk drive. The framework
uses the histogram of idle times to capture the important
stochastic characteristics of idleness in the device. The his-
togram is used to probabilistically assess the occurrence of
long idle intervals that can be used to schedule power saving
modes in the drive, i.e., slow down the disk or shut it off
completely.

Deciding power saving capabilities based on the histogram
of idle times for the current workload makes this framework
versatile, because it eliminates the need to monitor and make
decisions based on device utilization or request arrivals, whose
relations to power savings are more complex to capture.
Furthermore, the framework incorporates the relation between
workload characteristics (such as sequentiality or randomness)
and the impact of the periods of power saving on perfor-
mance via a single penalty parameter. Such abstraction of
the workload parameters results in an analytic framework that
can estimate the power saving capabilities (in portion of time
in power savings) for a range of power saving modes and
penalties on system performance.

The framework treats power savings as a low priority work
that takes place during idle intervals. To this end, it takes as
input the histogram of idle times, the penalty during power
savings, the response time without savings and an acceptable
performance degradation. The output of the framework is
a “schedule” that defines when and for how long to put
the disk in power savings. The framework calculations are

based on scans of the histogram of idle times, which may
have several hundred entries only. As a result, scanning is
nearly instantaneous making the framework lightweight and
compact. An important feature in the framework is that it
allows the storage node itself to sort out several power saving
options (resulting from combinations of power saving modes
and degradation on performance) internally and present to
the cluster management module the most effective one. To
summarize, the evaluation is lightweight and with minimal
overhead which is mostly related to monitoring rather than
computation.

B. Workload Shaping for Power Savings

A way to enhance power savings in a single storage device
(or a set of devices) is to increase the length of idle intervals.
This can be done by identifying portions of the workload that
can be redirected somewhere else in the system. In this paper,
we refer to this activity as workload shaping [11], [12], [13],
[14]. Workload shaping may require to copy some of the data
from the storage device that are to be placed in the power
saving mode at the new destination node [11], [13]. However,
the main feature in all these techniques is that the storage
devices are consolidated and the ones that remain active take
over the load of the storage devices that are to be placed in a
low power mode (or even off-line).

These methods define clearly what part of the workload
to redirect out of a storage device. [12] proposes to redirect
the entire WRITE traffic arriving at the storage device. [13]
proposes to redirect the entire active working set. [11] pro-
poses to remove the most frequent busy periods (statistically
or according to a probabilistic weighting scheme).

We stress that if the system monitors the idle periods and
the busy periods in a system, then it is possible to esti-
mate the power saving capabilities of these workload shaping
techniques via the framework in [7]. This requires that the
histogram of idle times is updated to reflect the changes in
the workload, and this can be done by monitoring the requests
within busy periods [11]. For example, for the workload
shaping in [12], the histogram of idle times can be updated to
reflect the removal of WRITEs. In general, the capabilities of
these workload shaping techniques to improve power savings
can be quantified [7] and for a given workload, the storage
device can determine which workload shaping technique to
use and how much load it can off-load to other nodes.

Once the workload to be redirected is removed, the next
question is to determine the receiver of this extra load.
Consolidation of the workload over a smaller set of storage
devices is effective only if the cluster continues to perform
without violating performance targets in the system. This paper
focuses on this problem and in the following sections we
present a method that predicts performance, measured via the
response times, in a storage device that serves consolidated
work.
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III. PERFORMANCE DEGRADATION ESTIMATION ON A

STORAGE DEVICE DUE TO CONSOLIDATION

Here, we present a quantitative framework that enables a
storage system to intelligently identify which storage devices
should be put into power saving modes and which storage
devices should serve the consolidated workload such that
the performance target is not violated while power savings
are the highest possible. In this framework, we assume the
performance target is the response time which, on the average,
should not be higher than a predefined limit.

Our goal is to construct a lightweight and accurate frame-
work that predicts the response time in a potential receiver
storage device knowing

• its workload in terms of average arrival rate, average
service rate, and average response time;

• the portion of the load in the sender device that may
potentially go to the receiver device and its characteristics
such as average arrival rate and average service rate.

We expect average workload statistics such as arrival, service,
and response time to be available in the logs that monitor
the storage system operation. The workload shaping input
is expected to be available from monitoring that is used to
facilitate the various workload shaping techniques such as
those introduced in Section II.

For the framework to reach a consolidation decision, the
following two steps are required. First, estimate the arrival
and service rate of the consolidated workload at the receiver
storage device. Second, predict the response time of the
consolidated workload at the receiver end.

A. Estimating arrival and service rates of the consolidated
workloads

In order to be able to predict the arrival and service rates
at the consolidated storage node, we assume that it is known
the arrival rate λs and the service rate μs of the portion of
the workload from the sender node that will be consolidated
at the receiver storage node. It is also assumed that the arrival
rate λr and the service rate μr at the receiver storage node
are known. The characteristics of the merged workload, i.e.,
its arrival rate and its service rate, if a certain pair of nodes is
selected for consolidation, is

λc = λs + λr (1)

and

μc =
λr

λs + λr

μr +
λs

λs + λr

(ρ · μs) (2)

where λc and μc are the arrival and service rate after con-
solidation, while ρ is a correction factor that accounts for the
change in the service rate from the sender storage node to the
receiver storage node. The parameter ρ is meant to capture
only the effect that differences on disk positioning time has
on service time.

Estimating average arrival rate at the receiver storage node,
is less complex than estimation of the service rate, given

that the load is known on both sender and receiver nodes.
The average service rate is more complex, particularly since
in storage devices the service process depends highly on
workload characteristics (such as randomness and the mix of
READs and WRITEs) and the physical characteristics of the
device (e.g., rotation speed for a disk drive). The parameter
ρ is used to capture the effect of the physical characteristics
of the device. As we introduce a new set of data into the
active data set on a disk drive, it is possible to break any
existing characteristics in the workload such as sequentiality.
This can impact the expected service rate. However, if the
sender load is expected to be much smaller than the current
load at the receiver, then the workload characteristics of the
receiver (before consolidation) should continue to dominate
the workload. In addition, workload characteristics of the
receiver storage node may be preserved if the placement of the
new data is done such that the locality of receiver’s working
set (if exists) is preserved. This is possible especially since in
many cases the amount of data to be moved may be small,
perhaps only a few GBytes in size. Placement choices and
how they can change the disk layout are outside the scope of
this paper.

B. Predicting response time of the consolidated workload

In storage devices, it is not straightforward to determine
the response time for a workload, given its arrival and service
rates, because of all the idiosyncrasies that determine the
device service rate, such as workload access patterns and disk
characteristics, as well as the complex features of the arrival
process, such as variability and burstiness. Our goal is to
have an approximate, yet accurate prediction of the response
time in the receiver storage device under the consolidated
workload with parameters defined in Subsection III-A. For
this, we propose to predict the response time, by “learning”
the response time patterns over time for the storage nodes
in the cluster. The goal is for individual storage devices to
monitor and record the observed response times for pairs of
arrival and service rates.

We propose to construct on-line (i.e., as the system operates)
look-up tables that contain tuples of observed average arrival
rate, average service time, and average response time over
periods of time. The averaging can be at different granularities
from 15 minutes intervals to a few hours. As the system
operates, the goal is to update the look-up table at each
storage node by adding new tuples that have not been there
before, but also by avoiding repetition, such that the size of
the table remains relative small. We show in the evaluation
section that a look-up table of several hundred entries provides
good prediction accuracy and is small enough to facilitate fast
searching through it. Constructing the look-up table is part of
the “workload learning” process in our framework.

The expectation is that the workload that the receiver storage
node sees as a result of consolidation has been, at some point
in time, already observed and recorded and can be used in the
future for approximate, yet fairly accurate, predictions. As a
result, as the estimation of the consolidated arrival rate and
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service time is done using Eqs. (1) and (2), the look-up table
at the receiver is searched and the closest tuple that matches
both arrival and service rates is selected as the tuple whose
response time value is chosen as the approximate prediction
of the performance at the receiver storage node.

An exact match of the estimated arrival and service pair
with the tuples available in the look-up table is not expected.
However, while constructing the look-up table, the density of
the tuples can be controlled. In the look-up tables that we have
constructed, we have followed the rules that the differences in
the arrival and service rates of the neighboring tuples should
be at 10%. While this condition can easily be satisfied for the
common cases and low to medium arrival and service rates,
the rare events of high arrival rates or very slow service rates
may be more difficult to obtain. For such cases, there is a
possibility to run off-line benchmarks to populate the look-up
tables with rare events. Here, we focus on building the look-
up tables on-line. How to populate the tables off-line is not
considered in this paper.

The prediction of the response time is only an approxima-
tion but as we show in the evaluation section, it serves as
an excellent way to quantify performance in a consolidated
cluster and select the right pair or pairs of nodes that should
consolidate their workload for an overall reduction in the
number of active storage devices. We stress again that the
average arrival and service rate here is mainly served as the
“index” to find the response times measured in the real system
environment in the look-up table. The performance effects of
workload characteristics such as sequentiality and burstiness
are already captured in the look-up tables.

One source of error in our predictions laid out in Sec-
tions III-A and III-B, is associated with the fact that we
expect the arrival and service rates observed for the past
several hours to hold for the next several hours. While this
is expected to be the case in clusters where changes in
the workload happen gradually, there may be cases when
the short past is very different from the close future. The
accuracy of the framework presented here would naturally
suffer in cases of abrupt and unexpected temporal workload
changes. There are methods that can complement our workload
prediction framework to account for the abrupt changes. A
feedback-loop monitoring could be used to check at small
time intervals (every several minutes) if the observed average
arrival rate and service rate are close (up to a threshold) to
the observations of previous monitoring period. If there is
violation, then the estimations should be recalculated around
the new observations. The threshold should be large enough
to avoid unnecessary oscillations. Another approach is to
detect at coarse granularity (i.e., several hours) any obvious
regular workload changes, such as the ones that may be
associated with daily and weekly business cycles. If such
cycles are learned in advance, then they can be predicted and
the corresponding actions taken to ensure that the decisions
are made on accurate current workload characteristics. There
are various aspects to be evaluated and analyzed before such
methods can be incorporated into our prediction framework.

Mean Mean C.V. C.V.
Trace Util Arrival Service Arrival Service R/W

(%) Rate Rate Rate Rate Ratio
CODE1 5.6 0.0089 0.1596 1.56 0.22 5.48
CODE2 0.7 0.0013 0.1859 1.34 0.06 1.39
FILE1 1.7 0.0033 0.1938 1.07 0.27 8.28
FILE2 0.7 0.0011 0.1596 2.93 0.20 3.63

TABLE I
GENERAL TRACE CHARACTERISTICS.

They are not discussed in this paper and are left for future
work. Here we work under the assumption that the short-
term past predicts well the short-term future (i.e., the error
associated with the differences in the workload between the
past and the future is acceptable).

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the consol-
idation framework having as target to maximize power saving
capabilities while controlling performance degradation after
the consolidation of resources. We first describe the traces
that we use to assess the effectiveness of the consolidation
framework. The accuracy of our predictions and estimations
are validated by trace-driven simulation. Then, we provide
detailed workload characterization that supports the assump-
tions and decisions used in the development of the estimation
and prediction components of the framework. Finally, we use
the prediction framework, to decide which storage nodes to
consolidate in a cluster. We focus here on a small cluster of
four nodes only, to facilitate a clear presentation since the
results we present are for each node in the cluster.

A. Traces and Simulation environment

The validation of the proposed consolidation framework
is done via trace-driven analysis and simulation. We use a
set of enterprise traces measured at the disk level from an
application development server (“CODE”) and a file server
(“FILE”) [5]. In each of the measured storage systems, there
are tens of storage devices (disks) organized in several RAID
groups. The traces do not provide information on the RAID
groups. However we have observed that disks of small sets
have identical workloads, which allows us to infer with high
confidence that those disks belong on the same RAID groups.
Although we could have used representative disks of each
RAID group, to simplify presentation, we have selected traces
that correspond to only 4 representative RAID groups, two
from each storage subsystem. The total duration of each trace
is twelve hours. Each trace record consists of: the arrival time,
the departure time, the type of the request (i.e., read or write),
the request length in bytes, and the location on the disk. This
information allows to calculate exactly a rich set of metrics
that we can use in the evaluation process of our framework.
In Table I, we show a subset of these metrics of interest.

The data in Table I show that the disks are clearly un-
derutilized, implying that here are opportunities to temporary
consolidate data and obtain power savings. Similarly, the low
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arrival rates and relatively much higher service rates indicate
that temporary consolidation of work in a few disks only may
be effective without taking a toll on system performance.

The consolidation framework is based on the assumption
that short-term past predicts well the short-term future. In the
twelve hour traces, we use the first 6 hours (“short-term” past)
to collect statistics with regard to arrival, service, and response
time, as well as idleness, and apply the learning on the second
6 hours (“short-term” future) of the trace.

In Figure 1, we plot for each of the four traces, the arrival
rate and the service rate for 5 minute intervals as a function of
time. In each of the plots we separate with a vertical dashed
line the learning period (the first 6 hours) from the testing
period (the next 6 hours). The main observation is that both
arrival and service rate are fairly stationary, as shown by both
the average and the coefficient of variation of the measured
metrics.

Figure 1 confirms that the service rate exhibits almost no
change throughout the duration of the traces. This observation
supports the argument that the workload characteristics for
each of the traces remain fairly stable, resulting in an almost
deterministic service process.

The arrival rate in each of the traces is not as deterministic
as the service rate (i.e., its coefficient of variation is between
1 and 3) but the average, that is used in our predictive
framework, changes only slightly. The highest change we
notice is for the FILE2 trace, for which, as we show later,
also the prediction errors are higher.

Another interesting observation in Figure 1 is that often
higher arrival rates (more work) correspond to higher service
rate (i.e., faster service). This is attributed to the specifics
and optimizations of disk scheduling that always aims at
minimizing seeks in drives. For our specific target of consol-
idated workloads, only slightly increasing the load at some
receiver storage node may actually result in lower service
times because of optimization of the disk service process.
Consequently, response times are expected to suffer minimally
from the additional load.

In a cluster, there is a high chance that the disks or storage
devices in general can be heterogeneous. This is the reason
why in Eq. (2), we introduce the correcting factor ρ, that on
the average captures the differences in physical capabilities
(such as rotation speed) between different disks. While, there
may be ways to determine ρ off-line, here we estimate ρ by
analyzing the service rates for requests of the same or similar
sizes. We group requests based on their sizes, in a effort to
separate the random portion of the workload (short requests)
from the sequential portion of the workload (long requests),
because the differences in service rates can mostly be observed
in the random rather than sequential portion of the workload.

In our four nodes, the type of disk and rotation speed
are not known. In addition, we do not know the sequential-
ity/randomness of the workloads. We do know that both CODE
traces are from the same storage system as are both FILE
traces. The first inclination is to set ρ = 1 for the pair of
CODE traces and the pair of FILE traces. Figure 2 left shows

for the FILE1 and FILE2 traces the service rates (measured
by MBytes/ms) as a function of the request size for each IO
request. In order to eliminate the effect of seek optimization
for queued requests on the service times, the plots show service
rates only for the requests within a busy period in our traces.

Clearly, because of sequentiality, service rates increase as
request sizes increase. The service rates of short IOs (left part
of the plot) are almost indistinguishable between the two disks
(points overlap with each other in the figure). Even the rates
of large IOs are also similar. This suggests that both short
and long IOs behave similarly on both FILE1 and FILE2,
suggesting the same “random” (and “sequential”) behavior in
the two traces. This justifies our choice of ρ = 1. The right
graph of Figure 2 plots the same metrics but now for CODE1
and FILE1. The behavior captured by the right graph is very
similar as the behavior of the left graph in Figure 2, suggesting
the same “random” behavior across FILE and CODE traces
too,1 The plots in Figure 2 justify setting ρ = 1 in Eq. (2)
even when evaluating pairings of FILE and CODE traces. This
process for estimating ρ can be automated by allowing each
storage node to maintain together with other metrics a small
histogram of requests sizes and the service rates observed for
each of them.

B. Response Time Prediction

We predict performance (measured via average response
time) on the device that serves the consolidated workload using
a look-up table, which records the observed response time for a
pair of observed arrival and service rate. The prediction of the
arrival and service rate at the receiver node is done using Eqs.
(1) and (2). For each node, we store the average arrival rate
(observed in the short-past which will serve as the prediction
of its near-future arrival rate). In the experiments presented
here “short-past” and “near-future” are intervals of 6 hours
each, that correspond to the first and the second part of the
trace in Figure 1.

An additional information needed is the amount of work
to be shifted to the receiver server. We use the workload
shaping techniques outlined in [11] that also calculate which
requests are to be moved provided that the intermediate buffer
(i.e., the total data to be transferred) is equal to 1 GB, 5
GB, or 10 GB. Note that the size of these buffer sizes is
relatively small. Moving just a small amount of data rather
than the entire working set (e.g., as proposed in [13]) can
be very beneficial for consolidation purposes. The data that
we move is based on workload characterization of the most
frequently accessed blocks or groups of blocks [11]. As a
result this intelligent data copy may relieve the disk from the
most highly accessed blocks and increase the idleness used
for power savings considerably. The small amount of data
movement can also relieve the concern of power consumption
during copying and make the data placement problem easier.
In addition, placing only a small amount on data on the

1We have plotted the service rates as a function of request size for all
combinations of FILE and CODE traces. The behavior is very similar to that
reported in Figure 2 and is not shown here in the interest of space.

330330330

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:31:24 UTC from IEEE Xplore.  Restrictions apply. 



0 200 400 600 800

10
0

10
−1

10
−2

10
−3

10
−4

Time (mins)

R
at

e

Workload Characterization − CODE1
Window Size = 5 mins

0 200 400 600 800

10
0

10
−1

10
−2

10
−3

10
−4

Time (mins)

R
at

e

Workload Characterization − CODE2
Window Size = 5 mins

0 200 400 600 800

10
0

10
−1

10
−2

10
−3

10
−4

Time (mins)

R
at

e

Workload Characterization − FILE1
Window Size = 5 mins

0 200 400 600 800

10
0

10
−1

10
−2

10
−3

10
−4

Time (mins)

R
at

e

Workload Characterization − FILE2
Window Size = 5 mins

 

 

λ μ Cumu. λ Cumu. μ

CV of λ =1.34
CV of μ = 0.06

CV of λ =1.07
CV of μ = 0.27

CV of λ =2.93
CV of μ = 0.20

CV of λ =1.56
CV of μ = 0.22

μ

λ

λ

μ

Cumu. μ

Cumu. λ

μ Cumu. μ

Cumu. μ

λ

λ

μ

Cumu. λ

Cumu. λ

Cumu. μ

Cumu. λ
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Fig. 2. Identifying effects of physical differences in disks in the service process.

receiver end minimizes the odds of dramatically increasing
the service process due to the additional work. Note here
the redirected workload would have to be served someplace
anyway, so by making another disk serve it does not increase
the overall power consumption. Figure 3 illustrates the IO load
to be redirected from the sender node to the receiver node
for two workload shaping techniques: Busy Period Offloading

(BP-Offload.) and Probalistic Offloading (Prob.-Offload.) [11].
The BP-Offload. offloads the most frequently accessed busy
periods, i.e., groups of blocks between two idle intervals, until
the predefined buffer is filled. The Prob.-Offload. removes a
number of busy periods based on the correlation of the length
of idle intervals succeeding the busy period (e.g., a long idle
interval following another long one), and aims at concatenating
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long idle intervals. The figure clearly illustrates that irrespec-
tive of the sender or the workload shaping technique used, the
redirected workload is only a fraction of the overall workload.
Therefore, the overall load at the receiver may only increase a
little. Consequently the expectation is that the performance at
the consolidated nodes will degrade only slightly, if it degrades
at all.
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Fig. 3. IO load to be redirected from the node that would be set off-line to
the node that would remain active.

An integral part of the workload prediction is to approxi-
mate the response time at the receiver storage node after work
is consolidated. We achieve this by building look-up tables
that hold observations of different pairs of arrival and service
rates and the corresponding response times, see Section III.
The look-up tables are constructed from the traces of Table I.
Since the length of our traces is relatively limited, then we
used varied observation lengths from 15 minutes to one hour
that result in look-up tables of 512 entries each. Here, because
the physical capabilities of all storage devices are very similar
(see Figure 2), we merge the tables constructed by all traces
into a single table.

Selecting the best matching tuple in the look-up table
is an integral part of our prediction. Naturally, all possible
arrival/service exact values are not going to be found, so
we approximate by exploring values that are within 10% of
the anticipated arrival and service rates. While we expect the
tables to be dense enough to allow for 10% match, in case
no matching pair is found, we rescan the look-up table with
5% higher difference in matching. Among the set of pairs that
meets these criteria, we select the one that would best continue
to maintain the “trend” of the observed response time. For
example, if the current response time in both storage nodes
under consideration are higher than the one predicted from
the look-up table, then that prediction is not possible. This
is supported by our assumptions that the service rates will
change only based on the differentiator ρ and consequently the
response time should be at the minimum not better than both
of them. If there are still multiple tuples that have matched
our criteria, then we go for the one that minimizes the sum of

the differences between the observed rates and the anticipated
ones.

The response time estimations for all cases under consid-
eration are given in Figures 4 and 5. Note that except for
the bar that is labeled “Original” for each receiver (and that
corresponds to the response time without any consolidated
workload), the graph also shows the framework’s prediction
(labeled “Estimation”) and the actual response time after
consolidation (labeled “Actual”). Recall that all framework
estimations are done using the first half of the trace for all
nodes. The simulation validates the accuracy of the estimations
on the second half of the traces. The consolidated workloads
in the second half of the trace maintain the same service
process as measured in the second half of the trace, since the
assumption is that the small areas that will hold the replicated
data can be placed such that the service process does not
degrade. In most of the cases the framework overestimates
response time, so the chances for wrong suggestions are small.
Overall, the framework is successful in identifying pairs of
sender-receiver nodes given certain power and performance
targets.

C. Consolidation Decisions

In order to make decisions on how to consolidate the storage
devices in a cluster such that the power savings are as high
as possible without violating performance targets, each node
should know “how much power it can save” and “how to
achieve such power savings”. We use the workload shaping
proposed in [11] and the framework proposed in [7] to predict
power saving benefits for a given workload shaping method
as well as the amount of data and the load that needs to
be redirected for that purpose. In Figure 6, we show power
savings for each of the four storage nodes in our cluster for BP-
Offload. and Prob.-Offload. workload shaping schemes. The
figure shows the percentage of time that the sender (disk) can
be placed in low power mode. As with all estimations in this
paper, the workload shaping estimations are done based on
monitored metrics during the first half of the traces that are
applied (i.e., tested) the second half of the traces.

The “Original” bar corresponds to the time that the system
can be in power savings if there is no workload shaping
and only the observed idleness in the storage node is taken
into consideration. The graph also reports savings for the two
workload shaping methods and three different sizes of data to
be moved (i.e., buffers equal to 1, 5, and 10 GBytes). The
content of the buffers (i.e., “what” is going to be replicated
in the storage node) depends on workload shaping. For details
on the shaping methods and their performance, we refer the
reader to [11].

Figure 6 shows that if we assume a cluster of 4 storage
nodes serving the workload of CODE1, CODE2, FILE1 and
FILE2, then CODE1 and CODE2 have the highest potential
for power savings. While for some workloads the buffer size
matters, a medium buffer size of 5 GBytes performs well
overall.
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Fig. 4. Performance measured via response time for BP-Offload..

Replicating the data from each storage node as defined in
Figure 6 somewhere in the cluster and redirecting the IO load
accessing that data to the consolidated node, would result
an additional load for each cluster, see Figure 3. The values
shown in the plots are estimations of how the accesses on the
data replicated to other nodes would look in the near future
based on the observations from the first half of each trace.

Figure 6 suggests the best disks to offload work elsewhere
but does not tell us “where” to move this work. Figure 4 and
Figure 5 give the answers to this question. Here, we present
the estimation and validation of performance degradation (in
terms of average response time at the receiver end) for each of
the possible (sender, receiver) pairs in the storage cluster. Each
plot represents the possible pairings of a sender storage node
and the potential receivers. The inaccuracies in the prediction
of the consolidated response time come from the changes
in the workload between the learning period and the testing
period, as well as the density in the look-up table and their
ability to provide a close enough match to the predicted arrival
and service rate pairs that are used to locate in the look-up
table the expected response time.

The decision on which pairs of storage nodes to choose for
possible consolidation is done based on the storage perfor-
mance target: average response time has to be always below

a certain value. For example, if the receiver must have an
average response time less than 10 ms, then if either BP-
Offload. or Prob.-Offload. are used at the sender, pairing
CODE1 as sender with CODE2 as receiver is a good idea,
ditto for FILE2 as a sender and CODE2 as receiver. However,
once CODE2 receives the load from CODE1 (buffer size of
10 GB), then no other pairings in the cluster would satisfy the
performance condition. With such performance targets, power
savings can be initiated only 40% of time on a single storage
node. Also note that our estimation (and validation) points to
a counterintuitive choice of a node to be put off-line: CODE1
is the one with the highest utilization in the cluster of 5.6 (see
Table I), i.e., an unlikely choice for any scheme that makes
decisions based solely on utilization levels.

If the performance target is response time of 15 ms, then
most pairs can be selected except the following two cases:
FILE2 as a sender and FILE1 as a receiver when sender using
BP-Offload., and FILE1 as a sender and FILE2 as a receiver
when the sender uses either of the offloading methods. Then,
the best choice is to select two nodes to be turned off and
two nodes to serve the consolidated workloads. Since CODE1
and CODE2 provide the highest power savings, then they can
be selected as senders and FILE1 and FILE2 as receivers. For
a 1 GByte buffer (the smallest buffer size), CODE1 achieves
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Fig. 5. Performance measured via response time for Prob.-Offload..

40% time in power saving under Prob.-Offload. while CODE2
achieves almost 40% time in power saving under BP-Offload.,
for a total of two devices providing 40% time in power savings
for each.

Such decisions are not obvious, since all traces have low
utilizations and any pairing of nodes would represent an
opportunity for schemes that make decisions only based on
utilization may result in detrimental savings. For example,
FILE1 does not have high power savings compared to other
traces, and FILE1 would perform poorly if FILE2 offloads its
work on it.

V. RELATED WORK

There is a large body of work on storage and resource
consolidation to improve efficiency in a data center. pClock [3]
is a framework that multiplexes workloads statistically while
achieving performance isolation via scheduling. pClock guar-
antees deadlines for well behaved workloads and latency
requirements are met as long as burst sizes and IO rates do
not exceeded specified limits. HARMONY [15] is a server
and storage virtualization framework based on continuous
monitoring and adjustments to different workload, that aims
at load balancing to improve performance and reduce resource
overloading. In [16] the authors find via experimentation the

time it takes to offload work from servers to Virtual Machines
(VMs) can be given by measurements from a single VM, the
performance degradation due to VM migration is longer than
the migration time, and show that parallel migration leads to
shorter times.

Efforts have been placed to use learning techniques in
predicting workload and performance in storage systems.
In [17], the authors use a relative fitness model to predict
the performance difference between two storage devices so
that the changes of I/O rate can be captured when workload
moves from one device to another. In [18], the author develop
a Profile Hidden Markov Models based methodology by
recognizing primitive operations in a trace, aiming to identify
the application I/O access patterns.

The framework proposed in this paper differs significantly
from previous approaches in that it guarantees low perfor-
mance degradation due to the consolidation and provides
a methodology to estimate beforehand the performance of
receiver after consolidation using minimal information.

VI. CONCLUSIONS AND FUTURE WORK

We propose a method for consolidating workloads in a
storage cluster while meeting performance targets such that the
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Fig. 6. Power Saving by different offloading methods.

transparency to the end users is preserved. Our estimation pro-
vides criteria for the work consolidation between sender and
receiver storage nodes in the cluster that aims at maximizing
metrics such as power savings. At the center of the framework
is a learning method that enables prediction of performance in
presence of workload consolidation. The proposed framework
offers great flexibility in proposing alternatives that can main-
tain performance guarantees that remain below pre-advertised
values.

In the future, we intend to improve on the accuracy of
our method to estimate the receiver response time. We plan
to explore different learning methods to detect any regular
cycles, such as the daily and weekly business cycles, in
order to reduce the impact of abrupt changes in workload
characteristics. For further accuracy, we intend to incorporate
an off-line component into the process of populating the look-
up tables to ensure uniformity over the entire state space,
particularly to capture extreme cases that are only rarely
encountered in average workloads that are expected to run
on the system. We also want to expand the current framework
to cater to other storage features (in addition to consolidation)
such as data replication for availability, reliability, back up,
and virtualization.
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