Introduction to Computer Networks

COSC 4377

Lecture 1

Spring 2012

January 18, 2012

Textbook

Computer Networks: A Top-Down Approach Kurose and Ross Fifth Edition

- Library has two copies on reserve
- 4th edition also ok

Teaching Staff

- Instructor
 - Omprakash Gnawali
 - gnawali@cs.uh.edu
 - Office Hours: MW 230-330 at PGH 577
- Teaching Assistant
 - Dong Han
 - donny@cs.uh.edu
 - Office Hours: TR 1030-1200 at PGH 313 Space 5

Topics Covered

- How does the Internet work?
- Learn to design and analyze network infrastructure, applications and services
- Build several networked programs
 - Lots of programming!
- NOT
 - System administration
 - Network configuration

How does a message travel from me to my friend?

Homeworks

- Most of them programming assignments, approximately one per week
- C in Linux/Unix environment
- Discuss in groups, submit your own work
- Submit on Blackboard
- Late submission
 - Two days late: max(80%, your score)
 - More than two days late: 0

Exams

- Two in-class exams
- No final exam!

Grades

Component	Percentage
Homeworks and Projects	55
Exams	40
Participation	5

Final grade curved, but modified to take into account your mastery of material

Getting Help

- General questions on Piazza
- Come to office hours
- Wikipedia / Google / YouTube

- Put COSC 4377 in subject in emails
 - Email not preferred for technical discussion

Why Study Networks?

- Critical Infrastructure for everyday life
 - How does it work?
 - What are its shortcomings?
- Most applications are networked
 - Designing and building
 - Debugging and understanding
- Internet as human right?

Disclosure

 Material will be liberally taken from the textbook, Wikipedia, and other online sources

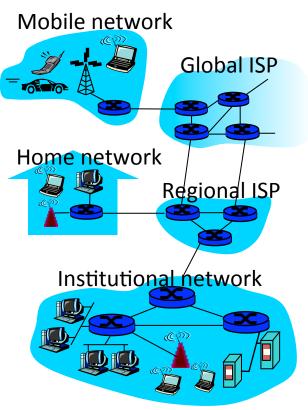
 Some material taken from slides that come with the textbook, Rodrigo Fonseca, and many others

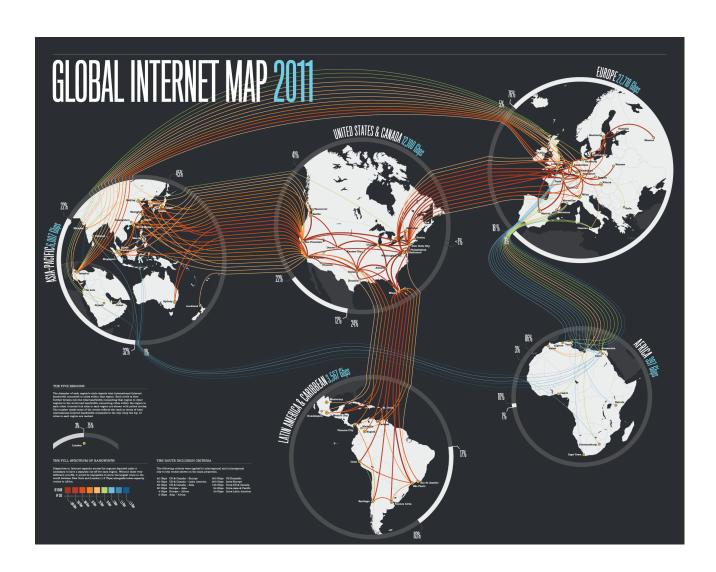
Course Website

http://www2.cs.uh.edu/~gnawali/courses/cosc4377-s12/

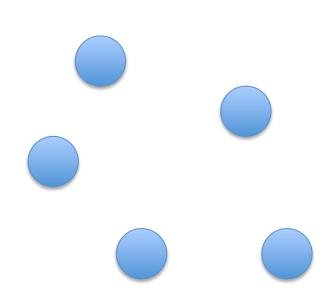
When should we have a C-programming tutorial?

Wednesday evening
Thursday evening

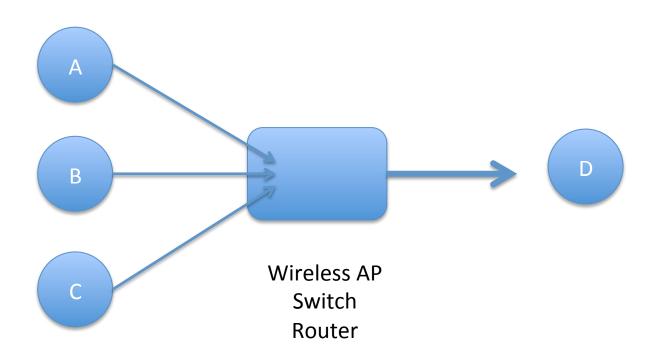

Today's topics


- Networking the nodes
- Network metrics
- Protocols

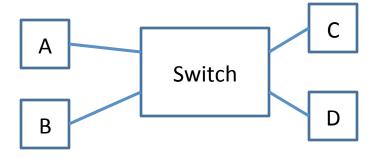
The Internet


 Collection of nodes, wire and wireless technology connecting those nodes, applications and services

- Types of nodes
 - Desktops and Laptops
 - Servers
 - TV / Refrigerator
 - Cellphones


- Goal: Connect all the nodes to each other
- Solutions
 - $-N^2$ cables
 - Sharing the links
 - Circuit Switching
 - Packet Switching

- Packet
 - Collection of bits to transfer across a network
 - Think: envelope and its content


- Circuit
 - Pre-allocated path/resource

Packet vs Circuit Switching

Circuit Switching

- Setup the connection or resource
 - Schedule (e.g., TDMA)
 - State in the network

Time	Circuit
T, 3T, 5T,	A-D
2T, 4T, 6T,	B-C

Circuit Switching

- Natural for predictable data rates
- Can guarantee certain level of service
- Can be inefficient for many applications

http://en.wikipedia.org/wiki/Circuit switching

Some Circuit Switching Techniques

Time

- Reserve to use the link at a given schedule
- Read: http://en.wikipedia.org/wiki/Time-division_multiplexing

Frequency

- Reserve to use certain frequencies (channel)
- Read: http://en.wikipedia.org/wiki/Frequency-division_multiplexing

Packet Switching

- Wire is selected for each packet
- No network **state**
- Supports unpredictable / bursty traffic pattern
- Higher link utilization
- No guarantees but good enough for most applications

http://en.wikipedia.org/wiki/Packet_switching

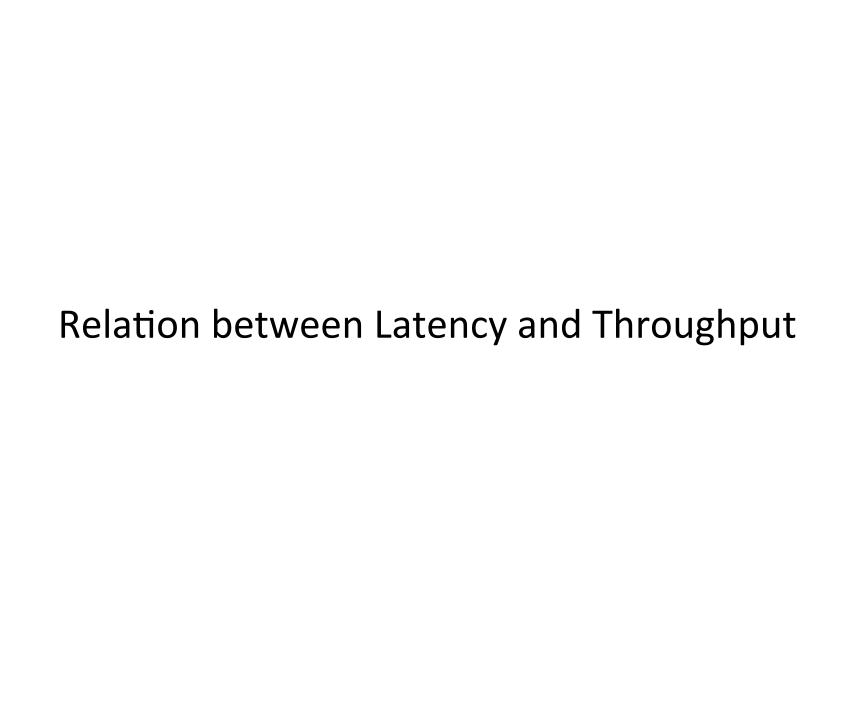
Packet vs Circuit Switching

- Packet Switching
 - Plus: More sharing (more efficient)
 - Minus: No service guarantee
- Circuit Switching
 - Plus: Service Guarantee
 - Minus: Less sharing (less efficient)
- Every day examples
 - Road network

We will study these topics in greater detail when we study switching and routing later in the semester

Describing a Network

- How to describe how well a network is working?
 - metrics
- Performance metrics
 - Throughput
 - Latency
 - Reliability


Throughput

- How many bytes can we send through in a given time?
 - Bytes per second
 - How many bits/s in kbps?
 - Read: http://en.wikipedia.org/wiki/Data_rate_units
- Useful bytes transferred vs overhead
 - Goodput
 - Everyday example: car vs passenger
- How do you measure throughput?

http://en.wikipedia.org/wiki/Throughput

Latency

- How long does it take for one bit to travel from one end to the other end
 - ms, s, minutes...
- Typical latencies
 - Speed of light
 - Why is web browsing latency in seconds?

Characterize the latency and throughput of Oil tanker

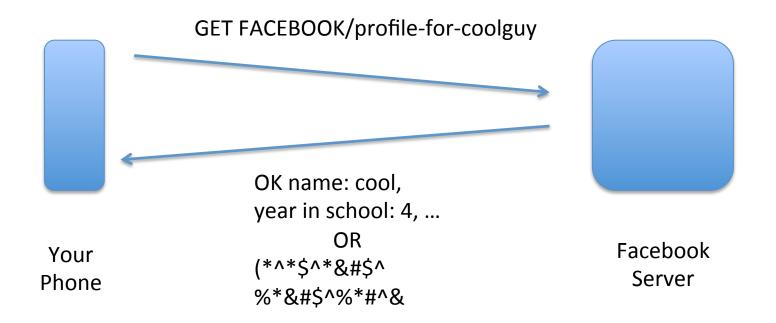
Aircraft

Car

Tractor Trailer

- Which metrics matter most for these applications?
 - Netflix
 - Skype
 - Amazon
 - Facebook

Reliability


- How often does a network fail?
- How often do packets drop?
 - Damage (corruption)
 - Drops in the queues
- How persistent are failures?
- Typical metrics
 - uptime percentage
 - packet or bit loss rates

Protocols

- Agreed-upon rules, format, and meaning for message exchange
- Lets examine this sequence:
 - Hello
 - How are you?
 - Fine.

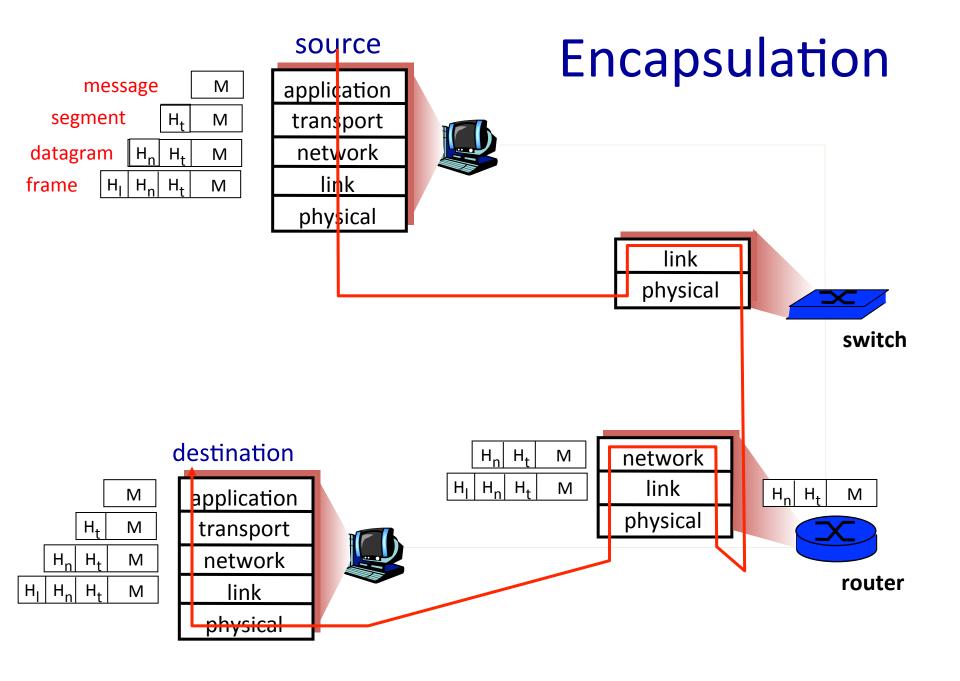
http://en.wikipedia.org/wiki/Communications_protocol

Network Protocols

What are the rules, format, and meaning in this message exchange?

Protocols and Standards

- How can your phone (HTC running Android?)
 access Facebook (runs on UNIX-like OS on big
 servers)?
- Using standard protocol enables interoperation
- Who standardizes the protocols?


Protocol Layers

- Lower level to higher level message exchange
 - Organize the functionalities
 - Abstractions in services used and provided
- 5-7 layers depending on who you talk to
 - Physical, Link, Network, Transport, Application
- Should a smartphone app developer worry about
 - Voltages being applied on the wire
 - If the underlying media uses packet or circuit switching

http://en.wikipedia.org/wiki/Protocol_stack

Encapsulation

- Think of how paperwork is processed in a university
 - Each person processes and adds some information to it and passes it along
- On the transmitter: the lower layers include the message from upper layers, add their own information and send it along
- On the receiver: reverse

