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Abstract—The functionality of modern multi-core processors is often driven by a given power budget that requires designers to

evaluate different decision trade-offs, e.g., to choose between many slow, power-efficient cores, or fewer faster, power-hungry cores,

or a combination of them. Here, we prototype and evaluate a new Hadoop scheduler, called DyScale, that exploits capabilities offered

by heterogeneous cores within a single multi-core processor for achieving a variety of performance objectives. A typical MapReduce

workload contains jobs with different performance goals: large, batch jobs that are throughput oriented, and smaller interactive jobs that

are response time sensitive. Heterogeneous multi-core processors enable creating virtual resource pools based on “slow” and “fast”

cores for multi-class priority scheduling. Since the same data can be accessed with either “slow” or “fast” slots, spare resources (slots)

can be shared between different resource pools. Using measurements on an actual experimental setting and via simulation, we argue

in favor of heterogeneous multi-core processors as they achieve “faster” (up to 40 percent) processing of small, interactive MapReduce

jobs, while offering improved throughput (up to 40 percent) for large, batch jobs. We evaluate the performance benefits of DyScale

versus the FIFO and Capacity job schedulers that are broadly used in the Hadoop community.
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1 INTRODUCTION

TO offer diverse computing and performance capabili-
ties, the emergent modern system on a chip (SoC) may

include heterogeneous cores that execute the same instruc-
tion set while exhibiting different power and performance
characteristics. The SoC design is often driven by a power
budget that limits the number (and type) of cores that can
be put on a chip. The power constraints force designers to
exploit a variety of choices within the same power envelope
and to analyze decision trade-offs, e.g., to choose between
either many slow, low-power cores, or fewer faster, power
hungry cores, or to select a combination of them, see Fig. 1.
A number of interesting choices may exist, but once the SoC
design is chosen, it defines the configuration of the pro-
duced chip, where the number and the type of cores on the
chip is fixed and cannot be changed.

Intuitively, an application that needs to support higher
throughput and that is capable of partitioning and distribut-
ing its workload across many cores favors a processor with
a higher number of slow cores. However, the latency of a
time-sensitive application depends on the speed of its
sequential components and should benefit from a processor

with faster cores to expedite the sequential parts of the com-
putation. This is why a time-sensitive application may favor
a SoC processor with faster cores, even if these are few. A
SoC design with heterogeneous cores might offer the best of
both worlds by allowing to benefit from heterogeneous
processing capabilities.

MapReduce and its open source implementation
Hadoop offer a scalable and fault-tolerant framework for
processing large data sets. MapReduce jobs are automati-
cally parallelized, distributed, and executed on a large
cluster of commodity machines. Hadoop was originally
designed for batch-oriented processing of large production
jobs. These applications belong to a class of so-called
scale-out applications, i.e., their completion time can be
improved by using a larger amount of resources. For
example, Hadoop users apply a simple rule of thumb [1]:
processing a large MapReduce job on a double size
Hadoop cluster can reduce job completion in half. This
rule is applicable to jobs that need to process large datasets
and that consist of a large number of tasks. Processing
these tasks on a larger number of nodes (slots) reduces job
completion time. Efficient processing of such jobs is
“throughput-oriented” and can be significantly improved
with additional “scale-out” resources.

When multiple users share the same Hadoop cluster,
there are many interactive ad-hoc queries and small MapRe-
duce jobs that are completion-time sensitive. In addition, a
growing number of MapReduce applications (e.g., personal-
ized advertising, sentiment analysis, spam detection) are
deadline-driven, hence they require completion time guar-
antees. To improve the execution time of small MapReduce
jobs, one cannot use the “scale-out” approach, but could
benefit using a “scale-up” approach, where tasks execute on
“faster” resources.
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A typical perception of a MapReduce processing pipeline
is that it is disk-bound (for small and medium Hadoop clus-
ters) and that it can become network-bound on larger
Hadoop clusters. Intuitively, it is unclear whether a typical
MapReduce application under normal circumstances can
benefit from processors with faster cores. To answer this
question we performed experiments on a diverse set of
MapReduce applications in a Hadoop cluster that employs
the latest Intel Xeon quad-core processor (it offers a set of
controllable CPU frequencies varying from 1.6 to 3.3 Ghz,
with each core frequency set separately). While the achiev-
able speedup across different jobs varies, many jobs
achieved speedup of 1.6-2.1 thanks to the faster processors.
Such heterogeneous multi-core processors become an inter-
esting design choice for supporting different performance
objectives of MapReduce jobs.

Here, we design and evaluate DyScale, a new Hadoop
scheduler that exploits capabilities offered by heteroge-
neous cores for achieving a variety of performance objec-
tives. These heterogeneous cores are used for creating
different virtual resource pools, each based on a distinct
core type. These virtual pools consist of resources of distinct
virtual Hadoop clusters that operate over the same datasets
and that can share their resources if needed. Resource pools
can be exploited for multi-class job scheduling. We describe
new mechanisms for enabling “slow” slots (running on
slow cores) and “fast” slots (running on fast cores) in
Hadoop and creating the corresponding virtual clusters.
Extensive simulation experiments demonstrate the effi-
ciency and robustness of the proposed framework. Within
the same power budget, DyScale operating on heteroge-
neous multi-core processors provides significant perfor-
mance improvement for small, interactive jobs comparing
to using homogeneous processors with (many) slow cores.
DyScale can reduce the average completion time of time-
sensitive interactive jobs by more than 40 percent. At the
same time, DyScale maintains good performance for large
batch jobs compared to using a homogeneous fast core
design (with fewer cores). The considered heterogeneous
configurations can reduce completion time of batch jobs up
to 40 percent.

There is a list of interesting opportunities for improving
MapReduce processing offered by heterogeneous processor
design. First of all, both fast and slow Hadoop slots have the
same access to the underlying HDFS data. This eliminates
the data locality issues that could make heterogeneous
Hadoop clusters comprised of fast and slow servers1 being
inefficient [2]. However, when each node consists of

heterogeneous core processors, then any dataset (or any job)
can be processed by either fast or slow virtual resource pools,
or their combination. Second, the possibility of task (job)
migration between slow and fast cores enables enhancing
performance guarantees and more efficient resource usage
compared to static frameworks without the process migra-
tion feature. Among the challenges are i) the implementa-
tion of new mechanisms in support of dynamic resources
allocation, like migration and virtual resource pools, ii) the
support of accurate job profiling, especially, when a job/
task is executed on a mix of fast and slow slots, iii) the anal-
ysis of per job performance trade-offs for making the right
optimization decisions, and iv) increased management
complexity.

This paper is organized as follows. Section 2 provides
background of MapReduce processing. Section 3 gives a
motivating example and discusses the advantages of the
scale-out and scale-up approaches. Section 4 introduces the
DyScale framework. Section 5 evaluates DyScale using
measurements on actual machines and via simulation on a
diverse variety of settings. Section 6 outlines related work.
Section 7 summarizes our contribution and gives directions
for future work.

2 MAPREDUCE BACKGROUND

In the MapReduce model [3] computation is expressed as
two functions: map and reduce. MapReduce jobs are exe-
cuted across multiple machines: the map stage is parti-
tioned into map tasks and the reduce stage is partitioned into
reduce tasks. The map and reduce tasks are executed by map
slots and reduce slots.

In the map stage, each map task reads a split of the input
data, applies the user-defined map function, and generates
the intermediate set of key/value pairs. The map task then
sorts and partitions these data for different reduce tasks
according to a partition function.

In the reduce stage, each reduce task fetches its partition of
intermediate key/value pairs from all the map tasks and
sorts/merges the data with the same key. After that, it
applies the user-defined reduce function to the merged
value list to produce the aggregate results (this is called the
reduce phase). Then the reduce output is written back to a
distributed file system.

Job scheduling in Hadoop is performed by a master
node called JobTracker, which manages a number of
worker nodes. Each worker node is configured with a
fixed number of map and reduce slots, and these slots are
managed by the local TaskTracker. The TaskTracker peri-
odically sends heartbeats to the master JobTracker via TCP
handshakes. The heartbeats contain information such as
current status and the available slots. The JobTracker
decides the next job to execute based on the reported infor-
mation and according to a scheduling policy. Popular job
schedulers include FIFO, Hadoop Fair scheduler (HFS) [4],
and Capacity scheduler [5]. FIFO is the default and sched-
ules MapReduce jobs according to their submission order.
This policy is not efficient for small jobs if large jobs are
also present. The Hadoop Fair Scheduler aims to solve this
problem. It allocates on average the same amount of
resources to every job over time so that small jobs do not

Fig. 1. Different choices in the processor design.

1. Note that the concept of heterogeneous cores within a single pro-
cessor is very different from heterogeneous servers, where different
servers have different capacity and performance. Hadoop clusters that
include heterogeneous servers do have a variety of problems with tra-
ditional data placement and related unbalanced data processing as has
been shown in [2].
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suffer from delay penalties when scheduled after large
jobs and large jobs do not starve. The Capacity scheduler
offers similar features as the HFS but has a different design
philosophy. It allows users to define different queues for
different types of jobs and to configure a percentage of
share of the total resources for each queue in order to
avoid FIFO’s shortcomings.

The assignment of tasks to slots is done in a greedy way:
assign a task from the selected job J immediately whenever
a worker reports to have a free slot. At the same time, a data
locality consideration is taken into account: if there is a
choice of available slots in the system to be allocated to job
J , then the slots that have data chunks of job J locally avail-
able for processing are given priority [4]. If the number of
tasks belonging to a MapReduce job is greater than the total
number of processing slots, then the task assignment takes
multiple rounds, which are called waves.

The Hadoop implementation includes counters for
recording timing information such as start and finish
timestamps of the tasks, or the number of bytes read and
written by each task. These counters are sent by the
worker nodes to the master node periodically with each
heartbeat and are written to logs. Counters help profile
the job performance and provide important information
for designing new schedulers. We utilize the extended set
of counters from [6] in DyScale.

3 MOTIVATING EXAMPLE: SCALE-OUT VERSUS

SCALE-UP APPROACHES

Workload characterization based on Facebook and Yahoo
jobs [4], [7] shows that a MapReduce workload typically can
be described as a collection of “elephants” and “mice”.
Table 1 shows the number of map and reduce tasks and the
percentage of these jobs in the Facebook workload [4]. In
the table, different jobs are grouped into different bins
based on their size in terms of number of map and reduce
tasks. Most jobs are quite small (mice): 88 percent of jobs
have less than 200 map tasks, but there is a small percentage
of the large jobs (elephants) with up to thousands of map
tasks and hundreds of reduce tasks.

Pig jobs [8] present a different case of a MapReduce
workload with large and small jobs. Pig offers a high level
SQL-like abstraction on top of Hadoop. Pig queries are com-
posed of MapReduce workflows. During the earlier stages
of the workflows, the datasets to be processed are usually
large, and therefore, they correspond to “large” job

processing. After some operations such as “select” and
“aggregate”, the amount of data for processing may be sig-
nificantly reduced, and the jobs in the second half of the
workflow can be considered “small”.

Different types of jobs may favor different design
choices. For example, large jobs may benefit from process-
ors with many slow cores to obtain better throughput, i.e.,
to execute as many tasks in parallel as possible in order to
achieve better job completion time. Small jobs may benefit
by processors with fewer fast cores for speeding-up their
tasks and for getting an improved job completion time.
Therefore, heterogeneous multi-core processors may offer
an interesting design point because they bring a potential
opportunity to achieve a win-win situation for both types of
MapReduce jobs.

MapReduce applications are scale-out by design,
which means that the completion time is improved when
more slots are allocated to a job, see Fig. 2. The scale-out
limit depends on the total number of slots in the system
and the job parallelism. MapReduce applications may
also benefit from “scale-up”, e.g., a job may complete
faster on faster cores. The interesting question is how dif-
ferent MapReduce jobs may benefit by both scale-out and
scale-up. To understand the possible trade-offs, consider
the following example.

Motivating example. Assume that we have a Hadoop clus-
ter with 100 nodes. Under the same power budget each
node can have either two fast cores or six slow cores. We con-
figure the Hadoop cluster with one map slot and one reduce
slot per core. The slots that are executed on the fast or slow
cores are called fast and slow slots respectively. Therefore,
the system can have either 200 fast map (reduce) slots or 600
slow map (reduce) slots in total. Let us consider the follow-
ing two jobs:

TABLE 1
Job Description for Each Bin in Facebook Workload

Bin Map Tasks Reduce Tasks # % Jobs

1 1 NA 38%
2 2 NA 16%
3 10 3 14%
4 50 NA 8%
5 100 NA 6%
6 200 50 6%
7 400 NA 4%
8 800 180 4%
9 2,400 360 2%
10 4,800 NA 2%

Fig. 2. Processing MapReduce jobs Job1 and Job2 with slow or fast
slots available in the cluster.
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� Job1 with 4,800 map tasks (i.e., similar to jobs in the
10th group of Table 1),

� Job2 with 50 map tasks (i.e., similar to jobs in the
fourth group of Table 1).

Assume a map task of Job1 and Job2 requires T amout of
time to finish with a fast slot, and 2 � T to execute with a slow
slot. Let us look at the job completion time of Job1 and Job2
as a function of an increased number of fast or slow slots
that are allocated to the job.

The scenarios that reflect possible executions of Job1 and
Job2 are shown in Figs. 2a and 2b, respectively. The graphs
in Fig. 2 are drawn based on calculations using the analytic
model for estimating the completion time of a single job [9].
Completion times are graphed as a function of the number
of slots allocated to a job. The figure illustrates that both
jobs achieve lower completion times with a higher number
of allocated slots.

When a large Job1 is executed with fast slots, and all
200 fast slots are allocated to the job, then its completion
time is: 4800 � T=200 ¼ 24 � T , i.e., it takes 24 rounds of T
time units. The best job completion time is achieved
when using all 600 slow slots. In this case, Job1 finishes
in 4;800 � 2 � T=600 ¼ 16 � T , i.e., it takes eight rounds of
2 � T time units. The job completion time with slow slots
is 30 percent better than with the fast slots. Thus, using
a larger number of slow slots leads to a faster
completion time.

The a small Job2 shown in Fig. 2b cannot take advantage
of more than 50 slots, either slow or fast, because it only has
50 tasks. In this case, when Job2 is executed with fast slots, it
takes 50 � T=50 ¼ T time units to complete. If executed with
slow slots, the completion time is 50 � 2 � T=50 ¼ 2 � T units,
which is twice longer than using fast slots. The small jobs
are usually interactive and thus are time sensitive. For such
jobs, 50 percent of a completion time improvement repre-
sents a significant performance opportunity.

From the example, it is clear that large batch jobs (similar
to Job1) can achieve better performance when processed by
a larger number of slow slots, while the smaller jobs (like
Job2) can execute faster on a smaller number of fast slots.
Such diverse demands in MapReduce jobs indicate that tra-
ditional homogeneous multi-core processors may not pro-
vide the best performance and power trade-offs. This
motivates a new Hadoop scheduler design with a tailored
slot assignment to different jobs based on their scale-out
and scale-up features.

4 DYSCALE FRAMEWORK

We propose a new Hadoop scheduling framework, called
DyScale, for efficient job scheduling on the heterogeneous
multi-core processors. First, we describe the DyScale sched-
uler that enables creating statically configured, dedicated
virtual resource pools based on different types of available
cores. Then, we present the enhanced version of DyScale
that allows the shared use of spare resources among exist-
ing virtual resource pools.

4.1 Problem Definition

The number of fast and slow cores is SoC design specific
and workload dependent. Here, we focus on a given

heterogeneous multi-core processor in each server node,
and the problem of taking advantage of these heteroge-
neous capabilities, especially compared to using homoge-
nous multi-core processors with the same power budget.
Our goal is twofold: 1) design a framework for creating
virtual Hadoop clusters with different processing capabil-
ities (i.e., clusters with fast and slow slots); and 2) offer a
new scheduler to support jobs with different performance
objectives for utilizing the created virtual clusters and
sharing their spare resources. The problem definition is
as follows:

Input:
� C: cluster size (number of machines)
�Nf : number of fast cores on each machine
�Ns: number of slow cores on each machine
� S: job size distribution
� A: job arrival process

Output:
Sched: schedule of Map/Reduce task placement

Objective:
minimizefSchedg Job Completion Time ( Sched )

A natural first question is why a new Hadoop sched-
uler is a necessity and why the default Hadoop scheduler
can not work well. To answer this question, we show the
performance comparison under the same power budget of
using the default Hadoop scheduler on heterogenous and
homogenous multi-core processors respectively, and also
our DyScale scheduler with the same heterogenous multi-
core processors, see Fig. 3. The details of the experiment
configurations are given in Section 5.3. The important
message from Fig. 3 is that the default Hadoop scheduler
cannot use well the heterogenous multi-core processors
and may even perform worse than when using it on a
cluster with homogenous multi-core processors with the
same power budget due to the random use of fast and
slow cores.

Fig. 3. The completion time of interactive jobs and batch jobs under dif-
ferent configurations: heterogenous cluster using FIFO, homogenous
cluster using FIFO and heterogenous cluster using DyScale.
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4.2 Dedicated Virtual Resource Pools for Different
Job Queues

DyScale offers the ability to schedule jobs based on perfor-
mance objectives and resource preferences. For example, a
user can submit small, time-sensitive jobs to the Interactive
Job Queue to be executed by fast cores and large, through-
put-oriented jobs to the Batch Job Queue for processing by
(many) slow cores. This scenario is shown in Fig. 4. It is also
possible for the scheduler to automatically recognize the job
type and schedule the job on the proper queue. For exam-
ple, small and large jobs can be categorized based on the
number of tasks. A job can be also classified based on the
application information or by adding a job type feature in
job profile.

To allocate resources according to the above scenario, a
dedicated virtual resource pool has to be created for each
job queue. For example, as shown in Fig. 4, fast slots can be
grouped as a Virtual Fast (vFast) resource pool that is dedi-
cated to the Interactive Job Queue. Slow slots can be
grouped as a Virtual Slow (vSlow) resource pool that is ded-
icated to the Batch Job Queue.

The attractive part of such virtual resource pool arrange-
ment is that it preserves data locality because both fast and
slow slots have the same data access to the datasets stored
in the underlying HDFS. Therefore, any dataset can be proc-
essed by either fast or slow virtual resource pools, or their
combination.2 To support a virtual resource pool design,
the TaskTracker needs additional mechanisms for the fol-
lowing functionalities:

� the ability to start a task on a specific core, i.e., to run
a slot on a specific core and assign a task to it;

� to maintain the mapping information between a task
and the assigned slot type.

The TaskTracker always starts a new JVM for each task
instance (if the JVM reuse feature in Hadoop is disabled). It
is done such that a JVM failure does not impact other tasks
or does not take down the TaskTracker. Running a task on a
specific core can be achieved by binding the JVM to that
core. We use the CPU affinity to implement this feature. By
setting the CPU affinity, a process can be bound to one or a

set of cores. The TaskTracker calls spawnNewJVM class to
spawn a JVM in a new thread. The CPU affinity can be spec-
ified during spawn to force the JVM to run on the desired
fast or slow core.

An additional advantage of using the CPU affinity is that
it can be changed during runtime. If the JVM reuse feature is
enabled in the Hadoop configuration (note, that the JVM
reuse can be enabled only for the tasks of the same job), the
task can be placed on a desired core by changing the CPU
affinity of the JVM.

The mapping information between tasks and cores is
maintained by recording (task_ID, JVM_pid, core_id) in the
TaskTracker table. When a task finishes, the TaskTracker
knows whether the released slot is fast or slow.

The JobTracker needs to know whether the available slot
is a slow or fast slot to make resource allocation decisions.
DyScale communicates this information through the heart-
beat, which is essentially a RPC (Remote Procedure Call)
between the TaskTracker at a worker node and the Job-
Tracker at the master node.

The TaskTracker asks the JobTracker for a new task when
the current running map/reduce tasks are below the config-
ured maximum allowed number of map/reduce tasks
through a boolean parameter askForNewTask. If the Task-
Tracker can accept a new task, then the JobTracker calls the
Hadoop Scheduler for a decision to assign a task to this
TaskTracker.

The Scheduler checks TaskTrackerStatus to know whether
the available slots are Map or Reduce slots. DyScale’s
Scheduler also needs to distinguish the slot type. There are
four types of slots: i) fast map, ii) slow map, iii) fast reduce,
and iv) slow reduce.

In the DyScale framework, the Scheduler interacts with
the JobQueue by considering the slot type, e.g., if the avail-
able slot is a fast slot, then this slot belongs to vFast pool,
and the InteractiveJobQueue is selected for a job/task alloca-
tion. After selecting the JobQueue, it allocates the available
slot to the first job in the queue.

Different policies exist for ordering the jobs inside the
JobQueue as well as different slot allocation policies. The
default policy is FIFO. The job ordering/resource allocation
depends on the performance objectives and can be defined
by the Hadoop Fair Scheduler [4] or the ARIA SLO-driven
scheduler [9]. DyScale can be easily augmented with addi-
tional policies for improving fairness, meeting completion
time objectives, or other metrics. The JobTracker puts a list
of current actions, such as LAUNCH_TASK, in the Task-
TrackerAction list to tell the TaskTracker what to do next
through the heartbeatResponse.

4.3 Managing Spare Cluster Resources

Static resource partitioning and allocation may be inefficient
if a resource pool has spare resources (slots) but the corre-
sponding JobQueue is empty, while other JobQueue(s) have
jobs that are waiting for resources. For example, if there are
jobs in the InteractiveJobQueue and they do not have enough
fast slots, then these jobs should be able to use the available
(spare) slow slots.

We use the Virtual Shared (vShare) Resource pool to uti-
lize spare resources. As shown in Fig. 5, the spare slots are

Fig. 4. Virtual resource pools.

2. Note the difference of this approach compared to node level het-
erogeneity, where data may reside on different node types, and there-
fore, it leads to data locality issues as data is not always available on
the desired node types.

YAN ET AL.: DYSCALE: A MAPREDUCE JOB SCHEDULER FOR HETEROGENEOUS MULTICORE PROCESSORS 321



put into the vShare pool. Slots in the vShare resource pool
can be used by any job queue.

The efficiency of the described resource sharing could be
further improved by introducing the TaskMigration mecha-
nism. For example, the jobs from the InteractiveJobQueue can
use spare slow slots until the future fast slots become avail-
able. These tasks are migrated to the newly released fast
slots so that the jobs from the InteractiveJobQueue always use
optimal resources. Similarly, the migration mechanism
allows the batch job to use temporarily spare fast slots if the
InteractiveJobQueue is empty. These resources are returned
by migrating the batch job from the fast slots to the released
slow slots when a new interactive job arrives.

DyScale allows to specify different policies for handling
spare resources. The migration mechanism is implemented
by changing the JVM’s CPU affinity within the same SoC.
By adding the MIGRATE_TASK action in the TaskTracker-
Action list in heartbeatResponse, the JobTracker can inform
the TaskTacker to migrate the designated task between
slow and fast slots.

DyScale can support SLOs by adding priorities to the
queues and by allowing different policies for ordering the
jobs inside each queue. For example, let the interactive jobs
have deadlines to meet. The batch jobs are the best-effort
jobs. When there are not enough fast slots for interactive
jobs, these jobs can be given priority for using the available
slow slots. This can be supported by the vShared resource
pool and task migration.

5 CASE STUDY

In this section, we first present our measurement results
with a variety of MapReduce applications executed on a
Hadoop cluster configured with different CPU frequen-
cies. Then, we analyze and compare simulation results
based on synthetic Facebook traces, that emulate the exe-
cution of the Facebook workload on a Hadoop cluster to
quantify the effects of homogeneous versus heterogeneous
processors. We also analyze the DyScale scheduler perfor-
mance under different job arrival rates and evaluate its
performance advantages in comparison to the FIFO and
Capacity [5] job schedulers that are broadly used by the
Hadoop community.

5.1 Experimental Testbed and Workloads

We use an eight-node Hadoop cluster as our experimental
testbed. Each node is a HP Proliant DL 120 G7 server that
employs the latest Intel Xeon quad-core processor E31240
@ 3.30 Ghz. The processor offers a set of controllable CPU
frequencies varying from 1.6 to 3.3 Ghz, and each core
frequency can be set separately. The memory size of the
server is 8 GB. There is one 128 GB disk dedicated for sys-
tem usage and six additional 300 GB disks dedicated to
Hadoop and data. The servers use 1 Gigabit Ethernet and
are connected by a 10 Gigabit Ethernet Switch. We use
Hadoop 1.0.0 with one dedicated server as JobTracker
and NameNode, and the remaining seven servers as
workers. We configure one map and one reduce slot per
core, i.e., four map slots and four reduce slots per each
worker node. The HDFS blocksize is set to 64 MB and the
replication level is set to 3. We use the default Hadoop
task failure mechanism to handle task failures.

We select 13 diverse MapReduce applications [2] to run
experiments in our Hadoop cluster. The high level descrip-
tion of these applications is given in Table 2.

Applications 1, 8, and 9 use synthetically generated data
as input. Applications 2 to 7 process Wikipedia articles.
Applications 10 to 13 process Netflix ratings. The intermedi-
ate data is the output of map task processing. This data
serves as the input data for reduce task processing. If the
intermediate data size is large, then more data needs to be
shuffled from map tasks to reduce tasks. We call such jobs
shuffle-heavy. Output data needs to be written to the distrib-
uted storage system (e.g., HDFS). When the output data size
is large, we call such jobs write-heavy. Shuffle-heavy and
write-heavy applications tend to use more networking and
IO resources.

Selected applications for our experiments represent a
variety of MapReduce processing patterns. For example,
TeraSort, RankInvIndex, SeqCount, and KMeans are both
shuffle-heavy and write-heavy. Grep, HistMovies, HistRat-
ings, and Classification have a significantly reduced
data size after the map stage and therefore belong to the
shuffle-light and write-light category. In addition, some
applications including Classification and KMeans are

Fig. 5. Virtual shared resource pool.

TABLE 2
Application Characteristics

Application Input
data

Input
data

Interm
data

Output
data

#map, red
tasks

(type) (GB) (GB) (GB)

1.TeraSort Synth 31 31 31 450, 28
2.WordCount Wiki 50 9.8 5.6 788, 28
3.Grep Wiki 50 3x10�8 1x10�8 788, 1
4.InvIndex Wiki 50 10.5 8.6 788, 28
5.RankInvIndex Wiki 46 48 45 768, 28
6.TermVector Wiki 50 4.1 0.002 788, 28
7.SeqCount Wiki 50 45 39 788, 28
8.SelfJoin Synth 28 25 0.15 448, 28
9.AdjList Synth 28 11 11 507, 28
10.HistMovies Netflix 27 3x10�5 7x10�8 428, 1
11.HistRatings Netflix 27 2x10�5 6x10�8 428, 1
12.Classification Netflix 27 0.008 0.006 428, 50
13.KMeans Netflix 27 27 27 428, 50
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computation-intensive because their map phase process-
ing time is orders of magnitude higher than other phases.
The selected applications exhibit different processing pat-
terns and allow for a detailed analysis on a diverse set of
MapReduce workloads.

5.2 Experimental Results with Different CPU
Frequencies

Since the heterogeneous multi-core processors are not yet
available for provisioning a real testbed and performing
experiments directly, we need to understand how execution
on “fast” or “slow” cores may impact performance of Map-
Reduce applications. Here we aim to empirically evaluate
the impact of “fast” and “slow” cores on the completion
time of representative MapReduce applications. We mimic
the existence of fast and slow cores by using the CPU fre-
quency control available in the current hardware. These
experiments are important, because Hadoop and MapRe-
duce applications are considered to be disk-bound, and
intuitively, it is unclar what is the performance effect of dif-
ferent CPU frequencies.

We run all applications from Table 2 on our experimental
cluster using two scenarios: i) CPU frequency of all process-
ors is set to 1.6 Ghz for emulating “slow” cores, and ii) CPU
frequency of all processors is set 3.3 Ghz, e.g., two times
faster, for emulating “fast” cores. We flush memory after
each experiment and disable write cache to avoid caching
interference.

All measurement experiments are performed five times.
We show the mean and the variance, i.e., the minimal and
maximal measurement values across the five runs. This
comment applies to the results in Figs. 6, 8, and 9.

Fig. 6 summarizes the results of our experiments.
Fig. 6a shows the completion times for each job. Note the
gap in the Y-axis that is introduced for better visualizing
of all 13 applications in the same figure: the map task
durations of Classification and Kmeans are much higher
compared to the other 11 applications. Fig. 6b shows the
normalized results of the relative speedup obtained by
executing the applications on the servers with 3.3 Ghz
compared to the application completion time on the serv-
ers with 1.6 Ghz. Speedup of 1 means no speedup, i.e.,
the same completion time. Few jobs have a completion
time speedup of 1.2 to 1.3, while the majority of jobs enjoy
speedups of 1.6 to 2.1.

To better understand the above, we performed further
analysis at the phase level duration. Each map task pro-
cesses a logical split of the input data (e.g., 64 MB) and per-
forms the following steps: read, map, collect, spill, and merge
phases, see Fig. 7. The map task reads the data, applies the
map function on each record, and collects the resulting out-
put in memory. If this intermediate data is larger than the
in-memory buffer, it is spilled on the local disk of the
machine executing the map task and merged into a single
file for each reduce task.

The reduce task processing is comprised by the shuffle,
reduce, and write phases. In the shuffle phase, the reduce
tasks fetch the intermediate data files from the already com-
pleted map tasks and sort them. After all intermediate data
is shuffled, a final pass is made to merge sorted files. In the
reduce phase, data is passed to the user-defined reduce func-
tion. The output from the reduce function is written back to
the distributed file system in the write phase. By default,
three copies are written to different worker nodes.

Fig. 6. Measured job completion time and speedup (normalized) when the CPU frequency is scaled-up from 1.6 to 3.3 GHz.

Fig. 7. Map and reduce tasks processing pipeline.
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We report the average measured map task durations
with CPU frequencies of 1.6 and 3.3 Ghz in Fig. 8a and
the reduce task durations in Fig. 9a. For different applica-
tions, the time spent in the shuffle and write phases is dif-
ferent and depends on the amount of intermediate data
and output data written back to HDFS (i.e., whether the
application is shuffle-heavy and/or whether it writes a
large amount of output data such as TeraSort, RankInvIn-
dex, AdjList). These shuffle and write portions of the proc-
essing time influence the outcome of the overall
application speedup.

Our analysis reveals that the map task processing for dif-
ferent applications have a similar speedup profile when exe-
cuted on a 3.3 Ghz CPU. In our experiments, this speedup is
close to two across all 13 applications, see Fig. 8b. However,
the shuffle and write phases in the reduce stage often show
very limited speedup across applications (on average

20 percent, see Fig. 9b) due to different amount of data proc-
essed at this stage.

By looking at the results in Figs. 8b-9b, one may sug-
gest the following simple scheduling policy for improving
MapReduce job performance and taking advantage of
heterogeneous multi-processors. Run map tasks on faster
cores and reduce tasks on slower cores. However, perfor-
mance of many large jobs is critically impacted not only
by the type of slots allocated to the job tasks, but by the
number of allocated slots. For example, if each processor
has two fast cores and six slow cores then the proposed
simple scheduling will not work as expected: using only
fast cores for processing map tasks result in degraded
performance for large jobs compared to their processing
by using the available slow cores as has been shown
in the related motivating example in Section 3. Therefore,
to efficiently utilize the heterogeneous multi-core

Fig. 8. Average measured map task duration and normalized speedup of map tasks in the experiments when the CPU frequency is scaled-up from
1.6 to 3.3 Ghz.

Fig. 9. Average measured reduce task duration and normalized speedup of reduce tasks in the experiments when the CPU frequency is scaled-up
from 1.6 to 3.3 Ghz.
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processors, one needs to consider a number of factors:
1) the type and the size of the job, workload job mix, jobs
arrival rate, user performance objectives, and 2) the com-
position of the heterogeneous multi-processor, i.e., the
number of fast or slow cores per processor, as well as the
Hadoop cluster size.

5.3 Simulation Framework and Results

As the heterogeneous multi-core processors are not yet
readily available, we perform a simulation study using the
extended MapReduce simulator SimMR [10] and a synthetic
Facebook workload [4]. In addition, simulation allows more
comprehensive sensitivity analysis. Our goal is to compare
the job completion times and to perform a sensitivity analy-
sis when a workload is executed by different Hadoop clus-
ters deployed on either homogeneous or heterogeneous
multi-core processors.

The event-driven simulator SimMR consists of the fol-
lowing three components, see Fig. 10:

� A Trace Generator creates a replayable MapReduce
workload. In addition, the Trace Generator can create
traces defined by a synthetic workload description
that compactly characterizes the duration of map
and reduce tasks as well as the shuffle stage charac-
teristics via corresponding distribution functions.
This feature is useful to conduct sensitivity analysis
of new schedulers and resource allocation policies
applied to different workload types.

� The Simulator Engine is a discrete event simulator
that accurately emulates the job master functionality
in the Hadoop cluster.

� A pluggable scheduling policy dictates the scheduler
decisions on job ordering and the amount of resour-
ces allocated to different jobs over time.

We extend SimMR3 to emulate the DyScale framework.
We also extend SimMR to emulate the Capacity scheduler
[5] for homogeneous environments. We summarize the
three schedulers used in this paper below:

� FIFO: the default Hadoop scheduler that schedules
the jobs based on their arrival order.

� Capacity: users can define different queues for dif-
ferent types of jobs. Each queue can be configured
with a percentage of the total number of slots in the
cluster, this parameter is called queue capacity. This

scheduler has an Elasticity feature that allows free
resources to be allocated to a queue above its capac-
ity to prevent artificial silos of resources and achieve
better resources utilization.

� DyScale: we use two different versions: i) the basic
version without task migration and ii) the advanced
versionwith the migration feature enabled.

We approximate the performance and power consump-
tion of different cores from the available measurements of
the existing Intel processors [11], [12] executing the PARSEC
benchmark [13]. We observe that the Intel processors i7-
2600 and E31240 (used in the HP Proliant DL 120 G7 server)
are from the same Sandy Bridge micro-architecture family
and have almost identical performance [14]. We addition-
ally differentiate the performance of map and reduce tasks
on the simulated processors by using our experimental
results reported in Section 5.2. We summarize this data in
Table 3.

With a power budget of 84 W, we choose three multi-core
processor configurations, see Table 4. In our experiments,
we simulate the execution of the Facebook workload on
three different Hadoop clusters with multi-core processors.
For sensitivity analysis, we present results for different clus-
ter sizes of 75, 120, and 210 nodes as they represent interest-
ing performance situations.

We configure each Hadoop cluster with one map and one
reduce slot per core,4 e.g., for a Hadoop cluster size with 120
nodes, the three considered configurations have the follow-
ing number of map and reduce slots:

� the Homogeneous-fast configuration has 480 fast map
(reduce) slots,

� Homogeneous-slow configuration has 2,640 slow map
(reduce) slots, and

� the Heterogeneous configuration has 360 fast map
(reduce) slots and 1,080 slow map (reduce) slots.

We generate 1,000 MapReduce jobs according to the
distribution shown in Table1, with a three-fold increase in
the input datasets,5 Jobs from the first to the fifth group are
small interactive jobs (e.g., with less than 300 tasks) and the
remaining jobs are large batch jobs. The interactive jobs are
82 percent of the total mix and the batch jobs are 18 percent.
The task duration of the Facebook workload can be best fit
with a LogNormal distribution [16] and the following
parameters: LN(9.9511, 1.6764) for map task duration and
LN(12.375, 1.6262) for reduce task duration.

First, we perform a comparison of these three configura-
tions when jobs are processed by each cluster in isolation:
each job is submitted in the FIFO order, there is no bias due
to the specific ordering policy nor queuing waiting time for
each job, e.g., each job can use all cluster resources. For the
heterogeneous configuration, the SimMR implementation
supports the vShared resource pool so that a job can use

Fig. 10. Simulator design.

3. SimMR accurately reproduces the original job processing: the
completion times of the simulated jobs are within 5 percent of the origi-
nal ones, see [10].

4. We assume that each node has enough memory to configure map
and reduce slots with the same amount of RAM for different SOC
configurations.

5. In our earlier conference paper [15], we have evaluated DyScale
on a smaller workload defined by Table1 and smaller size Hadoop clus-
ters with 25, 40, and 70 nodes. To test the scalability of the solution, we
increased the application datasets and the Hadoop clusters for
processing.
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both fast and slow resources. Results are plotted in Fig. 11.
Each row shows three graphs that correspond to the clusters
with 75, 120, and 210 nodes respectively. The graphs show
the average completion time of interactive jobs (top row)
and batch jobs (bottom row).

For interactive jobs, Homogeneous-fast and Heterogeneous
configurations achieve very close completion times and sig-
nificantly outperform the Homogeneous-slow configuration
by being almost twice faster. The small, interactive jobs
have a limited parallelism and once their tasks are allocated
the necessary resources, these jobs cannot take advantage of
the extra slots available in the system. For such jobs, fast
slots are the effective way to achieve better performance
(scale-up approach).

For batch jobs, as expected, the scale-out approach shows
its advantage since batch jobs have a large number of map
tasks. The Homogeneous-slow configuration consistently out-
performs Homogeneous-fast, and can be almost twice faster
when the cluster size is small (e.g., 75 nodes). The interest-
ing result is that the Heterogeneous configuration is almost
neck-to-neck with the Homogeneous-slow configuration for
batch jobs.

By comparing these results, it is apparent that the het-
erogeneous multi-core processors with fast and slow cores
present an interesting design point. It can significantly
improve the completion time of interactive jobs with the
same power budget. The large batch jobs are benefiting
from the larger number of the slower cores that improve
throughput of these jobs. Moreover, the batch jobs are
capable of taking advantage and effectively utilizing the
additional fast slots in the vShared resource pool sup-
ported by DyScale.

5.4 Simulation Results with Arrival Process

In this section, we conduct further experiments for compar-
ing the performance of different configurations under vary-
ing job arrival rates. We use the same experimental setup
as in Section 5.3. We use exponential inter-arrival times to
drive the job arrival process and vary the average of the
inter-arrival time between 50 and 1,000 sec (between 50 and
100 sec with a step of 10 sec, and between 100 and 1,000 sec
with a step of 100 sec). We analyze three scenarios:

� Scenario 1. We compare the job completion times of
DyScale (used in the Heterogeneous cluster configura-
tion) with FIFO (used in both Homogeneous-slow and
Homogeneous-fast cluster configurations).

� Scenario 2. We compare the job completion times of
DyScale (used in the Heterogeneous cluster configu-
ration) with Capacity (used in both Homogeneous-
slow and Homogeneous-fast cluster configurations).

� Scenario 3. We compare the performance of DyScale
with migration enabled and disabled to illustrate
how a task migration feature can provide additional
performance opportunities.

Fig. 12 illustrates the performance comparison of DyScale
vs FIFO ( Scenario 1). The completion times of interactive jobs
(top row) for both Homogeneous-slow and Homogeneous-fast
cluster configurations with FIFO are much higher than
for the Heterogeneous configuration with DyScale. The
Homogeneous-fast configuration is very sensitive to the cluster
size and is least resilient to high arrival rates. The Heteroge-
neous configuration with DyScale consistently provides best
performance for interactive jobs.

For batch jobs (second row in Fig. 12), the Heterogeneous
configuration with DyScale is slightly worse than the
Homogeneous-slow configuration because batch jobs have
more slots to use in Homogeneous-slow configuration. How-
ever, it outperforms the Homogeneous-fast configuration by
up to 30 percent.

Overall, the Heterogeneous configuration with the DyScale
scheduler shows very good and stable job completion times
compared to both Homogeneous-slow and Homogeneous-fast
cluster configurations with the FIFO scheduler. It is espe-
cially evident under higher loads, i.e., when the inter-arrival
times are small and traffic is bursty. Overall, system perfor-
mance for the Heterogeneous configuration with the DyScale
scheduler is very robust. When the inter-arrival time
becomes larger (i.e., under light load), the observed perfor-
mance gradually converges to the case when each job is exe-
cuted in isolation, and the completion times are similar to
the results shown in Fig. 11.

Fig. 13 illustrates the performance comparison of DyScale
vs Capacity (Scenario 2). The Capacity Scheduler is config-
ured with two queues for interactive jobs and batch jobs,
respectively. Each queue capacity is determined based on
the ratio of the interactive and batch jobs in the Facebook
workload, see Table 5. We can see that the performance of
interactive jobs (shown in top row) of Fig. 13 is supported
better with the Capacity Scheduler compared to FIFO (the
previous experiments shown in top row of Fig. 12). The
completion times of interactive jobs for Heterogeneous con-
figuration is slightly worse than for the Homogeneous-fast
configuration, but much better than for Heterogeneous-slow,

TABLE 3
Processor Specifications

Type Processor
Name

Tech. Frequency Power
per Core

Normalized
Power

Normalized
(PARSEC)

Performance

Normalized
Map Task

Performance

Normalized
Reduce Task
Performance

Type 1 i7-2600 Sandy Bridge 32 nm 3.4 Ghz 21 W 1.0 1.0 1.0 1.0
Type 2 i5-670 Nehalem 32 nm 3.4 Ghz 16 W 0.81 0.92 0.92 0.98
Type 3 AtomD Bonnell 45 nm 1.7 Ghz 4 W 0.19 0.45 0.45 0.83

TABLE 4
Processor Configurations with the Same Power Budget of 84 W

Configuration Type 1 Type 2 Type 3 Power

Homogeneous-fast 4 0 0 84 W
Homogeneous-slow 0 0 21 84 W
Heterogeneous 0 3 9 84 W
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by up to 40 percent. For batch jobs, the Heterogeneous config-
uration is slightly worse than Homogeneous-slow, but it out-
performs the Homogeneous-fast configuration by up to
30 percent. Again the Heterogeneous configuration with
DyScale provides an interesting solution and exhibits a flex-
ible support for job classes with different performance
objectives compared to homogeneous-core configurations
with either FIFO or Capacity schedulers.

Finally, we compare the basic DyScale (no task migration)
and the advanced DyScale (with the task migration feature)
and present the results for Scenario 3 in Fig. 14. We can see
that the migration feature always brings additional perfor-
mance improvement for both interactive and batch jobs
because it allows more efficient use of the cluster resources.
When the cluster size is small, such feature provides a

higher performance boost for interactive jobs, see Fig. 14a.
In this case, there is only a limited number of fast slots, and
the chance is higher that some interactive job is allocated to
a slow slot. Task Migration allows migrating tasks when
fast slots become available, and utilizes fast slots more
efficiently.

When the cluster size increases, the task migration is
more beneficial for batch jobs, see Fig. 14f. In this case, there
are more fast slots in the system and the batch jobs can uti-
lize them. However, when an interactive job arrives, the fast
slots occupied by batch jobs can be released by migrating
batch tasks to slow slots.

In summary, the Heterogeneous configuration with the
DyScale scheduler allows to achieve significantly improved
performance for interactive jobs while maintaining and

Fig. 11. Completion time of interactive and batch jobs under different configurations.

Fig. 12. DyScale versus FIFO scheduler: the completion time of interactive jobs and batch jobs under different configurations, (a)-(b) the Hadoop
cluster with 75 nodes, (c)-(d) the Hadoop cluster with 120 nodes, (e)-(f) the Hadoop cluster with 210 nodes.
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improving the performance of batch jobs compared to both
Homogeneous-slow and Homogeneous-fast configurations with
different job schedulers.

6 RELATED WORK

There is a body of work exploring power and performance
trade-offs using heterogeneous multi-core processors. Some
papers focus on the power savings aspect, e.g., Rakesh et al.
[17], while others concentrate on the performance aspect,
see [18], [19] that examine techniques such as monitoring,
evaluating thread performance, and dynamically mapping
threads to different core types. Shelepov and Fedorova [20]
propose using architecture signatures to guide thread
scheduling decisions. The proposed method needs to mod-
ify the applications for adding the architecture signatures,
therefore it is not practical to deploy. These proposed
techniques focus on improving the overall chip-level
throughput. The work in [21] explores the per-program per-
formance in addition to the overall chip level throughput
when using heterogeneous multi-core processors.

General efforts for power and performance trade-offs
focus on a single machine while Hadoop is a distributed
framework and needs to manage a cluster environment.
It is difficult to apply such traditional techniques for
Hadoop. Here, we aim to support different performance

objectives for classes of Hadoop jobs, which requires an
exact control of running different types of slots in different
cores, therefore dynamical mapping of threads to cores is
not suitable here.

Performance analysis and optimization of MapReduce
processing in the heterogeneous server environment is the
subject of several works. The authors in [22], [23] compute
the remaining time of each task and use speculative execu-
tion to accelerate the “slow” task to reduce the hetero-
geneity’s negative impact. This technique is applicable to
our case as well, especially for managing shared spare
resources formed by different types of slots.

Load-balancing and load re-balancing approaches in a
heterogeneous cluster is used in [2], [24] to allow the faster
node to get more data, such that reduce tasks finish approxi-
mately at the same time. Xie et al. [25] use data placement to
optimize performance in heterogeneous environments.
Faster nodes store more data and therefore run more tasks
without data transfer. Gupta et al. [26] use off-line profiling
of the jobs execution with respect to different heterogeneous
nodes in the cluster and optimize the task placement to
improve the job completion time. Lee et al. [27] propose to
divide the resources into two dynamically adjustable pools
and use the new metric “progress share” to define the share
of a job in a heterogeneous environment so that better per-
formance and fairness can be achieved. This approach only
allocates resources based on the job storage requirement.
Polo et al. [28] modify the MapReduce scheduler to enable it
to use special hardware like GPUs to accelerate the MapRe-
duce jobs in the heterogeneous MapReduce cluster. Jiang
and Agrawal [29] developed a MapReduce-like system in
heterogeneous CPU and GPU clusters.

All the above efforts focus on the server level heterogene-
ity in Hadoop cluster. In the case of Hadoop deployment on
heterogeneous servers, one has to deal with data locality
and balancing the data placement according to the server
capabilities. One of the biggest advantages of Hadoop
deployed with heterogeneous processors is that both fast

Fig. 13. DyScale versus Capacity Scheduler: the completion time of interactive jobs and batch jobs under different configurations, (a)-(b) the Hadoop
cluster with 75 nodes, (c)-(d) the Hadoop cluster with 120 nodes, (e)-(f) the Hadoop cluster with 210 nodes.

TABLE 5
Capacity Scheduler: Queue Capacity Configurations (in the
Brackets, We Provide the Number of Slots in Each Queue for

the Cluster with 120 Nodes as an Example)

Configuration Interactive-Queue
capacity

(total slots for
cluster size 120)

Batch-Queue
capacity

(total slots for
cluster size 120)

Homogeneous-fast 18% (87) 82% (393)
Homogeneous-slow 18% (453) 82% (2,067)
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and slow slots have a similar access to the underlying HDFS
data that eliminates data locality issues.

Ren et al. [11] consider heterogeneous SoC design and
demonstrates that the heterogeneity is well suited to
improve performance of interactive workloads (e.g., web
search, online gaming, and financial trading). This is
another example of interesting applications benefiting from
the heterogeneous multi-core processors. In [15], the basic
idea of using heterogeneous multi-core processors for Map-
Reduce processing is outlined and some initial evaluation
results are presented. The current extended version of this
paper provides a more detailed description of the schedul-
ing DyScale framework and presents a comprehensive per-
formance evaluation study.

7 CONCLUSIONS

In this work, we exploit the new opportunities and per-
formance benefits of using servers with heterogeneous
multi-core processors for MapReduce processing. We
present a new scheduling framework, called DyScale, that
is implemented on top of Hadoop. DyScale enables creat-
ing different virtual resource pools based on the core-
types for multi-class job scheduling. This new framework
aims at taking advantage of capabilities of heterogeneous
cores for achieving a variety of performance objectives.
DyScale is easy to use because the created virtual clusters
have access to the same data stored in the underlying dis-
tributed file system, and therefore, any job and any data-
set can be processed by either fast or slow virtual resource
pools, or their combination. MapReduce jobs can be sub-
mitted into different queues, where they operate over dif-
ferent virtual resource pools for achieving better
completion time (e.g., small jobs) or better throughput
(e.g., large jobs). It is easy to incorporate the DyScale
scheduler into the latest Hadoop implementation with
YARN [30], as YARN has a pluggable job scheduler as
one of its components.

In the future, once the servers with heterogeneous multi-
core processors become available, we plan to conduct more
testbed experiments using DyScale and a variety of job
ordering scheduling policies for achieving fairness guaran-
tees or job completion objectives. Also, using models from
earlier work [31], we plan to quantify the impact of node
and slot failures on the job completion time as the impact of
failed fast or slow slots may be different. Similarly, the allo-
cation of additional slots for re-running failed tasks may
impact job completion times and can be supported by
special policies in DyScale.
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