
SEFEE: Lightweight Storage Error Forecasting in Large-Scale
Enterprise Storage Systems

Amirhessam Yazdi
University of Nevada, Reno

Reno, NV
ayazdi@nevada.unr.edu

Xing Lin
NetApp

Sunnyvale, CA
xing.lin@netapp.com

Lei Yang
University of Nevada, Reno

Reno, NV
leiy@unr.edu

Feng Yan
University of Nevada, Reno

Reno, NV
fyan@unr.edu

Abstract—With the rapid growth in scale and complexity,
today’s enterprise storage systems need to deal with significant
amounts of errors. Existing proactive methods mainly focus on
machine learning techniques trained using SMART measure-
ments. However, such methods are usually expensive to use in
practice and can only be applied to a limited types of errors
with a limited scale. We collected more than 23-million storage
events from 87 deployed NetApp-ONTAP systems managing
14,371 disks for two years and propose a lightweight training-free
storage error forecasting method SEFEE. SEFEE employs Tensor
Decomposition to directly analyze storage error-event logs and
perform online error prediction for all error types in all storage
nodes. SEFEE explores hidden spatio-temporal information that
is deeply embedded in the global scale of storage systems to
achieve record breaking error forecasting accuracy with minimal
prediction overhead.

Index Terms—Storage failures, error prediction, lightweight
forecasting, training-free prediction, tensor decomposition.

I. INTRODUCTION

Enterprise storage system is typically equipped with high-
end storage devices and extra reliability schemes, such as
RAID, high-availability (HA) pairs, and cross datacenter
replication. With the rapid growth in scale and complexity
of today’s enterprise storage systems, there is a significant
increase in the amount and types of storage errors, which poses
significant challenges in storage reliability and availability. Our
study on 2-year storage error-event logs from the NetApp
ONTAP storage systems [1] shows that today’s enterprise
storage systems can generate up to 1,450 events per day per
system and more than 6,000 types of errors ranging from
storage hardware, networking, power supply to software stack.
Some errors can result in immediate system crash, while other
errors are latent but eventually may lead to more severe errors
or even system failures.

To deal with the storage errors, many existing solutions
rely on reactive detection methods, which debug the errors
after these errors have caused issues or failures [2, 3]. One
main drawback of reactive detection methods is that these
methods usually cause poor system availability and are in-
efficient to deploy in large-scale storage systems. To enhance
the reliability and availability of large-scale storage systems,
it is of paramount importance to proactively forecast the
errors so that proper prevention and/or fixing actions can be
taken timely. State-of-the-art proactive solutions forecast the

storage errors based on whether a disk or system is going
to fail soon [4, 5] or the ranked failure probabilities of all
disks in the near future [6, 7]. These solutions usually adopt
machine learning techniques (e.g., Random Forests and Long
Short Term Memory (LSTM) networks) to train a model
using historical data, such as Self-Monitoring, Analysis, and
Reporting Technology (SMART) measurements [4–6, 8–10].
A recent approach [11] combines SMART measurements with
disk performance metrics and location data.

However, state-of-the-art approaches are not suitable for
today’s enterprise storage systems with large amounts of
heterogeneous types of errors, as these approaches can predict
either complete disk failure (i.e., disk operational or not) or
whether some severe errors/failures (such as sector realloca-
tion) occur, not to mention the long training and prediction
time as well as high demand for computational resources.
Due to the high complexity of modern enterprise storage
systems, the upper-layer services may experience latent errors,
performance instability [12] and slow-downs at different levels
(i.e., faulty memory requiring more ECC checks, software
bugs, etc.) before a complete failure [13]. Some of these
latent errors and slow-downs may cause cascading failures on
other components of storage hierarchy and potentially cause
slow-downs on cluster scale, which may lead to a complete
failure. Therefore, predicting only a complete failure or a few
severe error/failure is not sufficient to achieve high system
reliability and availability in today’s storage systems. In this
paper, we aim at developing a lightweight storage forecasting
methodology that can jointly predict all types of errors in all
storage nodes.

To this end, we first collected and analyzed 2-year storage
error-event logs, containing more than 23 million events
from 8 enterprise deployments and 4 workloads from tens
of customers of NetApp ONTAP storage systems. The error-
event logs record errors with different sources (e.g., disk, SSD,
controller, network, degraded power supply unit, RAID-level
checksum errors, etc.), severity levels (i.e., from mild debug
error to severe emergency error), occurrence location, and
time. We summarize our key findings below:
• The error occurrence frequencies for different error types

are diverse. 48% of error types occur less than 10 times per
year and 18% of error types happen only once a year. The
error distribution is imbalanced and time-varying.

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

• Severe error events occur less frequently. The average oc-
currence (i.e., density) of severe error events during a 2-hour
period is 0.18%, which is far less than the average density
(0.77%) and accumulated density (1.1%) of all error types.

• The distribution of error event types follows a power law.
4% of error types account for 80% of all error events, while
96% of error types account for 20% of events.

• There is a complex spatio-temporal inter-dependency be-
tween the location and the type of errors.
The above findings suggest that it is challenging to hand-

craft good features for machine learning based forecast mod-
els and that the sparsity of error events makes the model
training challenging. To address these challenges, we de-
velop a lightweight training-free online forecasting methodol-
ogy, namely SEFEE (Storage Error Forecasting using Tensor
decomposition), which can predict all types of errors as well
as their locations. SEFEE takes storage error-event logs as
streaming input and convert it into a tensor format with three
dimensions: error event type, location, and occurrence time
stamp. SEFEE employs tensor decomposition together with
a contextual information of error severity index to obtain
enhanced tensor factorization matrices, which can capture the
latent correlation structure associated with each dimension.
Based on these factorization matrices, the online storage error
prediction is developed by reconstructing the factorization
matrix associated with the time dimension, where the heteroge-
neous time-of-day effect discovered in the storage error-event
logs is integrated.

We evaluate SEFEE using the real-world traces collected
from NetApp ONTAP storage systems. The results corroborate
that SEFEE is lightweight (i.e., training-free), which takes only
seconds to predict errors on a number of large-scale storage
systems with over 8,600 storage devices. Moreover, SEFEE
outperforms state-of-the-art machine learning based methods
by more than 15% in F1-score and achieves a very balanced
prediction accuracy with 87.2% Recall and Precision of 85.6%.
SEFEE has important business impact as it can proactively
detect around 90% of failures that could result in potential data
loss if they are not handled in a proper and timely fashion.

II. STORAGE TRACE DATA AND CHARACTERIZATION

A. Trace Data Description

We collected the storage error trace from system-level
event logs generated by NetApp ONTAP enterprise storage
systems [1] deployed in production by their customers (e.g.,
Internet companies, manufacturing companies, education in-
stitutions, and financial institutions). The storage trace data
contains the disk drive information (including its physical
location in terms of stackid.shelfid.diskid and logical location
such as RAID group information) and all error events that
the ONTAP system reported. The data was collected in two
batches. In the first batch (i.e., batch-2016), we collected the
trace from 8 storage clusters, each deployed at a different
customer for the year of 2016. This batch includes 23 systems
(also referred to as storage nodes or storage controllers),

TABLE I: Workloads in batch-2017 dataset.

Workload Application Nodes Error types
Workload A Exchange 16 1369
Workload B MSSQL 11 890
Workload C Oracle 18 1243
Workload D SharePoint 17 938

managing 4,655 disks in 284 RAID groups. In the second
batch (i.e., batch-2017), we collected information for systems
that were used to deploy a certain type of workloads. We were
able to collect four types of workloads, Workload A through
D, which correspond to Microsoft Exchange, Microsoft SQL
server, Oracle Database, and Microsoft Sharepoint workloads,
respectively (see Table I). Within each workload, we collected
between 10 to 20 deployed systems. In total, the second batch
includes 62 systems, with 9716 disks in 455 RAID groups. In
the interest of space, this paper mainly presents the results of
the trace from batch-2017, as the results from batch-2016 share
the similar insights and batch-2017 corresponds to larger-scale
systems that contain more types of error events with finer-
grained severity level for each event. Below are more concrete
details of collected metrics.

• RAID groups: specifies the logical location of each disk.
A RAID group consists of one or more disks, across which
user’s data is striped and stored. NetApp employs both
RAID-DP with double parity disks and RAID-TEC for
triple parity disks. RAID-DP is the default RAID type for
all NetApp aggregates. RAID-DP is a modified RAID-4,
supporting double parity disks. In RAID-DP or RAID-TEC,
there are two or three dedicated parity disks, depending on
the RAID type. For more details on RAID-DP, please check
the technical report from NetApp [15]. It is worth noting that
RAID-DP/TEC in ONTAP do not suffer from the problem
of frequent parity block updates. There are two main reasons
behind this. First, the WAFL file system is a log-structure
file system. It does not do in-place updates. Instead, it stores
new writes by appending the new data into the free space.
Secondly, the RAID layer uses an algorithm to pack writes
into full-stripe writes and the parity blocks are written at the
same time as the full-stripe write. This significantly reduces
partial stripe writes, which requires parity block updates.

• Disk counts: specifies, per system (i.e., node), how many
disks are from each disk type.

• Disk placement: specifies the physical location of each
disk in the format of stackid.shelfid.diskid that indicates
where a disk drive is installed. Thus, the physical storage
hierarchy in our data follows disks, shelves, stacks, nodes
(systems) and storage cluster. In batch-2017, nodes within a
workload can be from different storage clusters and different
customers. In this paper, we choose node (i.e., system) as the
storage hierarchy. All the nodes within the same workload
serve the same application (e.g., SharePoint).

• Disk type: specifies the following type of a disk in a RAID
group:

TABLE II: Error severity group, index labels, and density measured by binning the trace into 2-hour bins.

Severity
Group index: Label Definition [14] Density # error types

1
0: Emergency System is unusable.

0.18%
0.52%

701: Alert Temporary loss of service. Immediate Action required. 0.09%
2: Critical Critical condition, cause should be determined. Not immediately fatal. 0.13%

2 3: Error Software error. Not immediately fatal. 0.6% 201

3 4: Warning A high-priority message. does not indicate a fault. 0.8% 0.59% 3635: Notice Normal-priority message. does not indicate a fault. 0.89%

4 6: Informational Low-priority message. does not indicate a fault. 1.5% 0.95% 7357: Debug A debugging message, typically suppressed from customer. 2.3%
Overall: 1.1% 1369

– DATA disks hold data on behalf of clients within RAID
groups.

– PARITY/DPARITY disks store row/diagonal parity in-
formation, which is used for data reconstruction.

– SPARE disks that are used when a disk fails within a
RAID group. The data of the failed disk is reconstructed
on a hot spare from a RAID parity disk. It is recom-
mended to have multiple hot spare disks during steady
state operations.

– null disks are unassigned.
• EMS events: for each node in the data set, the Event

Management System (EMS) collects event data from various
places of the Data ONTAP kernel and provides a set of
filtering and event forwarding mechanisms. Specifically, the
following information are collected:
– Timestamp: records when an event occured.
– Sequence id: a unique id for each event.
– EMS event: the name of an event. The full list of EMS

events can be found in EMS event catalog [16].
– Severity index: categorizes each event based on its impli-

cation to system availability. The values range from 0 to
7 which translate to EMERGENCY, CRITICAL, ALERT,
ERROR, WARNING, NOTICE, DEBUG, and INFO from
the most severe to the least severe error event. Table II
details each severity level.

– Node name: the name of the storage node which reported
this event. Each Workload consists of several nodes (sys-
tems), and the data is collected for each node separately.

– Device name: represents the disk drive where an event
happened.

– Component name: the system component or service which
generated the event (e.g., mgwd, sshd, statd).

Observation #1: The error occurrence frequencies for
different error types are diverse. 48% of error types occur
less than 10 times per year and 18% of error types happen
only once a year. Error events are busrty and the error
distribution is imbalanced and time-varying.

B. Error Type Distribution

There are 1,625 unique types of error events captured across
the four workloads in the batch-2017 trace. Table I specifies
the number of error types per workload in batch-2017. Without

Fig. 1: Distribution of error per node across quarters. Each
color represents a quarter of a year. x-axis is the node index
and y-axis is the percentage of error.

Fig. 2: Complementary Cumulative Distribution Function
(CCDF) of the inter-occurrence time of error events in Work-
load A.

loss of generality, we choose Workload A to explain our
findings. Workload A has 1,369 unique types of error events
across 16 nodes. Out of the 1369 error types, 543 (40%) error
types appear in more than 5 nodes, while 398 (29%) types
occur in 2 to 5 nodes. The remaining 428 types (31%) only
appear in one of the nodes. Only 32 error types (2.3%) are
commonly observed in all 16 nodes.

We divide the entire data collection time period into 2-
hour time bins to compute the error density, i.e., if an error
happens in a 2-hour time bin, count as 1, otherwise 0. The
density results are summarized in Table II. The density of all
error types in Workload A is 1.1%, which indicates that the
error events are sparsely distributed. The error is even sparser
for the most severe group of errors with a density of 0.18%.
In addition, the more severe the error type, the more sparse
and rare they are, i.e., only 70 out of 1,369 error types are
from Emergency, Alert, and Critical error levels, belonging to

Fig. 3: The occurrence distribution of error types occurred less
than 200 times. y-axis is the percentage of error types occurred
less than the value represented in x-axis.

severity Group 1. We also illustrate how the error distribution
changes for each quarter of a year in Fig. 1. In Fig. 1, each
color represents each quarter (3 months) and the x-axis is the
index of node while y-axis presents the percentage distributed
in each quarter. Fig. 1 clearly demonstrates that the errors are
not evenly distributed across time and nodes. Such dynamics
makes the training of a prediction model challenging, which
motivate us to develop a training-free approach that is less
vulnerable to such dynamics. Furthermore, we analyze the
occurrence pattern of error events and plot the inter-occurrence
time distribution of error events in Fig. 2, where the long tail
distribution indicates that error events tend to occur in bursts.

Some of the most severe error types are very rare. For
instance, the Emergency level error callhome.partner.down
that indicates the storage fail-over partner is down and takeover
cannot begin, happened only once across all 16 nodes in
one year. In comparison, the most common error type in the
trace we collected is kern.uptime.filer, which is informational
and typically occurs every hour (i.e., more than 66k times in
Workload A). Fig. 3 illustrates the occurrence distribution of
error types occurred less than 200 times. It is observed that
almost half of error types (48%) occur less than 10 times,
while 18% of error types occur only once.

Observation #2: Severe error events occur less fre-
quently. The average density of severe error events (i.e.,
Emergency, Alert, and Critical) during a 2-hour period is
0.18%, which is far less than the average density (0.77%)
and the accumulated density (1.1%) of all error types.

Furthermore, we observe from the skewed curve in Fig. 4
that 80% of all error events are only from 4% of error types.
This suggests a power law distribution of error types, in which
87 out of 1, 369 error types in Workload A are responsible for
more than 90% of all events.

Observation #3: The distribution of error event types fol-
lows a power law. 4% of error types are correspondence
with 80% of all error events, while 96% of error types
account for only 20% of events.

Fig. 4: Contribution of error types to the overall observed
errors. 98% of all observed errors in batch-2017-WorkloadA
are from 205 error types (15%).

Fig. 5: Cross-correlation heat map for a subset of event types
in Workload A that occur most frequently. The x-axis and the
y-axis contain the same list of error types and the grid shows
the correlation between various error type pairs. As the heat
map is symmetric, only half of the map is provided.

C. Correlation Analysis of Storage Error

We analyze the complex correlation of the multi-
dimensional error data, which is useful to reduce the computa-
tional complexity of SEFEE (see Section IV-E). A heatmap of
cross-correlation between a subset of error events that occur
most frequently is given in Fig. 5. Many error pairs are highly
correlated. To visualize the error cross-correlation, we generate
a graph as Gt = (N,E,C), where error type e ∈ E and
storage node n ∈ N are the two sets of vertices, and count
C is the edge, which exists if error e has happened at storage
node n at time t. To understand the error cross-correlation,
we visualize the entire trace as a graph using pairwise cross-
correlation (CC) between errors to represent the edge and
the errors to represent vertices in a graph Ge = (E,CCeij).
To understand the storage node auto-correlation, we perform
similar graph generation from a system (i.e., node) viewpoint:
Gn = (N,CCnij

). Fig. 6a and Fig. 6b show storage error and
storage node cross-correlation network for the Cluster A of
batch-2016. We first visualize the cluster A of the batch-2016
data as its scale is smaller and thus easier to see the details.
We also show the storage node cross correlation network for
batch-2017 Workload A in Fig. 7.

(a) Cross-correlation network of
Storage errors. Vertices are stor-
age error types.

(b) Storage node cross-correlation
network. Vertices are storage
nodes.

Fig. 6: Visualization of Cluster A of batch-2016 trace with 175
error types and 19 nodes. Edges are non-zero cross-correlation
values and the edge weight (i.e., line width) is the absolute
value of cross-correlation. Green and pink edges represent
positive and negative cross-correlation values, respectively.
Nodes with the same color indicate a community grouped
based on Modularity.

We use Modularity [17] to quantify the strength of the
community structure among the vertices of the graph (i.e.
storage node or system). Modularity compares the connections
within a group of vertices with the expected connection to
other vertices outside groups in a random network to deter-
mine whether there exists a community structure. Modularity
measure is defined as

Q =
∑
i

(eii − a2i),

where eii gives fraction of within-community edges and ai
gives fraction of edges that connect to vertices in community
i. In a fully random network, the number of within-community
connections is no better than random, resulting in Q = 0. A
network with strong community structure typically fall be-
tween 0.3 to 0.7 modularity, while a network with community
structure above 0.7 is rare. The storage node cross-correlation
network of Workload A has modularity score of Q = 0.102,
which indicates weak community structure among the storage
nodes. As we picked the systems that run the same workload
but each system could be deployed at different customers, we
anticipate there is only weak correlation between these storage
nodes and the results validate our assumption.

Such community structure provides only coarse-grained
information (e.g., which nodes are more related than others)
that may not be sufficient to help per error prediction. The
fine-grained correlation among nodes are very complex and
difficult to be utilized directly for deriving analytical models
or extracting features for crafting machine learning mod-
els. More importantly, such graph evolves over time, which
makes it even more difficult to capture the spatial-temporal
inter-dependency among nodes’ error-event logs. Despite the
challenge of utilizing the community structure directly for

Fig. 7: Storage node cross-correlation network for Workload A
of the Batch-2017 trace. Edges are non-zero cross-correlation
values and the edge weight (i.e., line width) is the absolute
value of cross-correlation. Green and pink edges represent
positive and negative cross-correlation values, respectively.
Vertices with the same color indicate a community grouped
based on Modularity.

error prediction, in Section IV-E, we demonstrate how such
community structure can be used to accelerate the computation
of SEFEE by decomposing the big problem into parallel-able
small problems.

Observation #4: There is a complex spatio-temporal
inter-dependency between the location and the type of
errors.

III. METHODOLOGY

To capture the complex spatio-temporal inter-dependency
among different nodes’ error-event logs, we construct the
tensor model of error-event logs. Based on the analysis in Sec-
tion II and the tensor model, we propose a lightweight storage
error forecasting method SEFEE (Storage Error Forecasting
using tEnsor dEcomposition) for online storage error predic-
tion using tensor decomposition.

A. Tensor Model for Storage Error-Event Logs

Tensors are multidimensional or multi-way arrays that are
higher-order generalization of matrices (i.e., second-order ten-
sor) and vectors (i.e., first-order tensor). In this paper, the error-
event logs are constructed as a three-way tensor X ∈ RI×J×K

with Xijk denoting the (i, j, k)-th entry of X such as

Xijk =

{
1 if error event j happened at node i at time k

0 otherwise
.

As illustrated in Fig. 8, I corresponds to the number of nodes
in the system, J corresponds to the types of errors, and K
corresponds to the time period of the logs.

At a given time t, the observed error-event logs across all
the nodes can be denoted as Xt, which is a slice of X at time
t. The error-event logs can be treated as a time-series of these
slices. To predict storage error, we can use the observed tensor
X obs to predict future slices.

Fig. 8: SEFEE overview.

B. SEFEE

Based on the tensor model, we propose a lightweight
storage error forecasting method SEFEE for online storage
error prediction using tensor decomposition. The overview of
the proposed method is illustrated in Fig. 8. The basic idea
is to construct the observed tensor X obs using recent error-
event logs and then predict the future errors using the tensor
decomposition of X enhanced by side information (i.e., error
severity).

Specifically, let X ∈ RI×J×K denote the tensor containing
both the observed tensor X obs ∈ RI×J×G where G < K and
the slices to be predicted. The prediction horizon h is K−G.
For example, when h = K−G = 1, it means that the method
predicts the errors in the next slice, i.e., 2 hour ahead. Let
Y ∈ RJ denote the error severity vector and W ∈ RI×J×K

denote the weight tensor that is set according to the error
severity, where the weights associated with a specific error
type have the same weight, i.e., for a given error type j, Wijk

is the same for any i and k. The online storage error prediction
is formulated as a side information enhanced weighted tensor
decomposition problem:

minimize ||W ∗ (X − X̂)||2F + ||Y− ES||2F
subject to X̂ = JN,E,TK,

Xijk = X obs
ijk , i = 1, ..., I, j = 1, ..., J, k = 1, ..., G,

variables {N,E,T,S,X}
(1)

where ∗ corresponds to item-wise multiplication, ‖·‖F is
the Frobenius norm, and J·K corresponds to CANDE-
COMP/PARAFAC (CP) decomposition operator [18].

In the problem (1), X̂ denotes the predicted tenor us-
ing CP decomposition with factorization matrices N =
[n1,n2, ...,nR] ∈ RI×R, E = [e1, e2, ..., eR] ∈ RJ×R, and

T = [t1, t2, ..., tR] ∈ RK×R such that

X̂ = JN,E,TK =
R∑

r=1

nr ◦ er ◦ tr, (2)

where ◦ corresponds to the vector outer product and R > 0 is
a positive integer representing the rank of X̂ . N and E capture
the spatial correlation of errors across different nodes, while
temporal profiles are captured by T. The error severity Y is
introduced to enhance the CP decomposition such that the
factorization matrix E should also capture the error severity
Y, which is captured in ||Y − ES||2F, where S ∈ RR is a
factorization vector for Y. The problem (1) can be solved
using CP-ALS methods [19], where the factorization matrices
are alternatively updated based on X obs. It is worth noting that
the complexity of solving (1) depends on the size of tensor X ,
which can be large in practice. To reduce the computational
complexity, we leverage the correlation analysis in Section
II-C to decompose the whole tensor into multiple subtensors
without sacrificing the prediction performance, which is vali-
dated by the experimental results in Section IV-E.
Remarks: SEFEE does not require the label intensive and
computational expensive pre-processing and training tasks
(e.g., data cleaning, pruning, feature selection, model archi-
tecture crafting, hyper-parameter tuning, iterative training) that
are typically required by machine learning algorithms. Thus,
it offers a lightweight forecasting method that is training free
and can be used in a plug-n-play fashion.

C. Online Storage Error Prediction

Based on the factorization matrices solved in (1), we pro-
pose an online storage error prediction:

X̂ h =
R∑

r=1

nr ◦ er ◦ t̂r, (3)

where X̂ h ∈ RI×J×h denotes the predicted tensor with the
prediction horizon h and T̂ = [̂t1, t̂2, ..., t̂R] ∈ Rh×R is a
modified factorization matrix based on T. In the following,
we propose different ways to obtain T̂ in an online manner,
as applying a single prediction strategy globally may not well
capture the heterogeneity of the error-event logs.

1) Persistence Prediction: The persistence prediction as-
sumes that the temporal profiles do not change, i.e., the future
tensor slice is the same as the last observed slice. To ease
the presentation, let Tj: denote the j-th row of T. Under the
persistence prediction, each row of T̂ is equal to the G-th row
of T, i.e.,

T̂j: = TG:, j = 1, ..., h. (4)

2) Moving Average: The moving average method leverages
the average of the temporal component T in a time window
W to calculate each row of T̂. Specifically, we calculate the
first row of T̂1: by

T̂1: =
1

W
(TG: + TG−1: + · · ·+ TG−W+1:). (5)

Then we can recursively solve the remaining rows of T̂ by

T̂j+1: =
1

W
(

W−j∑
i=1

TG−i+1: +

j∑
i=1

T̂i:), j = 1, ..., h− 1. (6)

3) Moving Average under Time-of-day Effect: This method
accounts for time-of-day effect in the moving average method,
as we observe time-of-day effect in the error-event logs. For
example, some benign error types such as licence renewal
notifications might have a daily routine at a particular time
of day, while other error types might be very sporadic and
random. Specifically, we introduce a time-of-day parameter td.
When taking average over the last W time steps, we average
over W time steps according to td and calculate the first row
of T̂1: by

T̂1: =
1

W
(TG:+TG−td:+TG−2td:+ · · ·+TG−Wtd+1:). (7)

Then we can recursively solve the remaining rows of T̂ by

T̂j+1: =
1

W
(

W−j∑
i=1

TG−itd+1:+

j∑
i=1

T̂i:), j = 1, ..., h−1. (8)

Heterogeneous Time-of-day Effect. Due to the heterogene-
ity of the error-event logs, we compute td for each 〈node,
error〉pair. Let Td denote a time-of-day matrix where Td(i, j)
is the time-of-day coefficient associated with error type j at
node i. We treat the error-event logs for each 〈node, error〉pair
as a time series and use auto-correlation function (ACF) to
determine Td(i, j) for each pair. Based on our experiments,
Td does not change much in a short period and therefore we
do not need to update Td at every single prediction step. In
our experiments, Td is updated every week.

In order to accommodate individually computed time-of-
day effects in reconstruction of predicted tensor from the
factorization matrices, we need to modify the vector outer
product used to yield the predicted tensor as in (3). The details

Algorithm 1: Moving Average under Heterogeneous
Time-of-day Effect

input : N, E, T, and Time-of-day matrix Td.
output: X̂ h

1 foreach node i in size(N, 1) do
2 foreach error j in size(E, 1) do

// compute temporal factor for
node i and error j

3 tlast = size(T, 1);
4 u = tlast + 1− Td(ij) ∗W ;
5 for k = tlast + 1− Td(ij) : −Td(ij) : u do
6 sum(T(k));

7 t̂ij =
1
W sum(T(k));

// reconstruct each element in
the predicted tensor

8 X̂ h
ij = outerProduct (N [i, :] , E[j, :] , t̂ij);

are given in Algorithm 1, where we modify the regular outer
product to treat each 〈node, error〉pair differently using its
time-of-day effect.

IV. ERROR PREDICTION RESULTS

A. Experimental Setup

1) SEFEE: We prototype SEFEE and use the collected
batch-2017 trace for evaluation. As SEFEE is training-free,
we use only the last week of the first 6 months as the initial
observations to warm up our method. We use the rest 6 months
for live predictions (i.e., 2195 predictions for two-hour time
bin). We set R = 300 as the rank to decompose the observed
tensor with dimension (16× 1369× 84).

2) Baselines: We use LSTM and Random Forests as base-
lines because they are consistently found to have the highest
storage error prediction accuracy in recent literature [9, 20,
21] For LSTM, we use Keras library [22] with tensorflow
backend. For Random Forests, we use Multivariate Random
Forests [23]. We use the first 6 months to train LSTM and
Random Forests models and the rest 6 months for evaluation.
For Random Forests, we experiment with different numbers
of trees from 10 up to 120 trees and observe no significant
improvement beyond 30 trees. The LSTM model uses stacked
bidirectional cells, as we found that it achieves higher accuracy
than the vanilla LSTM. As LSTM and Random Forests have
lots of hyperparameters, to make a fair comparison, we per-
form extensive fine-tuning on the hyperparameters of LSTM
and Random Forests to ensure their prediction performance.
We also use Hidden Markov model (HMM) and ARIMA with
moving windows as reference approaches for the fine-tuning.

3) Evaluation Metrics: In the literature of storage failure
prediction, it is common to use error detection rate (i.e., True
Positive Rate (TPR)) along with false alarm rate (i.e., False
Positive Rate (FPR)) as prediction accuracy metric. More
recent papers using machine learning based approaches often
use Precision, Recall, and F1-measure as alternative measures.

TABLE III: Storage error prediction performance comparison among SEFEE, LSTM, and Random Forests for Worklaod A in
batch-2017. Group is the error severity level defined in Table II.

SEFEE LSTM Random Forests
Precision Recall F1 FPR Precision Recall F1 FPR Precision Recall F1 FPR

Group 1 90.3% 89.9% 90.1% 0.02% 27.4% 37.7% 31.7% 0.24% 59.2% 31.7% 41.3% 0.05%

Group 2 81.6% 85.3% 83.4% 0.12% 43.6% 57% 49.4% 0.47% 57.9% 73% 64.6% 0.34%

Group 3 74.5% 74.4% 74.4% 0.2% 33.4% 48.2% 40% 0.75% 52.2% 51.4% 51.8% 0.36%

Group 4 89% 91% 90% 0.15% 57.9% 77.4% 66.2% 0.75% 78.5% 80% 79.2% 0.3%

Overall 85.6% 87.2% 86.4% 0.15% 51% 69% 58.6% 1% 70% 73.6% 71.8% 0.33%

(a) PRC curve. (b) ROC curve. (c) FPR versus FNR.

Fig. 9: Prediction performance comparison between SEFEE, Random Forests, and LSTM in terms of: (a) PRC curve (high
precision and high recall is desired), (b) ROC curve (high recall and low FPR is desired), and (c) FPR versus FNR (low FNR
and low FPR is desired).

TABLE IV: Prediction performance comparison between
SEFEE and Random Forests for four different workloads of
batch-2017.

SEFEE Random Forests
Precision Recall F1 Precision Recall F1

Workload A 85.6% 87.2% 86.4% 70% 73.6% 71.8%
Workload B 88.8% 90.6% 89.7% 72.5% 80.8% 76.4%
Workload C 80.4% 83.5% 81.9% 52.5% 72.8% 61%
Workload D 90.1% 90.9% 90.5% 75.6% 85.1% 80.1%

Overall 86.2% 88% 87.1% 67.65% 78.1% 72.3%

Therefore, we mainly use Precision, Recall (i.e., TPR), F1-
measure along with FPR in our evaluation. The metrics are
defined below:

Precision =
#truepositives

#truepositives+#falsepositives
,

Recall =
#truepositives

#truepositives+#falsenegatives
,

F1 score = 2× precision× recall

precision+ recall
,

FPR =
#falsepositives

#falsepositives+#truenegatives
.

(9)

B. Accuracy of Storage Error Forecasting

The prediction results of Workload A are given in Ta-
ble III, which corroborates that SEFEE outperforms LSTM
and Random Forests in terms of Precision, Recall, F1, and
FPR. For example, in the per error group break down results,

SEFEE is at least 31% and 11% better than LSTM and
Random Forests, respectively. For the overall performance,
SEFEE is at least 18% and 14% better than LSTM and
Random Forests, respectively. SEFEE also excels in achieving
a balanced prediction accuracy across error severity groups.
In practice, recall is a very important measure for groups of
higher severity, as immediate actions are required to handle
these errors. However, groups of higher severity are also of
lower data density, which makes it more challenging to train
good LSTM and Random Forests models.

The recall results in Table III shows that SEFEE achieves
much higher prediction accuracy on Group 1, compared to
LSTM and Random Forests. We also compare the results
between SEFEE and Random Forests for all the workloads
(Workload A - D) in Table IV, where SEFEE consistently
outperforms Random Forests. In the interest of space, we omit
the results for LSTM as the LSTM prediction performance is
consistently worse than Random Forests.

Prediction methods provide the occurrence probability of
an error event. To determine whether there is an error event, a
triggering probability threshold needs to be set. This threshold
can be considered as a hyperparameter to control the aggres-
siveness of prediction, which can be set based on the use
scenarios. For example, a more aggressive prediction (lower
triggering probability threshold) would result in a higher recall
(i.e., more errors are captured) while a lower precision (i.e.,
more wrong guess in the forecast errors), as well as higher
FPR (i.e., more false alarm) and a lower FNR (i.e., less
fraction of errors missed). To demonstrate the effectiveness of
SEFEE under different prediction aggressiveness, we plot three
curves in Fig. 9: Precision/Recall (PRC), Receiver Operator

TABLE V: Improvement in % with side information compared
to without side information. Negative value means degraded
performance. Group is the error severity level defined in
Table II.

Improvement
Precision Recall F1 FPR

Group 1 +2.1% +5.9% +4% -0.01%
Group 2 +2% -0.4% +0.9% -0.02%
Group 3 -0.2% +1.1% +0.4% +0.01%
Group 4 -0.3% +0.4% +0.1% 0%

Overall +0.3% +0.5% +0.4% 0%

TABLE VI: Prediction accuracy comparison for “Alert” sever-
ity level of errors between “before” using weighted approach
and “after” using weighted approach. S indicates the error
severity index as outlined in Table II, and W denotes the
weights of each severity level.

S Recall #False alarms F1-score Wbefore after before after before after
0 93.6% 91.1% 17 21 92.6% 90.5% 1
1 82.6% 85.7% 18 18 86.2% 87.9% 4
2 NaN NaN 2 6 NaN NaN 1
3 85.3% 84.1% 416 514 82.8% 80.3% 1
4 85.2% 83.6% 166 189 83.7% 81.8% 1
5 69.5% 68.2% 1070 1154 69.5% 67.8% 1
6 88.5% 87.3% 1050 1102 85.7% 84.7% 1
7 92.8% 91.8% 935 1130 91.7% 90.3% 1

Characteristics (ROC), and FPR versus FNR [24], all of which
are often employed by the literature for evaluating the quality
of prediction methods. Fig. 9 (a) illustrates the PRC curve,
where only SEFEE can achieve both high precision and high
recall. Fig. 9 (b) illustrates the ROC curve, where it is desirable
to detect more errors while not introducing many false alarms.
When FPR is less than 3%, SEFEE yields much higher recall
and significantly outperforms LSTM and Random Forests.
Fig. 9 (c) illustrates the results of FPR versus FNR, where
it is desirable to have both low FPR and low FNR. When
FPR is less than 3%, SEFEE yields much lower FNR than
LSTM and Random Forests.

C. Effectiveness of Side Information

In Table V, we evaluate the effectiveness of side informa-
tion by comparing the prediction results with and without
side information. It is observed that the side information is
especially useful for the most severe error types (i.e., Group 1
with Emergency, Alert, and Critical level) as there is about 6%
improvement in recall. This is because the side information can
provide useful information to enhance the tensor decomposi-
tion and thereby improve the prediction accuracy, especially
for groups of higher severity that occur less frequently.

D. Impact of Weights on Prediction Accuracy

In this section, we evaluate the impact of weights on the
prediction accuracy, which can provide prioritized improve-
ments of prediction performance for target groups. We perform

Fig. 10: Prediction time under different tensor ranks.

Fig. 11: Prediction performance under different tensor ranks.

experiments for a 200-hour time period (i.e., 100 time-steps)
and weighted the severe error type (i.e., “Alert” level error
events) by a weight of 4 compared to others as 1. Table VI
shows the prediction performance.

The results show that the recall and F1-score of the “Alert”
error type has been improved, while false alarm keeps the
same. However, to achieve this, the prediction performance of
other severity level has been slightly scarified. In practice, the
system operator can adjust the weights based on the needs to
improve the prediction accuracy for certain error types.

E. Prediction Overhead

To use the proactive error forecasting approach in practice,
it is critical to have low computational resource consumption
as well as low training and prediction time. In this section, we
compare the prediction overhead of SEFEE with LSTM and
Random Forests.

First of all, we evaluate SEFEE on a very outdated personal
computer with Intel Xeon E3-1225 v3 3.2GHz 4C 84W CPU
and 4 GB RAM. SEFEE takes on average 26 seconds per
prediction utilizing between 1.8-2.5 GB of RAM. These results
show that SEFEE is lightweight and does not demand a
significant amount of CPU or memory resources for making
prediction, which allows it to be easily deployed in a real
storage system.

For example, a storage controller such as NetApp A700 has
a powerful 36-core CPU. Though the main priority of storage
controller is to serve storage workloads, running SEFEE would
not put much pressure on the controller.

As LSTM and Random Forests are very computation re-
source demanding, our outdated personal computer could not
finish the experiments in a reasonable time. Therefore, we
perform experiments using an Amazon Web Services instance

TABLE VII: Prediction time comparison between using the whole tensor versus using subtensors. “Subtensors Combined”
computes subtensors in a sequential order, while “Parallel Subtensors” computes subtensors in parallel.

Whole
Tensor Subtensor1 Subtensor2 Subtensor3 Subtensors

Combined
Parallel
Subtensors

Dimension (16,1369,84) (7,1043,84) (4,752,84) (5,1064,84)
Rank 300 180 120 150
Precision 89.2% 89.25% 91.65% 87.6% 89.5% 89.5%
Recall 90.2% 90.7% 93.8% 87.3% 90.6% 90.6%
Time (seconds) 26 5.37 2.4 3.1 10.9 5.37

with 36 Intel Xeon vCPUs and 72 GiB of RAM, which has
very similar specs as the storage controller of NetApp A700.
The LSTM took more than 8 hours to finish training, while
Random Forests took less than 7 hours. Once these models are
trained, they can be used for online prediction. In comparison,
SEFEE makes the prediction in less than 10 seconds without
training using the same instance.

The most time consuming components of SEFEE are tensor
decomposition and reconstruction of future tensor, the time
complexity of which mainly depends on the tensor rank used
for the decomposition. In addition, the rank also impacts the
prediction accuracy. To better understand how the rank impacts
the prediction time and prediction accuracy, we demonstrate
the average time for each prediction as a function of rank
in Fig. 10 and prediction accuracy as a function of rank in
Fig. 11. In a nutshell, the prediction time increases linearly
with the rank, while the accuracy increases significantly at
small ranks but flatten out when the rank is around 300. In
our experiments, we choose the rank equal to 300 for striking
a balance between computation time and prediction accuracy.

To further reduce the computation time, we divide the tensor
data into three different subtensors using the node groups in
Fig. 7, which are generated using Gephi [25] that employs
Modularity [26]. Specifically, the 16 nodes are divided into
three groups with 4, 5, and 7 nodes, respectively; the error
data for each group is constructed as a subtensor. For each
subtensor, we carry out the same analysis as in Fig. 11 to get
an estimate of tensor rank. We compare the performance of
using these subtensors with the whole tensor in Table VII. The
results show that it takes more than 58% less time (i.e., 10.9
seconds) on outdated personal computer for each prediction
when using these subtensors compared to the whole tensor. By
running the three subtensors in parallel on separate machines,
the prediction time can be further reduced to 5.37 seconds per
prediction.

F. Intuition of Why Tensor Approach is Effective

The intuition behind why the tensor approach is effective is
that it can automatically discover and utilize the complex latent
spatio-temporal inter-dependency between the location and the
type of errors. To further understand why the prediction is
more accurate in some cases than others, we plot the auto-
correlation (ACF) of error trace for each (node, error) pair
against the accuracy (recall) of that pair in Fig. 12.

We divide Fig. 12 into nine regions based on the low,
medium, and high value of accuracy and auto-correlation. We

Fig. 12: Auto-correlation vs. Accuracy (recall). Each data point
is generated by a (node, error) pair. x-axis represents auto-
correlation (ACF) and y-axis represents Accuracy (recall).

can see there are two regions with the highest density of dots,
namely HH region (high ACF, high Recall) (i.e., the top right
region) and LL region (low ACF, low Recall) (i.e., the bottom
left region). This indicates that the tensor approach essentially
explores the complex latent spatio-temporal inter-dependency
for prediction. When there is relatively high dependency, the
prediction is more accurate, vice versa. Another interesting
observation is that there are some points fall in the LH region
(low ACF, high Recall) (i.e., the top left region). We found
that most of the points in this region have some spatial or
logical connection with points in HH region. For example, for
every LH point there is usually at least one HH point on the
same node but of different error types, or the same error type
on a different node. This suggests that the tensor approach
is able to capture and utilize such deeply latent dependency
information to improve the prediction performance.

G. Generalizability

Our tensor-based prediction method can effectively discover
the complex spatio-temporal correlation among a significant
number of elements. With the assist of domain specific
knowledge, the computation of tensor decomposition can be
significantly reduced using the proposed approach. Therefore,
it is generalizable to other use cases with similar properties.
Take HPC storage systems as an example, since the main
observations that drive our design is based on the correlation
analysis in Section II, such as the heterogeneous correlations
among different error types at different storage nodes across
time. If HPC storage systems share such similar characteris-
tics, the proposed approach can be applied to HPC storage
systems as well.

V. RELATED WORK

A. Storage Failure

1) Reactive approaches: Kubo et al. [3] proposed a
threshold-based reactive approach, in which a functioning
storage device is taken offline when the number of times
that the device fails to perform a storage operation exceeds
a predetermined threshold. [27] identifies RAID groups that
are at risk of failure and moves them in advance based on the
observation that the high count of reallocated sectors is a sign
of impending failure. Xu et al. [28] proposed to prevent storage
failures in distributed systems by proactively detecting latent
configuration errors early through analyzing the source code of
the relevant system components. Kadekodi et al. [29] proposed
an online tuning tool, namely HeART, to help make cost-
effective redundancy settings for long-term data reliability.
HeART reduces HDDs in duty by 11-33% fewer HDDs to
reduce the likelihood of failures. This line of work usually
results in relatively long system down time and is not suitable
for large-scale enterprise storage systems.

2) Statistical and machine learning based proactive ap-
proaches: Hamerly and Elkan [30] proposed prediction mod-
els using NBEM and naive-Bayes based classifier to improve
the detection accuracy of the SMART monitoring system.
Hughes et al. [31] proposed Wilcoxon rank-sum test based
models to improve disk-drive failure prediction. [32] found
that rank-sum tests outperform SVM when certain small subset
of SMART attributes are used, with accuracy of 25% and
False alarm rate of 0, while SVM performs better (43%
failure detection rate with 0.6% FAR) when more than four
attributes are used. Murray and Hughes [33] found that SVM
performs better than statistical hypothesis tests, mi-NB, and
unsupervised clustering with failure detection rate of 50.6%
and 0% false alarm.

Mahdi Soltani et al. [9] proposed different machine learning
techniques such as SVM, CART, and neural network to predict
partial drive failures. Their results show that Random Forests
outperform the rest by correctly predicting 70-90% of the
errors at false positive rate of 2%. Xu et al. [6] proposed an on-
line prediction based on Fast-Tree algorithm which ranks disks
based on the degree of error-proneness. Their results show
that their approach outperforms SVM and Random Forests
by achieving 41.2% Recall at FPR of 0.1%. After evaluating
various classification models, [21] employed Random Forests
to predict fail-stop events in SSDs due to its better performance
and robustness in presence of noisy inputs. Zhang et al. [34]
developed DeepView to localize Virtual Hard disk failures to
tackle VM availability issues in Microsoft Azure. A recent
work [20] tried various machine learning approaches to predict
SSD failures and concluded that Random Forests outperform
the other approaches by achieving 90% ROC AUC. Lin et
al. [7] proposed MING as a node failure prediction approach
that uses LSTM to incorporate temporal features and Random
Forests for spatial features.

From these literature, we conclude that Random Forests and
LSTM are the most promising machine learning techniques for

predicting storage failures and we choose these two models as
our main baselines in experimental evaluation. In addition,
our work is different from these literature as SEFEE is a
lightweight training-free online approach and can predict all
types of errors in terms of their expected occurrence time and
location.

B. Tensor Decomposition

Papalexakis et al. [35] presented a survey of using tensors
and tensor decomposition for data mining and data fusion.
[18] is another review on tensor decomposition and its appli-
cations. Tensor related approaches have been used in Twitter
interactions [36], wearable sensor data for assessing student
performance [37], image processing [38], author collaboration
history [39], urban computing [40], computer networks [41],
and machine learning approaches [42]. Compared to matrix
factorization based methods (e.g., [43]), the tensor decompo-
sition method can explore more complicated correlation struc-
tures in high dimensional data, i.e., error event type, location,
and occurrence timestamp in our application. Moreover, we
leverage a contextual information of error severity index to
obtain enhanced tensor decomposition. To the best of our
knowledge, SEFEE is the first work exploring tensor decom-
position for prediction of storage error events and leveraging
the severity level as contextual information for improving the
prediction accuracy.

VI. CONCLUSION

In this paper, we study the 2-year long error-event logs
collected from the production NetApp ONTAP enterprise
storage systems that manage 14,371 disks. By analyzing more
than 23-million storage error events, we present SEFEE– a
lightweight storage error forecasting method for large-scale
enterprise storage systems. Different from literature, we pro-
pose a training-free methodology driven by tensor decomposi-
tion techniques for achieving superior prediction performance
while also keeping the prediction overhead minimal. Our
evaluation shows SEFEE significantly outperforms state-of-
the-art machine learning based methods such as LSTM and
Random Forests. Yet, SEFEE can provide prediction in just
5.73 seconds in legacy hardware, compared to 8 hours and 7
hours training time on high spec hardware using LSTM and
Random Forests, respectively.

ACKNOWLEDGEMENT

This work is supported in part by the following grants:
National Science Foundation CCF-1756013, IIS-1838024 (us-
ing resources provided by Amazon Web Services as part
of the NSF BIGDATA program), CNS-1950485, and EEC-
1801727. We thank Shankar Pasupathy and Art Harkin from
NetApp for their continuous support and feedback in making
this project possible. We thank Gautham Yerroju for his help
with the project. We thank also the anonymous reviewers for
their insightful comments and suggestions that significantly
improved the paper.

REFERENCES

[1] NetApp. (2020) Netapp inc. [Online]. Available: https://www.netapp.
com/us/products/storage-systems/hybrid-flash-array/fas8000.aspx

[2] C. Xu, G. Wang, X. Liu, D. Guo, and T.-Y. Liu, “Health status
assessment and failure prediction for hard drives with recurrent neural
networks,” IEEE Transactions on Computers, vol. 65, no. 11, pp. 3502–
3508, 2016.

[3] R. A. Kubo, D. F. Mannenbach, and K. A. Nielsen, “Apparatus, system,
and method for predicting storage device failure,” Feb. 24 2009, uS
Patent 7,496,796.

[4] “Finding soon-to-fail disks in a haystack,” in 4th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 12). Boston, MA: USENIX Association, Jun. 2012.
[Online]. Available: https://www.usenix.org/conference/hotstorage12/
workshop-program/presentation/Goldszmidt

[5] T. Pitakrat, A. van Hoorn, and L. Grunske, “A comparison of machine
learning algorithms for proactive hard disk drive failure detection,”
in Proceedings of the 4th International ACM Sigsoft Symposium on
Architecting Critical Systems, ser. ISARCS ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 1–10. [Online].
Available: https://doi.org/10.1145/2465470.2465473

[6] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,
W. Zhang, J.-G. Lou et al., “Improving service availability of cloud
systems by predicting disk error,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), 2018, pp. 481–494.

[7] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao et al., “Predicting node failure in cloud service systems,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2018, pp. 480–490.

[8] Y. Wang, Q. Miao, E. W. Ma, K.-L. Tsui, and M. G. Pecht, “Online
anomaly detection for hard disk drives based on mahalanobis distance,”
IEEE Transactions on Reliability, vol. 62, no. 1, pp. 136–145, 2013.

[9] F. Mahdisoltani, I. Stefanovici, and B. Schroeder, “Proactive error
prediction to improve storage system reliability,” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 391–
402.

[10] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive drive
failure prediction for large scale storage systems,” in 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE,
2013, pp. 1–5.

[11] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making
disk failure predictions smarter!” in 18th USENIX Conference on
File and Storage Technologies (FAST 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 151–167. [Online]. Available:
https://www.usenix.org/conference/fast20/presentation/lu

[12] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien,
and H. S. Gunawi, “The tail at store: A revelation from millions of
hours of disk and {SSD} deployments,” in 14th {USENIX} Conference
on File and Storage Technologies ({FAST} 16), 2016, pp. 263–276.

[13] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey et al.,
“Fail-slow at scale: Evidence of hardware performance faults in large
production systems,” ACM Transactions on Storage (TOS), vol. 14, no. 3,
p. 23, 2018.

[14] NetAppSupport. (2014) What syslog messages are. [On-
line]. Available: https://library.netapp.com/ecmdocs/ECMP1516135/
html/GUID-363BF90A-FC09-4EF1-BAC6-43F315DFED68.html

[15] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder, “A study
of SSD reliability in large scale enterprise storage deployments,”
in 18th USENIX Conference on File and Storage Technologies
(FAST 20). Santa Clara, CA: USENIX Association, Feb. 2020,
pp. 137–149. [Online]. Available: https://www.usenix.org/conference/
fast20/presentation/maneas

[16] NetAppKB. (2018) Ontap 9.3 ems event catalog. [Online]. Available:
https://library.netapp.com/ecm/ecm get file/ECMLP2843561

[17] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, p. 026113, Feb
2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
69.026113

[18] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[19] B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox version
3.1,” Available online, Jun. 2019. [Online]. Available: https://www.
tensortoolbox.org

[20] J. Alter, J. Xue, A. Dimnaku, and E. Smirni, “Ssd failures in
the field: Symptoms, causes, and prediction models,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York,
NY, USA: ACM, 2019, pp. 75:1–75:14. [Online]. Available: http:
//doi.acm.org/10.1145/3295500.3356172

[21] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield,
A. Sivasubramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “Ssd
failures in datacenters: What? when? and why?” in Proceedings of
the 9th ACM International on Systems and Storage Conference, ser.
SYSTOR ’16. New York, NY, USA: Association for Computing
Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2928275.
2928278

[22] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[23] M. Segal and Y. Xiao, “Multivariate random forests,” Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 80–87, 2011.

[24] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 233–240.

[25] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open
source software for exploring and manipulating networks,”
2009. [Online]. Available: http://www.aaai.org/ocs/index.php/ICWSM/
09/paper/view/154

[26] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, oct
2008.

[27] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer,
S. Chandra, and W. Hsu, “Raidshield: characterizing, monitoring, and
proactively protecting against disk failures,” ACM Transactions on
Storage (TOS), vol. 11, no. 4, p. 17, 2015.

[28] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,”
in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 619–634.

[29] S. Kadekodi, K. Rashmi, and G. R. Ganger, “Cluster storage systems
gotta have heart: improving storage efficiency by exploiting disk-
reliability heterogeneity,” in 17th {USENIX} Conference on File and
Storage Technologies ({FAST} 19), 2019, pp. 345–358.

[30] G. Hamerly, C. Elkan et al., “Bayesian approaches to failure prediction
for disk drives.”

[31] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved
disk-drive failure warnings,” IEEE transactions on reliability, vol. 51,
no. 3, pp. 350–357, 2002.

[32] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, “Hard drive failure
prediction using non-parametric statistical methods,” in Proceedings of
ICANN/ICONIP, 2003.

[33] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, “Machine learning
methods for predicting failures in hard drives: A multiple-instance
application,” Journal of Machine Learning Research, vol. 6, no. May,
pp. 783–816, 2005.

[34] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao,
M. Chintalapati, A. Krishnamurthy, and T. Anderson, “Deepview: Vir-
tual disk failure diagnosis and pattern detection for azure,” in 15th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 18), 2018, pp. 519–532.

[35] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, p. 16, 2017.

[36] M. Araujo, P. Ribeiro, H. A. Song, and C. Faloutsos, “Tensorcast:
forecasting and mining with coupled tensors,” Knowledge and
Information Systems, vol. 59, no. 3, pp. 497–522, Jun 2019. [Online].
Available: https://doi.org/10.1007/s10115-018-1223-9

[37] H. Hosseinmardi, H.-T. Kao, K. Lerman, and E. Ferrara, “Discovering
hidden structure in high dimensional human behavioral data via tensor
factorization,” arXiv preprint arXiv:1905.08846, 2019.

[38] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[39] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction us-
ing matrix and tensor factorizations,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 5, no. 2, p. 10, 2011.

[40] F. Zhang, N. J. Yuan, D. Wilkie, Y. Zheng, and X. Xie, “Sensing the
pulse of urban refueling behavior: A perspective from taxi mobility,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 6,
no. 3, p. 37, 2015.

[41] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, G. Zhang, J. Cao, D. Zhang,
K. Xie, X. Wang et al., “Accurate recovery of internet traffic data:
A sequential tensor completion approach,” IEEE/ACM Transactions on
Networking (TON), vol. 26, no. 2, pp. 793–806, 2018.

[42] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor
decompositions and their applications in machine learning,” 2017.

[43] N. Sorkunlu, D. T. Anh Luong, and V. Chandola, “dynamicmf: A matrix
factorization approach to monitor resource usage in high performance
computing systems,” in 2018 IEEE International Conference on Big
Data (Big Data), 2018, pp. 1302–1307.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
(1) We ran experiments on two different systems. The main

comparative results provided in Table III: "Storage error pre-
diction performance comparison among SEFEE, LSTM, and
Random Forests for Worklaod A in batch-2017" and Table IV
were done on AWS c5.9xlarge instance with 141 ECUs, 36
vCPUs, 3.4 GHz, Intel Xeon Platinum 8124M, 72 GiB memory,
EBS only. The environment variables are collected from this
system and attached below. However, since AWS C5.9Xlarge
is a high-end compute optimized system, we set out to eval-
uate SEFEE’s computation time on a typical system as well
and that brings us to the 2nd system which was author’s PC:
PowerEdge T20 with 3.5" 1TB SATA HDD, 4GB DIMM, Xeon
E3-1225 v3 3.2GHz 4C 84W CPU, DVD+/-RW. The results
from this experiment is reported in Table VII: "Prediction
time comparison between using the whole tensor versus us-
ing subtensors." The environment variables from this system
is also collected and attached below. Both these systems are
mentioned in the paper as well.

(2) We had raw proprietary data that was critical event logs from
enterprise storage systems. We first aggregated the data into
2 hour time bins and formed a tensor from the main data. We
then used MATLAB’s Tensor Toolbox (a publicly available
tool) , poblano toolbox, and CMTF (All publicly available
tools) to run prediction experiments. We have publicly re-
leased our code in a github repository where you can find
more details about the libraries (and versions) used.

(3) SEFEE attempts multivariate time-series prediction, thus
for comparison we used multivariate models for LSTM and
Random Forests as well. More details can be found in our
github repo’s ReadMe file.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/SayBender/SEFEE
Artifact name: SEFEE

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: 141 ECUs, 36 vCPUs, 3.4 GHz, Intel
Xeon Platinum 8124M, 72 GiB memory, EBS only

Operating systems and versions: Ubuntu 18.04

Applications and versions: MATLAB 2019

Libraries and versions: Tensor Toolbox v2.6, CMTF_toolbox v1.1,
Poblano_toolbox v1.1, keras 2.2.4, tensorflow 1.14

Key algorithms: Alternating least squares, adam optimizer, Tree-
Bagger, non-linear conjugate gradient descent

URL to output from scripts that gathers execution environment
information.
https://github.com/SayBender/executionenvironment

ARTIFACT EVALUATION
Verification and validation studies: We verified our approach

through experimental evaluations. The experimental evaluations
include extensive performance comparison (Precision, Recall, F1-
measure, False Positive rate, ROC curve, PRC curve) and computa-
tion time. We also ran sensitivity analysis on time and prediction
performance (Figure 10 and 11). We specifically compared our ap-
proach with 2 state-of-the-art approaches in terms of time taken
to produce prediction and prediction accuracy in terms of preci-
sion, recall, F1-measure and FPR. The experiments of the baseline
approaches are done in the same environment as the proposed
approach. On top of those experiments, we further validated the
feasibility of using our approach on systems with typical specs.
Thus, we evaluated the prediction time of SEFEE on Author’s PC
with 1, 2 and 4 CPU cores. This validated that, in a typical system
with 4 GB RAM and 4 core CPU, our approach is able to produce
prediction in reasonable time as discussed in the paper.

Accuracy and precision of timings: The tensor-based SEFEE ap-
proach and RandomForests were both conducted on MATLAB and
we used MATLAB’s built-in tic toc library to time the experiments.
However, LSTM experiment was conducted in python using keras
and we approximated the total time taken by using the built in time
per epoch in training output. This might not be totally precise but
a close enough approximation.

Used manufactured solutions or spectral properties: No

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: Our algorithm is not
sensitive to initial conditions, but the system randomness might
slightly change the results.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. We
have run the experiments multiple times and made sure that the
results are not unusually anomalous.

