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Abstract—This paper develops a new principled framework to
solve a hardness-aware truth discovery problem in social sensing
applications. Social sensing has emerged as a new application
paradigm where a large crowd of social sensors (humans or
devices on their behalf) are recruited to or voluntarily report
observations about the physical environment at scale. These
observations may be either true or false, and hence are viewed
as binary claims. A fundamental problem in social sensing
applications lies in ascertaining the correctness of claims and
the reliability of data sources. We refer to this problem as
truth discovery. Significant efforts were made to address the
truth discovery problem, but an important dimension of the
problem has not been fully exploited: hardness of claims (how
challenging a claim is to be made). A common assumption
made in the previous work is that they assumed all claims are
of the same degree of hardness. However, in real world social
sensing applications, simply ignoring the hardness differences
between claims could easily lead to suboptimal truth discovery
results. In this paper, we develop a new hardness-aware truth
discovery scheme that explicitly considers different hardness
degrees of claims into a rigorous analytical framework. The new
truth discovery scheme solves a maximum likelihood estimation
problem to determine both the claim correctness and the source
reliability. We compare our hardness-aware scheme with the
state-of-the-art baselines through three real world case studies
(Baltimore Riots, Paris Attack and Oregon Shootings, all in
2015) using Twitter data feeds. The evaluation results showed
that our new scheme outperforms all compared baselines and
significantly improves the truth discovery accuracy in social
sensing applications.
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I. INTRODUCTION

This paper develops a new principled framework to solve
a hardness-aware truth discovery problem in social sensing
applications. Social sensing has emerged as a new application
paradigm where a large crowd of social sensors (humans or
devices on their behalf) are recruited to or voluntarily report
observations about the physical environment at scale [2]. These
observations may be either true or false, and hence are viewed
as binary claims. Examples of social sensing applications
include crowdsensing/crowdsourcing tasks using different sen-
sors in smartphones [6], obtaining real-time situation aware-
ness for disaster response and crisis management using online
social media [33], geo-tagging applications for smart cities
using data contributed by common citizens [15]. This paradigm
has a few clear advantages over the traditional infrastructure-
based sensor networks: (i) social sensing is infrastructure free
and it is inexpensive to deploy applications at a large scale;

(ii) social sensors are more versatile than physical sensors
and they can report a broad category of phenomena (e.g.,
disasters, traffic congestion, power outage, riots, etc); (iii)
social sensing normally has a better coverage than traditional
sensing paradigm as social sensors are mobile and naturally
scattered around the world. However, the data collection in
social sensing is usually open to all and it is impossible to
screen all participants (data sources) beforehand. Therefore,
a fundamental problem in social sensing applications lies
in accurately ascertaining the correctness of claims and the
reliability of data sources. We refer to this problem as truth
discovery.

Significant progress has been made to address the truth dis-
covery problem in social sensing from the sensor network [29],
[30], information fusion [12], [25] and data mining [35], [38]
communities. A common assumption made in the previous
work is: the claims are assumed to be of the same degree of
hardness (i.e., it is equally challenging for a source to report
all of its claims). However, such assumption may not hold in
real world social sensing applications, where claims could have
different degrees of hardness depending on various factors of
the event associated with the claim such as abnormality, time,
location, and scale. For example, Table I shows claims reported
to Twitter in the aftermath of the Oregon Umpqua Community
College Shooting event in October 2015. The first two claims
are regarded as hard claims as they requires people to be
physically at the prime locations of the events and explicitly
report concrete and informative observations. The latter two
claims are regarded as easy claims as they are in the form of
personal sentiments and repeated information (i.e., Retweets)
that can be made by anyone anywhere.

Tweet Hardness Degree
“There’s a shooter! Run! Run! Get out of there!” –#Oregon
students during #OregonShooting. Our latest:#UCCShooting

Hard

The shooter in a massacre at Umpqua Community College
in Oregon has been identified.

Hard

My heart goes out to all those who lost loved ones today. Easy
RT @BanCollectivism: And yet these shooting don’t happen
much in ”progressive” countries, you idiot.

Easy

Table I. CLAIMS OF DIFFERENT HARDNESS DEGREES IN OREGON
UMPQUA COMMUNITY COLLEGE SHOOTING EVENT (2015)

Important challenges exist when we develop a hardness-
aware solution to improve the truth discovery accuracy in
social sensing. First, social sensing is designed as an open
data collection paradigm where the reliability of sources and
the correctness/hardness degree of claims are often unknown
a priori. Second, it is very challenging to find an effective
method to automatically and accurately identify the hardness
degrees of all claims considering the rich and unstructured data
reported by human sensors in social sensing, especially with no



prior knowledge of a particular event. Third, sources may have
different reliability in reporting claims of different degrees of
hardness and such difference cannot be directly identified from
the social sensing data.

To address the above challenges, we develop a hardness-
aware truth discovery scheme that explicitly incorporates dif-
ferent hardness degrees of claims into a maximum likelihood
estimation framework. In particular, a Hardness-Aware Ex-
pectation Maximization (HA-EM) algorithm is developed to
assign true values to claims and reliability to sources more
accurately by exploiting the hardness degree of claims. We
evaluate our HA-EM scheme through three real world case
studies (Baltimore Riots, Paris Attack and Oregon Shootings,
all in 2015) based on Twitter data feeds. The evaluation
results show that our new scheme outperforms the state-of-
the-art baselines and significantly improves the truth discovery
accuracy. The results of this paper are important because they
allow social sensing applications to accurately estimate the
correctness of claims and the reliability of sources by explicitly
incorporating hardness degree of claims into a principled
framework. To summarize, our contributions are as follows:

• To the best of our knowledge, this study is the first to
explicitly consider the hardness degree of claims in
the truth discovery problem of social sensing using a
principled approach.

• We develop an analytical framework that allows us to
derive an optimal solution (in the sense of maximum
likelihood estimation) for the hardness-aware truth
discovery problem.

• We show non-trivial performance gains achieved by
our hardness-aware truth discovery scheme through
three real world case studies in social sensing appli-
cations.

The rest of this paper is organized as follows: we discuss
the related work in Section II. In Section III, we present the
new hardness-aware truth discovery model for social sensing
applications. The proposed maximum likelihood estimation
framework and the expectation maximization solution is pre-
sented in Section IV. Evaluation results are presented in
Section V. We discuss the limitations and future work in
Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Social sensing has emerged as a new act of collecting
sensory measurements about the physical world from human
sources or devices on their behalf [2]. Some early applications
include CenWits [10], CabSense [22], and BikeNet [8]. More
recent applications in social sensing start to address challenges
such as preserving privacy of participants [5], improving
energy efficiency of sensing devices [16] and building gen-
eral models in sparse and multi-dimensional social sensing
spaces [3]. An emerging and critical question about data
reliability arises when the data in social sensing applications
are collected by humans whose “reliability” is not known [1].
Some truth discovery techniques have been developed to
address this problem but they did not fully exploit the time
dimension of the problem in their solutions [29], [30]. In this
paper, we develop a hardness-aware truth discovery scheme

that explicitly exploits the claim hardness in social sensing
and significantly improves the truth discovery accuracy.

In data mining and machine learning literature, there exists
a good amount of work on the topics of fact-finding that jointly
compute the source reliability and claim credibility [9]. Hubs
and Authorities [13] established a basic fact-finding model
based on linear assumptions to compute scores for sources
and claims they asserted. Yin et al. introduced TruthFinder as
an unsupervised fact-finder for trust analysis on a providers-
facts network [34]. Other fact-finders enhanced these basic
frameworks by incorporating analysis on properties or depen-
dencies within claims and sources [21], [25]. More recently,
new fact-finding algorithms have been designed to address
the background knowledge [18], multi-valued facts [37], and
multi-dimensional aspects of the problem [36]. In this paper,
we use the insights from the above work and develop a new
estimation scheme to solve the hardness-aware truth discovery
problem in social sensing applications.

Maximum likelihood estimation (MLE) technique has been
widely used in sensor network community to solve estimation
and information fusion problems [14], [19], [32]. For example,
Wang et al. proposed a MLE based target tracking approach
to solve the instability problem and offer superior tracking
performance in wireless sensor networks [32]. Pereira et al.
presented a maximum likelihood estimation algorithm to solve
a distributed parameter estimation problem in unreliable sen-
sor networks [19]. Leng et al. built a maximum likelihood
estimator to jointly estimate the clock offset, clock skew and
fixed delay in sensor networks [14]. However, the estimation
variables in the above work are mostly continuous and the
sensors are physical sensors. In contrast, we focus on estimat-
ing a set of binary variables that represent either true or false
statements from human sensors. The MLE problem we studied
is actually more challenging due to the discrete nature of the
estimated variables and the non-trivial complexity of modeling
humans as sensors in social sensing.

Finally, our work is also related with a type of information
filtering system called recommendation systems [11]. Expec-
tation Maximization (EM) has been used as an optimization
approach for both collaborative filtering [24] and content
based recommendation systems [20]. For example, Wang et al.
developed a collaborative filtering based system using the EM
approach to recommend scientific articles to users of an online
community [24]. Pomerantz et al. proposed a content-based
system using EM to explore the contextual information to
recommend movies [20]. However, the truth discovery in social
sensing studies a different problem. Our goal is to estimate
the correctness of observations from a large crowd of unvetted
sources with unknown reliability and various degrees of claim
hardness rather than predict users’ ratings or preferences of an
item. Moreover, recommendation systems commonly assume
a reasonable amount of good data is available to train their
models while little is known about the data quality and the
source reliability a priori in social sensing applications.

III. HARDNESS-AWARE TRUTH DISCOVERY PROBLEM IN
SOCIAL SENSING

In this section, we formulate the hardness-aware truth
discovery problem in social sensing as a maximum likelihood



estimation problem. We borrowed a social sensing model
introduced in [30]. In particular, consider a scenario where
a group of M sources, namely, S1, S2, ..., SM , who report a
set of N observations about the physical environment, namely,
C1, C2, ..., CN . Those observations may be true or false, and
hence are viewed as binary claims. For example, in an
application that reports the litter locations on city streets, each
location may be associated with a claim that is true if the
litter is present and false otherwise. We assume, without loss
of generality, that the default state of each claim is negative
(e.g., no litter on city streets). Hence, sources only report when
the positive state of the claim is encountered. Let Si represent
the ith source and Cj represent the jth claim. Cj = 1 if it is
true and Cj = 0 otherwise. We define a Sensing Matrix SC,
where SiCj = 1 when source Si reports that claim Cj is true,
and SiCj = 0 otherwise.

Furthermore, we need to incorporate the hardness degree
of claims into our model. To capture the claim hardness, we
define a Hardness Vector H , where the element hj represents
the hardness degree of claim Cj . Specifically, hj is a discrete
variable with K different values representing K different
degrees of claim hardness (e.g., easy, medium, hard).

We formulate the hardness-aware truth discovery problem
in social sensing as follows. First, let us define a few important
terms that will be used in the problem formulation. We denote
the reliability of source Si by ri, which is the probability that
a claim is correct given that source Si reported it. Formally,
ri is given by:

ri = Pr(Cj = 1|SiCj = 1) (1)

Considering the claims may have different degrees of
hardness, we define rki as the reliability of Si when it reports
a claim with a hardness degree of k, where k = 1, ...,K.
Formally, tk,li is given by:

rki = Pr(Cj = 1, hj = k|SiCj = 1) (2)

Hence,

ri =

K∑
k=1

rki ×
ski
si

k = 1, ...,K (3)

where ski is the probability that Si reports Cj with a hardness
degree of k. Formally, ski = Pr(SiCj = 1, hj = k). Note that
the probability that Si reports a claim is: si = ΣKk=1s

k
i .

Let us further define T ki to be the (unknown) probability
that Si reports Cj (of hardness degree k), given that the
claim is indeed true. Similarly, let F ki denote the (unknown)
probability that Si reports Cj (of hardness degree k), given
that the claim is false. Formally, T ki and F ki are defined as
follows:

T ki = Pr(SiCj = 1|Cj = 1, hj = k)

F ki = Pr(SiCj = 1|Cj = 0, hj = k) (4)

Using the Bayes theorem, we can establish the relationship
between T ki , F ki and rki , ski as follows:

Table II. THE SUMMARY OF NOTATIONS

Description Notation

Set of Sources S
Set of Claims C
Sensing Matrix SC
Hardness Vector H
Report Probability ski = Pr(SiCj = 1, hj = k)
Source Reliability rki = Pr(Cj = 1, hj = k|SiCj = 1)
Correctness Probability T k

i = Pr(SiCj = 1|Cj = 1, hj = k)
Error Probability F k

i = Pr(SiCj = 1|Cj = 0, hj = k)

T ki =
rki × ski
dk

F ki =
(1− rki )× ski

(1− dk)
(5)

where dk is the prior probability that a randomly chosen claim
with a hardness degree of k is true (i.e., dk = Pr(Cj = 1, hj =
k)). The introduced notations are summarized in Table II.

Therefore, the hardness-aware truth discovery problem
studied in this paper can be formulated as a maximum likeli-
hood estimation (MLE) problem: given the Sensing Matrix SC
and Hardness Vector H , we aim at estimating the likelihood
of the correctness of each claim and reliability of each source.
Formally, we compute:

∀j, 1 ≤ j ≤ N : Pr(Cj = 1|SC,H)

∀i, 1 ≤ i ≤M : Pr(Cj = 1|SiCj = 1) (6)

IV. A HARDNESS-AWARE MAXIMUM LIKELIHOOD
ESTIMATION APPROACH

In this section, we solve the hardness-aware truth discovery
problem formulated in Section III by developing a Hardness-
Aware Expectation-Maximization (HA-EM) algorithm.

A. Building The Likelihood Function

EM is an optimization scheme that is commonly used to
solve the MLE problem where unobserved latent variables
exist in the model [7]. Specifically, it iterates between two
key steps: expectation step (E-Step) and maximization step
(M-step). In E-step, it computes the expectation of the log-
likelihood function based on the current estimates of the model
parameters. In M-step, it computes the new estimates of the
model parameters that maximize the expected log-likelihood
function in E-step. The two steps of EM are shown as follows:

E-step: Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)] (7)

M-step: θ(n+1) = arg max
θ
Q(θ|θ(n)) (8)

where L(θ;X,Z) = Pr(X,Z|θ) is the likelihood function, θ
is the estimation parameter of the model, X is the observed
data and Z is a set of latent variables.

Now let us consider how to solve the MLE problem we
formulated in the previous section by developing a hardness-
aware EM scheme. First, we need to define the likelihood
function of the MLE problem. In particular, the observed data



X in our problem is the Sensing Matrix SC and the Hardness
Vector H . The estimation parameter vector is defined as
θ = (T k1 , T

k
2 , ..., T

k
M ;F k1 , F

k
2 , ..., F

k
M ; dk) where k = 1, ...,K

and T ki , F ki and dk are defined in Equation (4) and (5).
Furthermore, we need to define a vector of latent variables Z
to indicate whether a claim is true or false. More specially,
we have a corresponding variable zkj for claim Cj (whose
hardness degree is k) such that zkj = 1 if Cj is true and zkj = 0
otherwise. Additionally, we define a set of binary indication
variables hkj such that hkj = 1 if hj = k in Hardness Vector
H and hkj = 0 otherwise. Hence, the likelihood function of
hardness aware truth discovery problem can be written given
as:

L(θ;X,Z) = Pr(X,Z|θ)

=

N∏
j=1

{
K∏
k=1

[ M∏
i=1

(T ki )SiCj && hk
j

× (1− T ki )(1−SiCj) && hk
j × dk × zkj

]
+

L∏
l=1

[ M∏
i=1

K∏
k=1

(F ki )SiCj && hk
j

× (1− F ki )(1−SiCj) && hk
j × (1− dk)× (1− zkj )

]}
(9)

where SiCj = 1 when source Si reports Cj to be true and 0
otherwise. The “&&” represents the “AND” logic for binary
variables. The likelihood function represents the likelihood of
the observed data (i.e., SC and H) and the values of hidden
variables (i.e., Z) given the estimation parameters (i.e., θ).

Figure 1. The E and M steps of HA-EM Scheme

We can then derive the E and M steps of HA-EM scheme
using EM algorithm based on Equation (8). The E and M steps
of HA-EM are shown in Figure 1. The detailed derivations are
presented in Section VIII (Appendix). The final solutions of
the estimation parameters are:

(T ki )(n+1) =
Σj∈SCk

i
Pr(zkj = 1|Xk

j , θ
(n))

Σj∈CkPr(zkj = 1|Xk
j , θ

(n))

(F ki )(n+1) =
Σj∈SCk

i
(1− Pr(zkj = 1|Xk

j , θ
(n)))

Σj∈Ck(1− Pr(zkj = 1|Xk
j , θ

(n)))

(dk)(n+1) =
Σj∈CkPr(zlj = 1|X l

j , θ
(n))

|Ck|
(10)

where SCki is the set of claims (with hardness degree k) that
source Si reports. We also define Ck as the set of claims whose
hardness degree is k.

B. Summary of The Hardness-Aware EM Algorithm

Algorithm 1 Hardness-Aware EM Algorithm
Input: Sensing Matrix SC, Hardness Vector H
Output: Estimations of Source Reliability and Claim Correct-
ness
1: Initialize θ (Tk

i = ski , F
k
i = 0.5× ski , dl =Random number in (0, 1))

2: n = 0
3: repeat
4: n = n+ 1
5: for Each k ∈ {1, 2, ...,K} do
6: for Each j ∈ C do
7: compute Pr(zkj = 1|Xk

j , θ
(n))

8: end for
9: for Each i ∈ S do

10: compute (Tk
i )(n), (Fk

i )(n), (dk)
(n)

11: end for
12: end for
13: until θ(n) and θ(n−1) converge
14: Let (Zk

j )
c = converged value of Pr(zkj = 1|Xk

j , θ
(n))

15: for Each k ∈ {1, 2, ..., L} do
16: for Each j ∈ C do
17: if (Zk

j )
c ≥ 0.5 then

18: claim Cl
j is true

19: else
20: claim Cl

j is false
21: end if
22: end for
23: for Each i ∈ S do
24: calculate (rki )

∗ from converge values of (Tk
i ), (Fk

i ) and (dk)
based on Equation (5)

25: calculate ri∗ form (rki )
∗ based on Equation (3)

26: end for
27: end for

In summary, the input of the HA-EM algorithm is the
Sensing Matrix SC and Hardness Vector H obtained from
the social sensing data. The output is the maximum likelihood
estimation of estimation parameters and latent variables. The
estimation results can be used to compute both source reliabil-
ity and claim correctness. We summarize the HA-EM scheme
in Algorithm 1.

V. EVALUATION

In this section, we evaluate the HA-EM scheme using three
real world case studies based on Twitter. We choose Twitter as
our social sensing application example because it creates an
ideal scenario where unreliable content with rich information
are collected from unvetted data sources (e.g., people report
observations of different hardness degrees on Twitter) [2]. In
our evaluation, we compare HA-EM to five representative
baselines from current literature. The first baseline is Voting,



which computes the data credibility simply by counting the
number of times the same tweet is repeated on Twitter. The
second baseline is the Sums, which explicitly considers the
difference in source reliability when it computes the data
credibility scores [13]. The third baseline is Average Log,
which explicitly considers both source reliability and the
number of claims the source report [17]. The fourth baseline
is TruthFinder which used a pseudo-probabilistic model to
represent the interdependence between source reliability and
claim correctness [34]. The fifth baseline is the Regular EM,
which was shown to outperform four current truth discovery
schemes in social sensing [30].

We have implemented the HA-EM scheme and other
baselines in Apollo system, a social sensing platform that
we have developed to collect tweets from Twitter and track
the unfolding of real world events based on the collected
tweets [4]. Examples of such events include terrorist attack,
hurricane, earthquake, civil unrest and other natural and man-
made disasters. Specifically, Apollo has: (i) a data collection
front-end that allows users to collect tweets by specifying a set
of keywords and/or geo-locations and log the collected tweets;
(ii) a data pre-processing component that efficiently clusters
similar tweets into the same cluster by using micro-blog data
clustering methods [23].

Using the meta-data output by the data pre-processing
component of Apollo, we first generated the Sensing Matrix
SC by taking the Twitter users as the data sources and the
clusters of tweets as the the statements of user’s observations,
hence representing the claims in our model. We then initialized
the values of claims using a simple domain classifier that
can classify the claims into easy and hard categories based on
the content of the tweets. In particular, the domain classifier
was built using URL identification such as ”http” or ”https”
commonly found in tweets on Twitter. Each cluster of claims
was checked to see if it contained more than one URL and if so
it was classified as easy. Otherwise, the claim was classified as
hard. The rationale is the claims with URLs are more likely to
be the repeated information from other external sources (e.g.,
news websites), hence are easy to make while claims without
URLs are more likely to be made by the users themselves.

One important note is that the above classifier is far from
being perfect due to its heuristic nature: it may mis-classify
easy claims as hard and vice versa. One goal of our evaluation
is to show that our HA-EM scheme can actually achieve a sig-
nificant performance improvement in truth discovery compared
to the state-of-the-art solutions even given this rough and noisy
estimation on claim hardness degrees.

For the purposes of evaluation, we selected three real world
Twitter data traces, which were collected during the events
that happened in 2015. The first trace was collected by Apollo
during the Oregon Shooting event that happened on October
1, 2015, which caused 10 death including the gunman. It is the
deadest event in Oregon’s history. The second was collected
during Baltimore Riots event that happened on April 14,
2015, which were a series of riots that followed the suspicious
death of an African American male, Freddie Gray while in
police custody. The riots caused several important events to
be canceled and a state of emergency declared in the city of
Baltimore. The third trace was during Paris Attacks event
that happened on November 13, 2015, which were a series

of terrorist attacks that left 130 dead including at the Bataclan
theatre where many were taken hostage. It is the worst terrorist
attack to occur in Europe in 11 years. The three data traces
are summarized in Table III.

Trace Oregon Shooting Baltimore Riots Paris Attacks
Start Date October 1, 2015 April 14, 2015 November 13, 2015
Time duration 6 days 17 days 11 days
Physical Location Umpqua Commu-

nity College, OR
Baltimore, MD Paris, France

# of tweets 210,028 952,442 873,760
# of users tweeted 122,069 425,552 496,753

Table III. DATA STATISTICS OF THREE TRACES

We randomly sampled 2020, 1850, and 1620 tweets from
the Oregon Shooting, Paris Attacks, and Baltimore Riots data
trace respectively for our evaluation 1. We fed the sampled
tweets to the Apollo tool and ran all compared truth discovery
schemes on the sampled data. We manually graded all claims
using the following rubric:

• True claims: Claims that are statements of a physical
or social event, which is generally observable by
multiple independent observers and corroborated by
credible sources external to Twitter (e.g., mainstream
news media).

• False claims: Claims that do not satisfy the require-
ment of true claims.

We note that the false claims may include some possibly
true claims that cannot be independently verified by external
sources. Hence, our evaluation provides pessimistic perfor-
mance bounds on the estimates. Specifically, we focus on
the estimation performance of different schemes in terms of
correctly identifying the true claims because they consist of
the actually useful information for social sensing applications.
In particular, we used the following evaluation metric to
evaluate the performance of all schemes in terms of identi-
fying the correct true claims: Accuracy = TP+TN

TP+TN+FP+FN ,
Precision = TP

TP+FP , Recall = TP
TP+FN and F1-measure =

2×Precison×Recall
Precison+Recall . The TP , TN , FP and FN represent true

positives, true negatives, false positives and false negatives of
the classification results.

Figure 2 shows the result for the Baltimore Riots trace.
We observe that the HA-EM scheme outperforms difficulty-
ignorant truth discovery schemes in identifying more truthful
claims and keeping the falsely reported claims least. This is
achieved by explicitly incorporating the emotional into the
maximum likelihood estimation framework. The performance
gain of HA-EM scheme compared to the best performed
baseline is significant: 31% in accuracy, 9% in precision,
49% in recall, and 29% in F1. The high performance gain in
recall is achieved by correctly identifying many hard truthful
claims that were misidentified as false by other hardness
ignorant schemes.

We carried out further experiments to evaluate how news-
worthy and important the true claims identified by different
algorithms are. Specifically, we independently collected 10
important events reported by media during the Baltimore Riots
event to see if they are captured in our true claims. We then

1This is because of the limited human power to label the ground truth for
all tweets.
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Figure 2. Evaluation on Baltimore Riots Trace

scanned through the true claims identified by each of the
algorithms compared to find these events. Results are shown in
Table IV (due to space limit, we only showed the comparison
between the HA-EM scheme and the best performed baseline:
Regular-EM). We observed that all ten events were covered
by the true claims from the HA-EM scheme while two of
them were missing from the true claims returned from the
Regular-EM scheme. This result shows that the truthful claims
identified by the HA-EM scheme are more newsworthy and
potentially have higher impacts.

We repeated the above experiments on the Oregon Shooting
and Paris Attack traces. The results are shown in Figure 3
and Figure 4. We observe that the HA-EM scheme continues
to achieve the best performance compared to all baselines in
terms of correctly identifying truthful claims. In the Oregon
Shooting, the performance gain of HA-EM scheme compared
to the best performed baseline is significant: 22% in accuracy,
9% in precision, 42% in recall, and 20% in F1-measure.
The results on Paris Attack trace is similar: 27% in accu-
racy, 8% in precision, 35% in recall, and 21%. For the
newsworthy events coverage, collecting 10 media events that
happened during the Oregon Shooting and Paris Attack events
respectively, we observed that the HA-EM found 9 and 10
of them, compared to 6 and 7 found by the best performed
baseline. Due to the space limit, we do not show the detailed
results here.
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Figure 3. Evaluation on Oregon Shooting Trace
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Figure 4. Evaluation on Paris Terrorist Attacks Trace

Finally, we also perform the convergence analysis of the
HA-EM scheme. In particular, we studied how the value of
negative log-likelihood function (defined in Equation (11))
changes w.r.t to the number of iterations. The results are pre-
sented in Figure 5. We observe the HA-EM scheme converges
within a few iterations on both data traces. The encouraging
results from real world data traces validate the effectiveness
of using the HA-EM scheme to obtain more truthful informa-
tion in a real world social sensing application by explicitly
exploiting the emotional information of claims.
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Figure 5. Convergence Analysis of HA-EM

VI. DISCUSSIONS AND FUTURE WORK

First, we assumed sources to be independent in our current
framework. However, sources may be dependent in some
social sensing applications, especially when they are con-
nected through social networks. Several analytical models have
been recently developed to address non-independent sources
in social sensing using estimation theory [28] and machine
learning techniques [21]. It is reasonable to integrate these
techniques with our HA-EM scheme to explicitly model source
dependency in the MLE framework. Furthermore, sources
may have different expertise and report claims with different
reliability. For example, a civil engineer might be very reliable
in reporting the damage of buildings but might not be equally
reliable in reporting the habitat of birds. In our current model,
source reliability is represented by a scalar variable, which
is limited to representing the source reliability on a single
dimension. One possible solution is to generalize the source
reliability definition from a scalar to a vector, where each
dimension of the vector represents the reliability in a particular
knowledge domain.

Second, we did not assume dependency between claims.
However, reports on different claims might be inherently



# Media Tweet found by Hardness-EM Tweet found by the Best Baseline
1 The post-funeral demonstrations became

more tumultuous as the afternoon wore on,
with a police car and van being torched and
several storefront windows broken.

RT @BrianToddCNN: A police car and van
burned on the streets of Baltimore. #Balti-
moreRiots http://t.co/Q4k6W9oQLK

RT @BrianToddCNN: A police car and van
burned on the streets of Baltimore. #Balti-
moreRiots http://t.co/Q4k6W9oQLK

2 A mother in Baltimore caught her son,
whom she suspected of rioting, and hit him.
She sent him home on live TV.

VIDEO: Mother seen dragging
son away from #Baltimore-
Riots. http://t.co/gKkZj6sg2j
http://t.co/7V0b26SUgj:

RT @Independent: Furious mother marches
her son home from Baltimore riots
live on TV http://t.co/OiSbX4m4uy
http://t.co/cpOSoFC3h6

3 Mayor Stephanie Rawlings-Blake defended
her handling of the recent rioting in Balti-
more, arguing Tuesday that more aggressive
police or military tactics could have esca-
lated the violence

Mayor Stephanie Rawlings-Blake defended
her handling of the recent rioting in Balti-
more, arguing Tuesday that more aggressive
police or military tactics could have esca-
lated the violence

MISSING

4 A CVS pharmacy, which had been looted
after its windows were smashed, was then
set ablaze

cnni: The CVS destroyed in #BaltimoreRi-
ots – complete devastation. More photos as
we get them here: http://t.co/YtmVvz53Nm

MISSING

5 “”There’s no excuse for the kind of violence
that we saw yesterday. It is counterproduc-
tive,” Obama said at a press conference from
the White House.

CNN: .@BarackObama on Baltimore un-
rest: ”No excuse for the kind of violence
we saw yesterday.” http://t.co/tmH7Kq2otl

CNN: .@BarackObama on Baltimore un-
rest: ”No excuse for the kind of violence
we saw yesterday.” http://t.co/tmH7Kq2otl

6 The American Heart Association announced
last night the cancellation of a medical
conference in Baltimore due to the unrest
in the city.

American Heart Association cancels Balti-
more conference: http://t.co/DjkbXJ7P6b by
@cardiobrief:

American Heart Association cancels Balti-
more conference: http://t.co/DjkbXJ7P6b by
@cardiobrief:

7 The Baltimore Orioles postponed a second
straight game against the Chicago White
Sox on Tuesday after a night of rioting near
Camden Yards.

Orioles postpone game vs. White Sox amid
riots in Baltimore http://t.co/wNjKaGP025:

Orioles postpone game vs. White Sox amid
riots in Baltimore http://t.co/wNjKaGP025:

8 The Baltimore mayor’s office said earlier
Tuesday there were 144 vehicle fires, 15
structure fires and nearly 200 arrests in the
unrest Monday.

200 arrests, 144 car fires, 15 buildings
burned...” http://t.co/61mCjmEMws:

“200 arrests, 144 car fires, 15 buildings
burned...” http://t.co/61mCjmEMws:

9 The remarks about giving space to ”those
who wished to destroy” generated swift,
strong criticism amid more than two dozen
arrests, at least 15 police officers injured,
and looting and arson in the city.

Baltimore Mayor Stephanie Rawlings-Blake
Under Fire For ’Space’ to Destroy Com-
ment

MISSING

10 Volunteers and business owners clean up af-
ter an evening of riots following the funeral
of Freddie Gray on Tuesday.

nytimes: Volunteers pick up broken
glass after a night of riots in Baltimore
http://t.co/Sx7d2YZIIw (Photo: A.J.
Chavar/NYT)

nytimes: Volunteers pick up broken
glass after a night of riots in Baltimore
http://t.co/Sx7d2YZIIw (Photo: A.J.
Chavar/NYT)

Table IV. GROUND TRUTH EVENTS AND RELATED CLAIMS FOUND BY HARDNESS-EM VS THE BEST PERFORMED BASELINE (REGULAR-EM) IN
BALTIMORE RIOTS

correlated. For example, the average speed of segments on the
same road normally have similar distributions. The hurricane
risk predictions of communities in the same neighborhood are
usually highly correlated. Hence it is important to understand
how to appropriately incorporate the claim dependency into
our MLE framework. Several recent techniques have been
developed to model the dependency between claims and take
such dependency as prior knowledge in their solutions [18],
[26]. Inspired by these results, we will further extend the HA-
EM scheme to incorporate the claim dependency (represented
by the joint distribution between correlated claims) into the
likelihood function and derive a claim-dependency-aware so-
lution. The general guideline of derivation should be similar
as the one presented in Section IV.

Third, the ground truth value of a claim was assumed to
be time-invariant in our current framework. This assumption
holds in the social sensing applications where the states of the
claim variables do not change in the observation period [26],
[30]. However, in systems where the state of the environment
may change quickly over time, it is important to investigate
the dynamics of the claim variables as well. Recently, we have
developed an extended MLE framework to explicitly handle

time variant claims in social sensing [31]. Such extension can
be easily integrated with the HA-EM scheme since they use
the same underlying MLE framework. Moreover, we focus
on binary claims in this paper. This assumption is sufficient
in many social sensing applications where the states of the
reported event can be represented by a Boolean variables
(e.g., litter exists in a given location or not). However, our
model can also be easily extended to handle the case where
claims have arbitrary discrete values. The authors have recently
made some progress in this direction [27]. The key idea is to
extend the estimation parameter of our MLE model to cover all
possible states of the claim. The general outline of the HA-EM
derivation still holds.

VII. CONCLUSION

This paper develops a hardness-aware maximum likelihood
estimation framework to solve the truth discovery problem
in social sensing applications. The proposed HA-EM scheme
explicitly incorporates the claim hardness into a rigorous
analytical framework. The proposed approach jointly esti-
mates both source reliability and claim correctness using an
expectation maximization algorithm. We evaluated the HA-



EM scheme through three real world case studies in social
sensing applications. The results showed HA-EM achieved
non-trivial performance gains in improving the truth discovery
accuracy compared to the Regular-EM and other state-of-
the-art techniques that ignored the claim hardness in their
solutions. The results of the paper is important because it
lays out an analytical foundation to exploit different degrees of
claim hardness in social sensing using a principled approach.
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VIII. APPENDIX

In appendix, we present the details of derivation of E and
M steps of HA-EM scheme. First, we derive the Q function
for the E-step given by Equation (7) as follows:

Q(θ|θ(n)) = EZ|X,θ(n) [logL(θ;X,Z)]

=

N∑
j=1

{
K∑
k=1

Pr(zkj = 1|Xk
j , θ

(n))

×
[ M∑
i=1

(SiCj&& hkj )× logT ki

+
(

(1− SiCj) && hkj

)
× log(1− T ki ) + logdk

]
+

K∑
k=1

Pr(zkj = 0|Xk
j , θ

(n))

×
[ M∑
i=1

(SiCj&& hkj )× logF ki

+
(

(1− SiCj) && hkj

)
× log(1− F ki ) + log(1− dk)

]}
(11)

where Xk
j represents the observed data that is about claim

Cj with hardness degree of k. Pr(zkj = 1|Xk
j , θ

(n) represents
the probability of claim Cj to be true given Xk

j and current
estimation of the parameter θ.

We define Z(n, j, k) = p(zkj = 1|Xk
j , θ

(n)). It is the
conditional probability of the claim Cj (whose hardness degree
k) to be true given the observed data Xk

j and current estimate
of θ. Z(n, j, k) can be further expressed as:

Z(n, j, k) = p(zkj = 1|Xk
j , θ

(n))

=
p(zkj = 1;Xk

j , θ
(n))

p(Xk
j , θ

(n))

=
A(n, j, k)× (dk)(n)

A(n, j, k)× (dk)(n) +B(n, j, k)× (1− (dk)(n))
(12)

where A(n, j, k) and B(n, j, k) are defined as follows:

A(n, j, k) = p(Xk
j , θ

(n)|zkj = 1)

=

M∏
i=1

{ K∏
k=1

(T k,ki )SiCj && hk
j

× (1−
K∑
k=1

T k,ki )(1−SiCj) && wk
j

}
B(n, j, k) = p(Xk

j , θ
(n)|zkj = 0)

=

M∏
i=1

{ K∏
k=1

(F k,ki )SiCj && hk
j

× (1−
K∑
k=1

F k,ki )(1−SiCj) && hk
j

}
(13)

Next we simplify Equation (11) by replacing the condi-
tional probability of p(zkj = 1|Xk

j , θ
(n)) with Z(n, j, k).

Q(θ|θ(n))

=

N∑
j=1

{
k∑
k=1

Z(n, j, k)×
[ M∑
i=1

K∑
k=1

(SiCj && hkj )× logT ki

+
(

(1− SiCj) && hkj

)
× log(1−

K∑
k=1

T ki ) + logdk
]

+

k∑
k=1

(
1− Z(n, j, k)

)
×
[ M∑
i=1

K∑
k=1

(SiCj && hkj )× logF ki

+
(

(1− SiCj) && hkj

)
× log(1−

K∑
k=1

F ki ) + log(1− dk)

]}
(14)

For the M-step, as we discussed earlier in Section IV, we
set partial derivatives of Q(θ|θ(n)) with respect to θ to 0 in
order to get optimal (T ki )∗, (F ki )∗ and (dk)∗:

N∑
j=1

[
Z(n, j, k)×

(
(SiCj && hkj

)
× 1

(T ki )∗

−
(

(1− SiCj) && hkj

)
× 1

1−
∑K
k=1(T ki )∗

]
= 0

N∑
j=1

[(
1− Z(n, j, k)

)
×
(

(SiCj && rkij && wkj

)
× 1

(F ki )∗

−
(

(1− SiCj) && wkj

)
× 1

1−
∑K
k=1(F ki )∗

]
= 0

N∑
j=1

[
Z(n, j, k)×M × 1

(dk)∗
× hkj −

(
1− Z(n, j, k)

)
×M × 1

1− (dk)∗
× whjk

]
= 0 (15)

Solving the above equations, we can obtain the results of
M step presented in Equation (10).


