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Audio fingerprinting techniques were developed to index and retrieve audio samples by comparing a content-
based compact signature of the audio instead of the entire audio sample, thereby reducing memory and com-
putational expense. Different techniques have been applied to create audio fingerprints; however, with the
introduction of deep learning, new data-driven unsupervised approaches are available. This article presents
Sequence-to-Sequence Autoencoder Model for Audio Fingerprinting (SAMAF), which improved hash gener-
ation through a novel loss function composed of terms: Mean Square Error, minimizing the reconstruction
error; Hash Loss, minimizing the distance between similar hashes and encouraging clustering; and Bitwise
Entropy Loss, minimizing the variation inside the clusters. The performance of the model was assessed with
a subset of VoxCeleb1 dataset, a“speech in-the-wild” dataset. Furthermore, the model was compared against
three baselines: Dejavu, a Shazam-like algorithm; Robust Audio Fingerprinting System (RAFS), a Bit Error
Rate (BER) methodology robust to time-frequency distortions and coding/decoding transformations; and
Panako, a constellation-based algorithm adding time-frequency distortion resilience. Extensive empirical ev-
idence showed that our approach outperformed all the baselines in the audio identification task and other
classification tasks related to the attributes of the audio signal with an economical hash size of either 128 or
256 bits for one second of audio.
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1 INTRODUCTION

Audio is high dimensional. Perceptually similar audio samples could have substantial variance in
their data streams. As a result, the comparison of one audio sample against a corpus of other audio
samples is memory and computationally expensive, and neither efficient nor effective. Tasks such
as indexing & retrieval, audio identification, integrity verification, music information retrieval,
scene recognition, and piracy monitoring may benefit from audio fingerprinting.

An audio fingerprint is a content-based compact signature (often a hash) that summarizes essen-
tial information about the audio sample and commonly links audio samples to their corresponding
metadata (e.g., sex, age, language, artist and song name, scene, object sound, among others). Ideally,
an audio fingerprint–based system should identify similar samples regardless of compression, dis-
tortion (e.g., pitching, equalization, D/A-A/D conversion, coders), or interference (e.g., background
noise in the transmission channel).

Traditional cryptographic hashing algorithms such as Message Digest 5 (MD5) or Secure Hash
Algorithm 3 (SHA-3) can be used to generate a compact signature of audio samples. However, these
algorithms are not robust to even slight variances or degradation of audio. A single modified bit in
the data stream results in an entirely different signature. Audio tasks that rely on these algorithms
for audio fingerprinting would be unable to handle cases of similar audio with compression, dis-
tortion, interference, or some other form of variance in the audio. Thus, these algorithms are not
considered to be robust audio fingerprinting methods.

An audio fingerprinting system can be characterized by (1) the method by which audio finger-
prints are generated, (2) the search and/or matching algorithm used to categorize similar audio
samples, and (3) the storage size of audio fingerprints. The literature is focused on the different
techniques capable of extracting meaningful audio fingerprints and the procedure to search and
match them with a collection of audio fingerprints stored in a database. The fingerprint size is
chosen to be as small as possible without compromising the performance of the system.

Shazam [Wang 2003] is an example of an audio fingerprinting system. The constellation algo-
rithm, one of the most popular methods to extract audio fingerprints, was developed for the Music
Information Retrieval (MIR) task, defined in this work as the activity to extract metadata (e.g.,
title, genre, singer) by analyzing the audio stream. Audio fingerprints were generated by sets of
hash:time offset records, whereas the searching and matching algorithm worked with time pairs
distributed into bins. A matching occurred when a significant number of time pairs were located in
a bin corresponding to the track ID. The fingerprint size was a 64-bit structure—32 bits for the hash
and 32 bits for the time offset and track ID. The recognition rate reported on 10K tracks (8 KHz
mono, 16-bit samples) considered and additive noise and an additive noise + GSM compression
cases, whereas the search time on 20K tracks was found on the order of 5–500 milliseconds.

The International Federation of the Phonographic Industry (IFPI) and the Recording Industry
Association of America (RIAA) recognized the importance of audio fingerprinting systems and
sought to devise a variety of metrics to evaluate them [Cano et al. 2005]. These include accu-
racy, reliability, robustness, granularity, security, versatility, scalability, complexity, and fragility.
Among these metrics, accuracy, robustness, and granularity are the most used in the literature.
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Advances in Artificial Intelligence (AI) and Machine Learning (ML) have led to new approaches
in the processing of high-dimensional data like audio. Deep Learning (DL) is used to create repre-
sentations with different levels of abstraction often using Neural Network (NN) techniques such
as Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Recurrent Neural
Networks (RNN). Deep learning–based architectures have been recently used towards audio syn-
thesis, multimedia processing, and cross-modality fingerprints.

Our first contribution is an unsupervised deep learning framework for generating audio fin-
gerprints (SAMAF). It addresses the audio identification task through a Sequence-to-Sequence
Autoencoder (SA) model composed of two linked Recurrent Neural Networks (RNN). The first
RNN is the Encoder, which maps the input data into a vector representation of fixed dimensional-
ity, and the second is the Decoder, which maps the representation back to the original input data.
Our second contribution is a novel loss function that, while minimizing the SA reconstruction er-
ror, creates a hash (fingerprint) space where similar hashes are as close as possible starting with
a rough composition and refining with bitwise adjustment. Our third and last contribution is to
provide experimental results that show a robust audio fingerprinting system with an economical
hash size (128/256 bits per second of audio) and support for a small granularity (1–6 seconds), both
of which differentiate this model from other approaches.

Experimental results confirmed that our methodology is robust to transformations in speech
(VoxCeleb [Nagrani et al. 2017] dataset) achieving the highest accuracy of 66.56% while the runner-
up, Dejavu, [Drevo 2013], an open-source Shazam-like implementation, achieved an accuracy
of 47.32%; the other two baselines, Robust Audio Fingerprinting System (RAFS) [Haitsma and
Kalker 2002], a Bit Error Rate (BER) methodology robust to time-frequency distortions and cod-
ing/decoding transformations, and Panako [Six and Leman 2014], a constellation-based algorithm
adding time-frequency distortion resilience, achieved accuracies of 19.82% and 23.28%, respec-
tively.

The rest of the article is organized as follows: In Section 2, related work in audio and media
fingerprinting is given. In Section 3, a brief review of deep learning is given and the SAMAF frame-
work is broken down. In Section 4, important implementation details and experimental results are
presented. Finally, in Section 5, relevant findings are summarized.

2 RELATED WORK

A survey on audio fingerprinting [Cano et al. 2005] described the general framework that nearly all
techniques can be characterized by. Generally, these techniques have been motivated by a need to
identify audio samples without regard for format, metadata, distortions such as noise, and without
watermark embeddings. Improvements to resilience made systems such as Shazam [Wang 2003],
Philips [Haitsma and Kalker 2002], and Microsoft [Burges et al. 2003] popular, especially for the
music information retrieval task. In recent years, new methodologies have been developed on
former approaches but introducing novel strategies such as Panako [Six and Leman 2014], which
introduced robustness towards time-frequency distortions.

Haitsma and Kalker split the audio stream (mono stereo, 5 KHz) into frames of 0.37 second
length and applied a Fast-Fourier Transformation (FFT). A 32-bit sub-fingerprint was extracted
every 11.5625 milliseconds, applying 33 non-overlapping bands (300 Hz–2 KHz) per frame. The
concatenation of 256 sub-fingerprints is called a fingerprint-block, with a total length of 2.96 sec-
onds. The bit value (0 or 1) is determined to compute the energy relation between frames and bands.
The search algorithm is a lookup table containing all the 32-bit sub-fingerprints, and the matching
is calculated through Bit Error Rate (BER), finding a match if the value is below a threshold (0.35)
and either returning an error or stating that the song is not in the database. The fingerprint size
was found to be 2,767.5676 bits per second.
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Table 1. Knowledge-based Methodologies for the Creation of Fingerprints in Different Types of Media

Author Media Task Technique

Anguera et al. [2012] Audio Music Information Retrieval MASK

Fan and Feng [2016] Audio Music Information Retrieval Shazam-based

Henaff et al. [2011] Audio Music Information Retrieval Constant-Q Transform

Haitsma and Kalker [2002] Audio Music Information Retrieval Philips

Wang [2003] Audio Music Information Retrieval Shazam

Sonnleitner and Widmer [2016] Audio Music Information Retrieval Quad

Six and Leman [2014] Audio Music Information Retrieval PANAKO

Özer et al. [2004] Audio Audio Identification Periodicity & SVD based

Burges et al. [2003] Audio Audio Identification Microsoft

Baluja and Covell [2007] Audio Audio Identification Google

Gupta et al. [2010] Audio Piracy Monitoring Philips-based

Hsieh et al. [2007] Audio Piracy Monitoring Low-bit encoding & parity

Ouali et al. [2015] Audio Piracy Monitoring Binary 2D Spectrogram Image

Ouali et al. [2015] Video Piracy Monitoring V-Intensity & V-motion

Roopalakshmi and Reddy [2015] Video Piracy Monitoring Geometric Distortions & MFCC

Park et al. [2015] Images Indexing and Retrieval Neighbor Sensitive Hashing

Gaoy et al. [2014] Images Indexing and Retrieval Data Sensitive Hashing

Gaoy et al. [2014] Text Indexing and Retrieval Data Sensitive Hashing

Gaoy et al. [2014] Data Indexing and Retrieval Data Sensitive Hashing

Burges et al. split the audio stream (mono stereo, 11.025 KHz) into frames of 372 milliseconds’
length with half-overlap and applied a Modulated Complex Lapped Transform (MCLT) ending
with 2,048 coefficients per frame. In the first layer, MCLT log magnitudes are projected to a 64-
dimensional space with an Oriented Principal Component Analysis (OPCA) technique. Later, 32 of
the resulting frames are concatenated to form another 2,048-dimensional vector, which is projected
using a second layer. The final 64 real values vector is the audio fingerprint created from 6.138
seconds of audio. The search algorithm used a look-up table in the first phase. In the second,
the“fingerprint to different clip” average Euclidean distance was normalized to unity enabling a
single accept threshold for all fingerprints as part of the matching algorithm. The fingerprint size
was found to be 667.3183 bits per second.

Six and Leman preprocessed the audio files with a sample rate of 8 KHz and 1-channel. They
used TarsosDSP [Six et al. 2014] for the extraction of spectrogram features. Based on Shazam, peaks
were obtained finding the local maxima and then validating that they were also the maximum
within a tile with dimensions ΔT × ΔF . They handled the time stretching through event triplets
same as symbolic fingerprinting [Arzt et al. 2012] and added pitch-shift resilient property through a
Constant-Q Transform [Brown and Puckette 1992]. The matching algorithm was similar to Shazam
but heavily modified to allow time and frequency distortions. Their approach was tested up to 10%
distortion with queries of length 20, 40, and 60 seconds. The fingerprint size was found to be 1,024
bits per second.

In the literature, fingerprints are not limited to audio, but other types of media such as video,
images, text, and data. Algorithms that create media fingerprints with hand-crafted features and
no meta-data are classified as knowledge-based methods, while the ones capable of creating their
own features and being driven by data are classified as Machine Learning (ML) methods. Table 1
classifies the recent work of knowledge-based methodologies based on the type of media and the
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Table 2. Machine Learning Methodologies, Focused on Deep Learning, for the Creation
of Fingerprints in Different Types of Media

Author Media Task Approach Technique

Kereliuk et al. [2015] Audio Music Information Retrieval Supervised CNN

Li et al. [2016] Audio Music Information Retrieval Unsupervised Kohonen

Petetin et al. [2015] Audio Scene Recognition Both DBN & DNN

Amiriparian et al. [2017] Audio Scene Recognition Unsupervised SA

Gu et al. [2016] Video Indexing and Retrieval Supervised CNN & RNN

Nguyen and Do [2016] Images Indexing and Retrieval Supervised DNN

Lai et al. [2015] Images Indexing and Retrieval Supervised CNN

Hinton and Salakhutdinov [2006] Images Indexing and Retrieval Unsupervised RBM

Liong et al. [2015] Images Indexing and Retrieval Both DNN

Cao et al. [2016] Images-Text Indexing and Retrieval Supervised CNN & RNN

Salakhutdinov and Hinton [2009] Text Indexing and Retrieval Unsupervised RBM

Abbreviations: DNN - Deep Neural Network || DBN - Deep Belief Network || RBM - Restricted Boltzmann Machine ||

CNN - Convolutional Neural Network || RNN - Recurrent Neural Network || SA - Sequence-to-Sequence Autoencoder.

task they are solving, and Table 2 classifies the recent work of Machine Learning methodologies,
with focus on Deep Learning (DL), making the distinction between supervised and unsupervised
approaches. It is noted that knowledge-based methods are well developed for the creation of audio
fingerprints, but other media types are mostly unexplored. In the case of DL, fingerprints for im-
ages are more studied than audio. Hence, this work builds a DL strategy for the creation of robust
audio fingerprints resilient to compression, time-frequency distortions, and other transformations
such as echo, low/high pass filters, or noise.

Although the methodologies found in Li et al. [2016], Petetin et al. [2015], and Amiriparian et al.
[2017] are unsupervised, the first uses the unsupervised Kohonen Self-Organized Map (SOM) as
a classifier, the second uses the unsupervised Deep Belief Network (DBN) as pre-training for a
DNN classifier, and the third uses the unsupervised SA model to create features to be input into
a multi-layer perceptron for scene classification. Unlike the proposed framework, none of these
works use an unsupervised approach specifically for the generation of audio fingerprints.

3 DEEP UNSUPERVISED AUDIO FINGERPRINTING

3.1 Deep Learning Review

Deep Neural Networks (DNNs) are feedforward networks made of multiple processing layers that
learn to represent data in multiple levels of abstraction. The backpropagation algorithm feeds back
the network, updating its internal parameters to compute the representation in each layer from the
representation in the previous layer. This allows for the discovery of intricate structures in large
datasets [LeCun et al. 2015]. DNNs have improved the state-of-the-art in speech recognition [Dahl
et al. 2012; Hinton et al. 2012] and object detection [Szegedy et al. 2013], among other domains.
Convolutional Neural Networks (CNNs) are a particular type of feedforward network that is much
easier to train and generalizes much better than networks with fully connected layers. This type of
network excels at object recognition classifying 1.2M high-resolution images (ImageNet LSVRC-
2010 [Deng et al. 2009]) into 1K different classes with a 37.5% error rate with the architecture
AlexNet [Krizhevsky et al. 2012].

Although DNNs and CNNs have shown tremendous flexibility and power in abstraction, they
have the limitation that inputs and outputs must be encoded with a fixed dimensionality. In dy-
namic systems, where the structure of the data changes over time, a vector of fixed dimensionality
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Fig. 1. Left: LSTM cell with all its gates (forget ft , input it , and outputot ), the sigmoidσ & hyperbolic tangent
tanh functions and all the interactions. The inputs (previous cellCt−1 state, previous hidden ht−1 state, and
input sequence xt ), the weights W{f ,i,o,C } , and the biases b {f ,i,o,C } are responsible for the creation of the
updated cell Ct and updated hidden ht states. The rectangles indicate layer-wise operations and ellipses
indicate point-wise operations. Right: Mathematical definition of the gates and their interactions with the
inputs to create the updated cell and updated hidden states.

encodes neither the current information nor the sequential relationship within the data. This type
of data is called sequential data and can be found in audio, video, and text samples. Recurrent Neu-
ral Networks (RNNs) are networks capable of processing sequential data. Their hidden neurons
form a directed cycle consisting of a hidden state ht at time step t that processes variable-length
sequences x = (xt ,xt+1, . . . ,xT ) and functions as internal memory that captures dynamic tempo-
ral information. The hidden state ht is updated at time step t by ht = f (ht−1,xt ), where f is a
non-linear activation function. Even though RNNs are robust dynamic systems, training them to
learn long-term dependencies is challenging due to the backpropagated gradients either growing
or shrinking at each time step. Therefore, over many time steps, they typically explode or van-
ish [Bengio et al. 1994]. Long-Short Term Memory (LSTM) cells [Hochreiter and Schmidhuber
1997] provided a solution by incorporating memory units, which allow the network to learn when
to forget, update, or output previous hidden states given new information. As a result, remember-
ing long-term dependencies is the default behavior. Additional depth can be added to LSTM cells
by stacking them on top of each other using the output of the cell in the previous layer (�-1) as
the input to the cell in the current layer �. Figure 1 illustrates the composition of an LSTM cell
that requires three inputs: previous cell Ct−1 and previous hidden ht−1 states, and input sequence
xt ; and returns two outputs: updated cell Ct and updated hidden ht states; WeightsW{f ,i,o,C } and
biases b {f ,i,o,C } need to be considered. The forget ft gate keeps/removes information from the pre-
vious cell stateCt−1, then the input it gate decides which information is updated from the cell state

candidate C̃t ; the two previous interactions are added to form the updated cell stateCt . Finally, the
output ot gate decides which information from the updated cell state Ct will create the updated
hidden state ht . The two types of functions presented in the illustration are the sigmoid func-
tion σ (x ) = 1

1+e−x , which maps the data in the range [0, 1], and the hyperbolic tangent function

tanh(x ) = ex−e−x

ex+e−x = 2σ (2x ) − 1, which maps the data in the range [−1, 1]. The rectangles indicate
layer-wise operations and ellipses indicate point-wise operations.

Although RNNs enable the processing of sequential data, they tend to have difficulties with
length differences between input and output or cases of complicated and non-monotonic relation-
ships. Sequence-to-Sequence (S2S) models [Cho et al. 2014; Sutskever et al. 2014] were developed to
support this functionality, first applied in the machine translation task. The model consisted of two
RNNs trained jointly to maximize the conditional probability of the target sequence given a source
sequence. The first RNN is the Encoder, which learns how to encode a variable-length sequence
into a fixed-length vector representation; and the second RNN is the Decoder, which learns how to
decode a given fixed-length vector representation back into a variable-length sequence. When the
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Fig. 2. The general framework starts with a raw audio signal that is normalized through a preprocessing step.
The MFCC features are extracted from the normalized signal and then input to the Sequence-to-Sequence
Autoencoder (SA) model, which generates the audio fingerprint (hash representation).

RNN Encoder and RNN Decoder are trained jointly to minimize the reconstruction error, the new
model is called a Sequence-to-Sequence Autoencoder (SA). These types of models make minimal
assumptions on the sequence structure. Therefore, they are suitable for unsupervised approaches,
which remove the need for manual annotations.

3.2 SAMAF: Sequence-to-Sequence Autoencoder Model for Audio Fingerprinting

The SAMAF framework to generate audio fingerprints has similarities with classical approaches
[Cano et al. 2005]. First, the raw audio signal r was preprocessed rpp and the amplitude of the

new signal rpp = (rpp1 , . . . rppN
) ∈ IRN was normalized following Equation (1). Then, acoustic fea-

tures X, Mel-Frequency Cepstral Coefficients (MFCCs), were extracted from the normalized signal
rnorm . Finally, the Sequence-to-Sequence Autoencoder (SA) model processed the MFCC features
and outputted the binary representation {1,−1} of the audio fingerprint H. An overview of our
framework is found in Figure 2, while implementation technical details are located in Section 4.2.

rnorm =
rpp

max ( |rpp1 |, . . . , |rppN
|) (1)

The main component of our general framework is the SA model. In Chung et al. [2016] it is
stated that the SA model proved to be useful in speech applications, because the model created
fixed-dimension vector representations of variable-length audio segments. Furthermore, the un-
supervised nature of this method enables the model to take the structure of the audio into account
when building the representation, giving perceptually similar audio a vector representation nearby
in the space. Hence, the SA model was chosen for the creation of audio fingerprints.

The model was trained with a set of A audio signals {Xa}a=1, ..., |A | where Xa represents the ath
audio signal and X denotes that the raw audio signal has been preprocessed, and the MFCC features
have been extracted (window size of 25 ms and step of 10 ms) and grouped intoT adjacent MFCC
features with a hop of 25 MFCC features delivering I MFCC blocks. In the context of the RNN, T
also refers to the number of steps (Section 3.1). Therefore, we have Xa = (xa

1 ,x
a
2 , . . . ,x

a
i , . . . ,x

a
I

)

where xa
i = (xa

i,1,x
a
i,2, . . . ,x

a
i,t ,x

a
i,t+1, . . . ,x

a
i,T ) and xa

i,t ∈ IRM for all 1 ≤ i ≤ I and 1 ≤ t ≤ T . The

M-dimensionality is equal to the number of MFCC coefficients (13) and the sub-index t refers to the
number of sequential MFCC features (100) contained in the ith MFCC block; one audio fingerprint
is created per second of audio, ith MFCC block, and subsequent audio fingerprints are 25 ms or
25 MFCC features apart. A detailed representation of the SA model is illustrated in Figure 3, where
the inputs to the RNN Encoder xa

i are located on the bottom left side. The audio fingerprint size is

given by the size of the LSTM cell state S ∈ IRB , which was experimentally defined (either a vector
of 128 or 256 real values). The previous state of the LSTM cell Sa

i,t−1 = (Ca
i,t−1,h

a
i,t−1), composed

of the previous cell Ca
i,t−1 and previous hidden ha

i,t−1 states, interacts with the current inputs xa
i,t

creating the updated state of the LSTM cell Sa
i,t = (Ca

i,t ,h
a
i,t ). When the last state is reached Sa

i,T =

(Ca
i,T ,h

a
i,T ), the last hidden state ha

i,T contains information from all the RNN Encoder inputs xa
i .
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Fig. 3. The Sequence-to-Sequence Autoencoder (SA) model is composed of two RNNs: the Encoder and
the Decoder. The Encoder receives the inputs xa

i , which are combined with the LSTM cell states Sa
i . When

the last state is reached Sa
i,T

, it is passed to the Decoder as the initial previous state Σa
i,t−1. The output

of the RNN Decoder x̂a
i is a reconstructed representation of the original inputs xa

i . The audio fingerprint
(hash) is embedded into the last state Sa

i,T
of the RNN Encoder.

As a result, the last hidden state is a compact representation of the RNN Encoder inputs and is
considered the feature representation for the audio fingerprint. To create the final representation
of the audio fingerprint (Ha

i,T hash), a threshold maps the last hidden state elements to its binary

values {1,−1}. In Equation (2) the thresholding is formalized, stating that the last hidden state is
mapped from a real space IRB to a Hamming spaceH B (B-bits hash) where binary values are 1 if
ha

i,T (b) ≥ 0 and −1 otherwise:

Threshold (ha
i,T ) : IRB �→ {1,−1}B

ha
i,T = (ha

i,T [1], . . . ,ha
i,T [B]) ∈ IRB

Ha
i,T (ha

i,T ,b) =

{
1, if ha

i,T [b] ≥ 0

−1, otherwise
(2)

The RNN Decoder state structure Σa
i,t = (ζ a

i,t ,η
a
i,t ) is the same as the RNN Encoder state struc-

ture Sa
i,t = (Ca

i,t ,h
a
i,t ). However, the symbol variables are different to highlight the distinction in

the information flow. Although Encoder and Decoder are structurally similar, their differences are
that (i) the initial previous state Σa

i,t−1 of the Decoder is the last state Sa
i,T of the Encoder, (ii) the

Decoder input x̂a
i,t is the output of its previous hidden state O (ηa

i,t−1), commonly known as feed
previous configuration, being the initial Decoder input x̂a

i,1 the same as the initial Encoder input

xa
i,1, and (iii) the learning parameters, the weightsW ’s and biases b’s, are the same for the Encoder

and the Decoder.
The quality of the deep unsupervised audio fingerprint is dependent on the learned mapping to

a Hamming space f (xa
i ) : IRM×T �→ H B . As the LSTM cell state size S ∈ IRB increases, the dimen-

sionality of the Hamming space increases, and more information from the original audio signal
can be retained by the model improving the mapping where similar audio fingerprints are nearby.
As a result, the cell state size is a user-defined parameter that needs to be tuned empirically and
the function to map the inputs xa

i into the Hamming space is the loss function of the SA model.
The loss function was designed to jointly train (shared weights and biases) the RNN Encoder

and RNN Decoder to generate a reconstruction sequence X̂a similar to the input sequence Xa.
This is done by minimizing the Mean Square Error (MSE) between the reconstruction and in-
put; Equation (3) formalizes this idea. However, this term alone does not guarantee that similar
audio fingerprints are nearby in the space. To further improve the spatial relationship between
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fingerprints, the Hash Loss term was added; Equation (4) formalizes it. In Equation (4), the dis-
tance matrix is calculated over the set hT of all last hidden states given that the last hidden states
hi,T and hj,T are not the same (i � j). To minimize the distance over similar last hidden states,
a second set, the similarity labels set σT , is created, describing how strong they are related to
each other. The formal definition can be found in Equation (5), where the cosine similarity metric

cos_sim(hi,T ,hj,T ) =
hi,T ·hj,T

‖hi,T ‖∗‖hj,T ‖ was used to bound the range of the similarity labels between

[0, 1] where zero meant that the relationship did not contribute and one meant that the relation-
ship totally contributed to the distance minimization problem. The Hash Loss was normalized by
the total number of similarity labels different from zero.

MSELoss (X) =
1

A

A∑
a=1

(
Xa − X̂a

)2
, (3)

HashLoss (hT ) =

∑
hi,T ,hj,T ∈hT ,i�j

(
σi j,T ‖hi,T − hj,T ‖2

)
|{σi j,T ∈ σT |σi j,T > 0}| , (4)

σi j,T =

⎧⎪⎪⎨
⎪⎪
⎩

1, if cos_sim(hi,T ,hj,T ) ≥ 0.55
1

0.55 ∗ cos_sim(hi,T ,hj,T ), if 0 ≤ cos_sim(hi,T ,hj,T ) < 0.55
0, otherwise

. (5)

A Bitwise Entropy Loss was applied to fine-tune the structure of each audio fingerprint with
respect to its similar audio fingerprints. Informally, Hi ⊆ H, where H is the set of all hashes, is de-
fined as the set of all hashes Hj similar to Hi , including Hi . Formally, Hi = {Hj | cos_sim(Hi ,Hj ) ≥
0.55 where i, j = 1, . . . ,N } where N is the total number of hashes in H. Equation (6) defines the
Bitwise Entropy Loss was calculated in all the subsets Hi where the cardinality is greater than or
equal to two. This loss term is normalized by the total number of subsets where the cardinality was
greater than or equal to two. Equation (7) defines the binary entropy calculated per bit b, where
each bit has two possible states ν ∈ {−1, 1}. In information theory, the binary entropy requires the

calculation of the empirical probability P (Hbν

i ) when the bth bit state is ν . The entropy term is
normalized by the total number of elements in each subset |Hi | and by the number of bits B.

BitwiseEntropyLoss (H) =
1

|{i : |Hi | ≥ 2}|
∑

i :Hi⊆H s.t. |Hi | ≥2

BinaryEntropy (Hi), (6)

BinaryEntropy (Hi) =
1

B
∗ 1

|Hi |

B∑
b=1

∑
ν ∈{−1,1}

−P (Hbν

i )loд2 (P (Hbν

i )). (7)

The final representation of the Loss function is found in Equation (8), where the three terms
(i) MSELoss (X), (ii) HashLoss (ht ), and (iii) BitwiseEntropyLoss (H) are weighted by constants α , β,
and γ , respectively. The weight values were set to the unity empirically:

Loss = α ∗MSELoss (X) + β ∗ HashLoss (hT ) + γ ∗ BitwiseEntropyLoss (H). (8)

A visual explanation of the loss terms is presented in Figure 4 where MSE Loss minimizes the
reconstruction error modifying the distribution of the audio fingerprints all around the space,
the Hash Loss minimizes the distance between similar hashes bringing them together, and the
Bitwise Entropy Loss minimizes the variation in the clusters of similar hashes tuning them to
become more alike.

The general framework of SAMAF is presented in Algorithm 1, formalizing the steps to trans-
form a raw audio signal r into an audio fingerprint H .

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, Article 43. Publication date: May 2020.



43:10 A. Báez-Suárez et al.

Fig. 4. Graphical explanation of the Loss Terms where MSE Loss minimizes the reconstruction error modi-
fying the distribution of the audio fingerprints all around the space, the Hash Loss minimizes the distance
between similar hashes bringing them together, and the Bitwise Entropy Loss minimizes the variation in the
clusters of similar hashes tuning them to become more alike.

ALGORITHM 1: SAMAF - Sequence-to-Sequence Autoencoder Model for Audio Fingerprinting

Data: A set R containing A raw audio signals.
Input: Raw Audio Signal Ra.
Output: A Set of Audio Fingerprints Ha created from Raw Audio Signal Ra.

1 repeat

2 Raw Audio Signal Ra is preprocessed (Ra
pp)

3 Mel-Frequency Cepstral Coefficients (MFCC) Xa are extracted from Ra
pp

4 The MFCC features are split into blocks xa
i where i = 1, . . . , I .

Each block has T sequential MFCC features.

5 repeat

6 Each MFCC block xa
i is processed by the Sequence-to-Sequence Autoencoder (SA) Model

creating an audio fingerprint Ha
i per block

7 until i=I

8 A set of Hashes Ha are created from the MFCC features

9 until a = A

3.3 Hamming Distance Matching

Identification of a query audio sample against a collection of audio samples was carried out by com-
paring the number of different bits (Hamming Distance) between query hashHq and each hashHci

in the collection. Labels were assigned to the query audio sample based on the comparison with
the minimum Hamming Distance. In the case where several hashes within the collection had the
same minimum Hamming Distance with the query audio sample, a voting strategy was used. Hash
Hq was created following the same framework discussed in Section 3.2. As part of our research,
the length of a query audio sample was varied from 1–6 seconds. Since hashes were generated on
1-second audio windows, fingerprints for samples greater than 1 second were constructed by con-
catenating sequential hashes. With a 0.25 second window step, a 1-second audio sample resulted
in 1 hash, 2 seconds resulted in 5 concatenated sequential hashes, 3 seconds resulted in 9 concate-
nated sequential hashes, 4 seconds in 13 sequential hashes, 5 seconds in 17 sequential hashes, and
6 seconds in 21 sequential hashes.

4 EXPERIMENTAL RESULTS

This section covers experimental settings and results. The experiments herein show the perfor-
mance of an SA model with different parameters: number of loss terms (e.g., Mean Square Error
(MSE) Loss, Hash Loss, and Bitwise Entropy Loss), number of layers (either 1 or 2), and cell state
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size (either 128 or 256). Furthermore, to understand the robustness of each model against audio
sample length (granularity), the length was varied from 1–6 seconds at a 1-second increment. Re-
sults were benchmarked against three baselines: (1) Dejavu [Drevo 2013], an open-source Shazam-
like implementation, (2) RAFS [Haitsma and Kalker 2002], a Bit Error Rate (BER) methodology
robust to time-frequency distortions, and (3) Panako [Six and Leman 2014], a constellation-based
algorithm adding time-frequency distortion resilience. Additionally, randomly initialized SA mod-
els were evaluated to understand the intrinsic capacity of the SA model for identifying audio files
and its ability to learn a mapping that boosts the identification (accuracy) performance.

4.1 VoxCeleb1 Dataset

In this work, the performance of the SA model was tested on speech in the wild with the Vox-
Celeb1 dataset [Nagrani et al. 2017]. Unlike most existing datasets that contain utterances under
constrained conditions, the VoxCeleb dataset is a large-scale audio-visual dataset consisting of
short clips of human speech extracted from interview videos uploaded to YouTube. Characteris-
tically, the utterances contain background noise, laughter, bouts of silence, and a wide range of
accents and speech. It was expected that the diversity, the unstructured nature, and the large size
of the dataset should provide a challenge and reduce the potential for experimental bias contrary
to more structured audio domains. The VoxCeleb1 dataset has a total of 153,516 audio files in WAV
format with a 16 KHz sample rate extracted from 22,168 videos. On average, 6.93 audio files were
extracted per video with a range from 1 to 239. The dataset contains speech from 1,251 different
celebrities, 561 female and 690 male, spanning 36 nationalities. The total number of audio hours is
351.60 with an average segment length of 8.25 seconds, ranging from 3.26 to 144.92 seconds.

For this research, the VoxCeleb1 dataset had to be expanded adding 21 transformations1 (Trun-
cateSilence, Noise0.05, Echo, Reverb, HighPassFilter, LowPassFilter, Reverse, Pitch0.5, Pitch0.9,
Pitch1.1, Pitch1.5, Speed0.5, Speed0.9, Speed0.95, Speed1.05, Speed1.1, Speed1.5, Tempo0.5,
Tempo0.9, Tempo1.1, Tempo1.5); the transformation’s parameters can be found in the Appendix.
Speed, Tempo, and Pitch transformations were selected based on previous research [Sonnleitner
and Widmer 2016]. Various studies have also evaluated their audio fingerprinting systems through
performance against transformations [Anguera et al. 2012; Özer et al. 2004; Six and Leman 2014].
The expansion of the VoxCeleb dataset increased the amount of data significantly; hence, a subset
of the originals containing audio samples between 10 and 11 seconds long was selected. The new
VoxCeleb1 subset, including transformations, was composed of 141,350 audio files with 6,425 orig-
inal files and 134,925 transformation files. The audio files were taken from 4,563 videos with an
average of 1.41 audio samples per video and a range of 1 to 14. The dataset contains speech from
1,195 different celebrities, 537 female and 658 male, spanning 36 nationalities. The total number of
audio hours is 437.73 with 18.66 hours of original audio and 419.07 hours of transformation audio.
The transformation samples have an average length of 11.18 seconds.

4.2 Technical Details

As shown in Figure 2, the MFCC acoustic features were extracted from preprocessed audio signals.
These features were input to the SA model where audio fingerprints were created.

Preprocessing. The audio signals were preprocessed1 and converted to 1-channel (mono)
with a 16.0 KHz sample rate. Next, the signals’ amplitudes were normalized to the range [−1, 1]
(Equation (1)).

1Sound eXchange (SoX) was used to generate the transformations and to preprocess the audio signals [Bagwell 2015].
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Feature Extraction. To construct the feature representation of the audio, 13 Mel-Frequency
Cepstral Coefficients (MFCCs) were extracted2 from the normalized audio using a window length
of 25 ms and overlap of 10 ms. Other parameters were set to their default values.

Model. The Sequence-to-Sequence Autoencoder (SA) Model3 is divided into an RNN Encoder
and Decoder. The input vectors of the Encoder are the previous hidden and cell states with vector
sizes of 128 or 256 (initialized to zero). The MFCC features have a vector size of 13. With the input
vectors, the updated hidden and cell states are calculated using the weights (randomly initial-
ized, uniformly distributed, and shared between encoder and decoder). This procedure is repeated
100 times (one second of audio is discretized to 100 steps), creating the feature representation of
the audio fingerprint in the last, or T-th, step. A threshold (Equation (2)) is applied to the feature
representation, which outputs the hash with its binary values {−1, 1}. To add depth to the model,
the LSTM cells are stacked using the output of the LSTM in the previous layer (� − 1) as the input
to the LSTM cell in the current layer �. In this research, one and two layers were used. To accelerate
computation and calculate values such as the loss and gradient with statistical variation, a batch
of 32 samples was used.

The Decoder’s first step uses the hidden and cell states from the Encoder’s last step and takes as
input the same MFCC features input in the first step of the Encoder. The following steps use the
Decoder’s prior hidden and cell states and take as input the prior output (feed previous configu-
ration) to compute the current step (Figure 3).

The SA model was trained with an Adagrad Optimizer using a learning rate of 0.01 without
decay. The number of epochs, or the number of iterations through the entire training set, was set
to 1K. However, an early stopping technique, based on training loss and accuracy curves evolution,
was manually applied. The loss function (Equation (8)) was tuned with the parameters α , β , and
γ equal to the unity; these values were empirically chosen. The evaluation of the model during
training was based on the results of one second of audio length.

Reference Database. MySQL was used for storing the audio fingerprints. The description of
the table contained the metadata (labels) of the audio file, the MFCC block ID, and the audio fin-
gerprint (hash). This information was stored with the data types char, smallint(5) unsigned, and
blob, respectively. During testing, a 176,717 entry database with a 128-bit hash size was 2.70 MB
on disk and with a 256-bit hash size was 5.39 MB on disk.

Baselines. The baselines, Dejavu, RAFS, and Panako were run using open-source implementa-
tions. Dejavu, a Shazam-like algorithm, was implemented by Will Drevo,4 and RAFS and Panako
were implemented by Joren and Leman.5

4.3 Experiments

The experiments were developed to gain insight into the SA model audio identification perfor-
mance under different parameters. The different loss function terms (MSE, Hash, and Bitwise En-
tropy), the cell state size S ∈ IRB , the audio sample length (1–6 seconds), the number of model layers
(1–2), and the model selection method during training (smallest loss vs. largest accuracy) can all
have significant impact to the model’s performance. Hence, the core of the experiments quantified
the relationship between these variables, the structure of the hash space, and the performance on
the audio identification task. Furthermore, to benchmark the SA model, the performance of these

2python_speech_features was used for the creation of MFCC features [Lyons 2017].
3TensorFlow®was used to implement the SA Model [Abadi et al. 2015].
4https://github.com/worldveil/dejavu.
5https://github.com/JorenSix/Panako.
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models was compared against the performance of three baselines, Dejavu, RAFS, and Panako, us-
ing the VoxCeleb1 dataset.

The hash space was analyzed to understand the relationship between the different loss terms
and the audio identification performance. Our intuition was that a structured hash space should
boost the audio identification task performance. Furthermore, the analysis of the hash space gave
us insight about the learning process given the unsupervised nature of the SA model.

The audio identification task was focused on recognizing variations of the original audio sig-
nal. In the case of the subset of the VoxCeleb1 dataset, the transformations are determined to be
successfully recognized when its metadata (speaker, video ID, filename) is matched to its corre-
sponding original audio signal’s metadata.

The characteristics of the model such as number of layers and state size could have a significant
effect on the ability of the model to construct abstract features or express complex relationships
between features. Since both of these are crucial to the development of an effective state (and
therefore hash) that encodes the audio signal, they may positively or negatively impact the au-
dio identification task. To determine this impact, the experiments performed were evaluated over
different numbers of layers (1–2) and state size (128 or 256).

The granularity of the system was tested from a range of 1 to 6 seconds with hashes created
over a window of 1 second and a step of 0.25 second. With a granularity of 1 second, the finger-
print was constructed with one hash. With 2 seconds of audio, the fingerprint was constructed
with 5 concatenated sequential hashes, 3 seconds was constructed with 9 concatenated sequen-
tial hashes, and so on. This means, for a sample audio 10.015 seconds long and a granularity of
1 second, 37 fingerprints would be created and a query against the database would be performed
for each hash. For a similarly sized audio sample and granularity of 2 seconds, 33 fingerprints
would be created and queried. For a 3-second audio granularity, 29 fingerprints would be created
and queried. Audio identification results are based on the exhaustive creation of hashes along the
entire audio signal rather than a finite number of random queries as done in other studies. With
this testing methodology, results are reproducible and statistically more significant, because they
represent the complete audio signal instead of random parts of it.

The model was selected based on two different strategies: smallest loss or largest accuracy. The
smallest loss selection strategy selected the model with a better constructed hash space, because
it minimized the reconstruction error (MSE Loss), distance between similar hashes (Hash Loss),
and diversity in a cluster of similar hashes (Bitwise Entropy Loss). The largest accuracy selection
strategy observed training evaluation accuracies and selected the model with the best audio identi-
fication performance. Even though the hypothesis was that a structured hash space would deliver
better identification results, the unsupervised nature of the SA model meant the model did not
necessarily learn features that improved performance over the audio identification task, instead
favoring features to better recognize other attributes of the audio signal (e.g., speech signal of the
speaker).

The samples in the dataset were split into three sets: Training (60%), Validation (20%), and Test-
ing (20%). The subset of the VoxCeleb1 dataset (originals of length 10–11 seconds long) contains
6,425 audio files labeled as originals from 1,195 people. Twenty-one transformations were applied
to the originals, resulting in 134,925 new audio files labeled as transformations. In sum, the training
set contained 2,799 original files and 58,779 transformation files, and validation and test sets each
contained 1,812 and 1,184 original files and 38,052 and 38,094 transformation files, respectively. In
terms of hours per respective set, there were 190.74 hours of training audio including originals
and transformations and 123.43 and 123.56 hours of validation and test audio, respectively, for a
total of 437.73 hours. Furthermore, in terms of number of hashes, there were 2,529,518 hashes in
the training set and 1,636,790 and 1,638,401 hashes in the validation and test sets, respectively, for
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Table 3. Quantity of Reference Hashes Stored in the Reference Database and Quantity
of Query Hashes with Respect to the Audio Length

Length 1 second 2 seconds 3 seconds 4 seconds 5 seconds 6 seconds
#References 176,717 158,265 139,813 121,361 102,909 84,457
#Queries 41,561 37,513 33,465 29,417 25,369 21,321

a total of 5,804,709. While all Training set hashes were used during the learning process, just 2%
of the Training and Validation set hashes were used for model evaluation to speed up the learning
process. The training time was about 21 days per model.

During task performance evaluations, all original hashes (training, validation, and testing sets)
were stored using MySQL, forming the “Reference Database.” Each query hash Hq was compared
against all hashes in the Reference Database and matched with the one with the minimum Ham-
ming Distance. Machine learning algorithms generalization performance needs to be evaluated
against unseen data. Therefore, the models were evaluated with a Known set composed of hashes
from the training set that were seen by the model during training and the Unknown set composed
of hashes from the testing set that were never seen by the model during training. Since 36 different
models were evaluated for each granularity from 1–6 seconds, the time to evaluate accuracy per-
formance was improved by constructing the Known and Unknown sets from only 1% of training
and 1% testing hashes, respectively. Table 3 displays the amount of reference and query hashes
with respect to the audio length.

Three baselines were used to benchmark our methodology. Dejavu is a Shazam-like approach
that uses the constellation algorithm. It requires 2-Channels (stereo) and a sample rate of 44.1 KHz
in MP3 format. The number of hashes depends on the length of the audio signal and the num-
ber of peaks found in the frequency spectrum. RAFS downmixed audio files to 1-Channel with a
sample rate of 16 KHz, window size of 2,048, and step size of 64. The BER was kept at 0.35 with a
threshold of 2,867 bits of error. The fingerprint size was found to be 8K bits per second. Panako, a
variation of the constellation algorithm adding time-frequency distortion resilience, preprocessed
the audio files to 1-Channel with a sample rate of 16 KHz, window size of 256, and a step size of
64. The information between peaks was augmented with time stretching and pitch-shift, making it
more robust to these types of transformations. The fingerprint size was found to be 32,768 bits per
second. RAFS and Panako default parameters did not work for small audio excerpts (1–6 seconds).
Hence, the parameters mentioned above had to be empirically determined. All the other param-
eters were kept at the implementation defaults. All three techniques, Dejavu, RAFS, and Panako,
encoded the relationship between peaks in the hash. Our approach drastically differs in that the
audio signal information was directly encoded in the hash. In addition to the three baselines, SA
models with randomly initialized weights and biases were evaluated to understand the intrinsic
capacity of the model and give insight into the effectiveness of the learning process (training). In
our results, “Random” refers to these instances of the SA model.

4.4 Results

The outcome of the experiments describes the nature of the model providing an objective compar-
ison of how different parameters and strategies impact performance. Furthermore, a nomenclature
will be used to refer to the models; for instance, in 1LST256MHE the first characters specify the
number of layers (1L/2L), the next set of characters specify the size of the hash (ST128/ST256),
and last, the remaining characters specify the additive construction of the loss function where M
stands for Mean Square Error Loss, H for Hash Loss, and E for Bitwise Entropy Loss.
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Fig. 5. The average Hamming distance (X-axis) vs. audio identification accuracy (Y-axis) shows that the
models with a structured hash space (small average Hamming distance) are not necessarily the ones with
higher performance and vice versa; it depends on the parameters of the model. Random, Accuracy, and Loss
indicate the method by which the models were selected. Random refers to instances of the SA model with
randomly initialized weights, Accuracy refers to selection by maximal audio identification performance, and
Loss refers to selection by minimal loss. [Better visualized in color].

The analysis of the hash space with respect to audio identification performance is given in
Figure 5. It was expected that a structured hash space yields a lower average Hamming Distance
relative to an unorganized hash space. Per our observations, the SA model was the right choice
for the generation of audio fingerprints, because the Random strategy (left column) achieved good
results with an unorganized hash space. Although we hypothesized that a more structured hash
space would result in better performance, in reality, the audio identification performance is more
correlated to the model parameters rather than the structure of the hash space. As seen on the first
and second rows, the models with the smallest average Hamming Distance are not the ones with
the highest performance, although the opposite can be seen on the third and final rows. Due to
the unsupervised nature of the SA model, the framework parameters needed to be tuned to jointly
build a structured hash space and achieve high audio identification performance. The model that
accomplished both was 2LST128M-Accuracy.
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Table 4. Top-five Models in the VoxCeleb1 Subset for Audio Identification and Other Classification
Tasks Based on the Audio Signal Attributes

Audio Identification Transformations

Layer
Size Length

Focus M H E
Acc

Layer
Size Length

Focus M H E
Acc

[bits] [secs] [%] [bits] [secs] [%]

2 256 5 Acc X 59.3 2 256 6 Acc X 66.5
2 256 4 Acc X 58.7 2 256 5 Acc X 66.2
2 128 5 Acc X 58.6 2 128 6 Acc X 66.1
2 256 5 Loss X 58.3 2 256 6 Loss X 65.5
2 128 6 Acc X 58.2 2 256 5 Loss X 65.3

Speaker Video

Layer
Size Length

Focus M H E
Acc

Layer
Size Length

Focus M H E
Acc

[bits] [secs] [%] [bits] [secs] [%]

2 256 5 Acc X 59.9 2 256 5 Acc X 59.5
2 256 4 Acc X 59.5 2 256 4 Acc X 59.0
2 128 5 Acc X 59.2 2 128 5 Acc X 58.9
2 128 6 Acc X 58.8 2 128 6 Acc X 58.5
2 256 5 Loss X 58.8 2 256 5 Loss X 58.5

Abbreviations: M - Mean Square Error Loss || H - Hash Loss || E - Bitwise Entropy Loss.

An analysis of the best SA models is given over the different attributes of the audio signal.
Table 4 details the performance of the top-five models in the subset of VoxCeleb1 dataset per
attribute. In general, the model 2LST256M with an audio length of 4, 5, and 6 seconds focused on
highest accuracy achieved good classification performance in audio identification, transformation,
speaker and video attributes. However, a model with smaller hash size, 2LST128M and focused on
highest accuracy, also achieved similar performance, suggesting that this type of model can be
used instead of the most accurate model if the technical implementation requires a smaller hash
size. Additionally, 2-layer models with a hash size of 128/256 bits were always in the top five,
suggesting that more layers enhanced the encoding of the audio signal information.

The performance of the SA models can be explained with the Loss function terms and their
evolution during the training process. As shown in Figure 6, the most simple (top) and complex
(bottom) models with the loss terms M/MH/MHE were able to minimize the reconstruction error
(MSE Loss). As expected, the clustering term (Hash Loss) was minimized when using the loss
terms MH/MHE, but M loss term followed a similar pattern only in the complex model (2LST256).
This behavior implies that the Mean Square Error term performed some measure of clustering
intrinsically without a term enforcing that behavior. Finally, the models that minimized variation
inside the clusters (Bitwise Entropy Loss) reached, in general, high identification task accuracies.

The SA models are benchmarked against other methodologies to highlight the relative perfor-
mance improvement. VoxCeleb1 subset dataset benchmark is found in Figure 7 where the best
model for audio identification, 2LST256M-Acc, was used for comparison purposes. It is worth
noticing that our SAMAF model outperformed all the other models no matter the audio length
and the attributes of the audio signal. Its performance range was 58.19%–66.56% with a difference
of at least 15% with respect to the runner-up, Dejavu. Even though Panako (2014) is a more recent
model robust to time-frequency distortions, the performance was similar to RAFS (2002) in 4, 5,
and 6 seconds but poor for 1, 2, and 3 seconds. In the original publications, Panako was tested with
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Fig. 6. Learning curves of the Loss function terms. The top row refers to the most simple model (1LST128)
while the bottom row to the most complex model (2LST256).

Fig. 7. VoxCeleb1 subset dataset benchmark using the best model, 2LST256M-Acc, to report classification
performance.

an audio length of 20 seconds and RAFS with an audio length of 3 seconds. This could explain
experimental results.

The evaluation of an audio fingerprinting system is not fulfilled without a performance break-
down over transformations. Table 5 reports these results with the three baselines. From the data,
it is clear that, on average, SAMAF outperforms the baselines. Even when comparing results for
queries without any transformation (Original vs. Original), the other three baselines are unable
to identify 100% of the audio samples. Extreme transformations such as Pitch0.5 and Speed0.5
cannot be handled by any method. Surprisingly, Dejavu has a higher resilience towards positive
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Table 5. VoxCeleb1 Subset Benchmarked against Baselines per Transformation

Transformation 1 second 2 seconds 3 seconds

Panako RAFS Dejavu SAMAF Panako RAFS Dejavu SAMAF Panako RAFS Dejavu SAMAF

Original 0.00% 0.00% 65.20% 100.00% 15.29% 23.07% 90.67% 100.00% 60.70% 67.02% 96.72% 100.00%

TruncateSilence 0.00% 0.00% 65.18% 80.49% 11.75% 88.51% 90.45% 86.38% 53.55% 89.85% 96.63% 89.32%

Noise0.05 0.00% 0.00% 46.84% 21.50% 2.09% 1.52% 74.78% 62.32% 10.30% 1.65% 86.95% 74.77%

Echo 0.00% 0.00% 77.58% 70.78% 1.87% 17.89% 95.65% 97.11% 6.32% 24.59% 98.74% 98.86%

Reverb 0.00% 0.00% 64.18% 96.26% 1.07% 57.90% 90.86% 100.00% 8.43% 58.08% 97.08% 100.00%

HighPassFilter 0.00% 0.00% 61.58% 24.28% 4.30% 93.99% 89.34% 77.58% 21.36% 94.64% 96.50% 87.53%

LowPassFilter 0.00% 0.00% 58.47% 93.08% 13.52% 73.77% 85.50% 100.00% 56.86% 74.68% 93.08% 100.00%

Reverse 0.00% 0.00% 29.49% 2.04% 0.00% 0.00% 47.67% 7.16% 0.00% 0.00% 57.56% 9.10%

Pitch0.5 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00%

Pitch0.9 0.00% 0.00% 0.00% 97.22% 0.00% 0.00% 0.00% 100.00% 0.07% 0.00% 0.00% 100.00%

Pitch1.1 0.00% 0.00% 0.06% 99.43% 0.00% 0.00% 0.00% 100.00% 0.50% 0.00% 0.00% 100.00%

Pitch1.5 0.00% 0.00% 0.11% 4.03% 0.00% 0.00% 0.19% 34.90% 0.00% 0.00% 0.21% 66.52%

Speed0.5 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Speed0.9 0.00% 0.00% 0.00% 14.81% 0.00% 0.00% 0.00% 40.19% 0.00% 0.00% 0.00% 49.13%

Speed0.95 0.00% 0.00% 0.00% 32.19% 0.42% 0.00% 0.00% 47.50% 2.07% 0.00% 0.00% 58.49%

Speed1.05 0.00% 0.00% 0.00% 30.01% 0.07% 0.00% 0.00% 49.50% 0.08% 0.00% 0.00% 61.99%

Speed1.1 0.00% 0.00% 0.06% 24.20% 0.00% 0.00% 0.00% 55.31% 0.00% 0.00% 0.00% 75.06%

Speed1.5 0.00% 0.00% 0.18% 0.09% 0.00% 0.00% 0.32% 0.11% 0.00% 0.00% 0.52% 0.00%

Tempo0.5 0.00% 0.00% 8.21% 3.55% 0.00% 0.00% 13.73% 6.36% 0.00% 0.00% 18.30% 5.54%

Tempo0.9 0.00% 0.00% 42.02% 30.13% 0.11% 0.00% 66.78% 55.91% 0.12% 0.00% 80.79% 73.79%

Tempo1.1 0.00% 0.00% 52.01% 31.51% 0.00% 0.07% 76.98% 64.36% 0.00% 0.00% 86.32% 84.00%

Tempo1.5 0.00% 0.00% 27.40% 4.02% 0.00% 0.00% 39.01% 11.97% 0.00% 0.00% 47.85% 12.10%

Average 0.00% 0.00% 27.21% 39.07% 2.29% 16.21% 39.18% 54.39% 10.02% 18.66% 43.51% 61.19%

Transformation 4 seconds 5 seconds 6 seconds

Panako RAFS Dejavu SAMAF Panako RAFS Dejavu SAMAF Panako RAFS Dejavu SAMAF

Original 91.22% 79.49% 98.19% 100.00% 97.61% 85.24% 98.84% 100.00% 98.03% 82.74% 98.82% 100.00%

TruncateSilence 82.27% 91.19% 97.83% 91.27% 90.20% 92.72% 98.55% 93.34% 93.96% 95.12% 98.72% 94.21%

Noise0.05 21.98% 1.57% 92.86% 81.26% 34.72% 1.94% 95.55% 84.62% 45.17% 1.77% 96.12% 86.83%

Echo 12.15% 24.32% 99.29% 99.78% 17.86% 27.18% 99.43% 99.92% 23.96% 28.45% 99.32% 99.90%

Reverb 21.58% 57.33% 98.36% 100.00% 36.78% 57.96% 98.94% 100.00% 51.87% 58.27% 99.06% 100.00%

HighPassFilter 43.51% 94.98% 97.62% 91.49% 63.21% 95.44% 98.74% 93.96% 74.51% 94.68% 98.71% 96.09%

LowPassFilter 89.92% 74.79% 96.55% 100.00% 97.14% 75.24% 97.68% 100.00% 98.03% 74.94% 98.35% 100.00%

Reverse 0.00% 0.00% 63.38% 10.65% 0.00% 0.00% 65.38% 11.00% 0.00% 0.00% 70.24% 11.86%

Pitch0.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pitch0.9 0.99% 0.00% 0.00% 100.00% 1.84% 0.00% 0.00% 100.00% 3.07% 0.00% 0.00% 100.00%

Pitch1.1 2.80% 0.00% 0.00% 100.00% 5.63% 0.00% 0.00% 100.00% 8.51% 0.00% 0.00% 100.00%

Pitch1.5 0.00% 0.00% 0.49% 80.02% 0.00% 0.00% 0.19% 87.05% 0.00% 0.00% 0.59% 89.56%

Speed0.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Speed0.9 0.00% 0.00% 0.00% 46.00% 0.80% 0.00% 0.00% 39.21% 2.17% 0.00% 0.00% 32.23%

Speed0.95 3.05% 0.00% 0.00% 70.27% 3.72% 0.00% 0.00% 85.46% 5.08% 0.00% 0.00% 92.06%

Speed1.05 0.18% 0.00% 0.00% 76.90% 0.43% 0.00% 0.00% 92.85% 0.80% 0.00% 0.00% 98.94%

Speed1.1 0.00% 0.00% 0.00% 81.55% 0.00% 0.00% 0.00% 81.55% 0.00% 0.00% 0.00% 78.86%

Speed1.5 0.00% 0.00% 0.51% 0.00% 0.00% 0.00% 0.50% 0.26% 0.00% 0.00% 0.47% 0.00%

Tempo0.5 0.00% 0.00% 22.29% 5.74% 0.00% 0.00% 25.60% 5.01% 0.00% 0.00% 28.91% 4.73%

Tempo0.9 0.21% 0.00% 87.32% 80.15% 2.57% 0.00% 91.45% 77.13% 5.29% 0.00% 94.47% 73.82%

Tempo1.1 0.00% 0.10% 92.53% 91.40% 1.53% 0.12% 96.40% 94.12% 1.80% 0.00% 97.19% 92.65%

Tempo1.5 0.00% 0.00% 53.86% 9.86% 0.00% 0.00% 58.90% 10.94% 0.00% 0.00% 60.00% 12.50%

Average 16.81% 19.26% 45.50% 64.38% 20.64% 19.81% 46.64% 66.20% 23.28% 19.82% 47.32% 66.56%
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Fig. 8. Benchmark of the time-frequency transformations on the VoxCeleb1 subset dataset. Rows are Pitch,
Speed, and Tempo transformations, respectively. Columns are audio sample length from 1 to 6 seconds.
[Better visualized in color]. Note: RAFS and Panako 1-second curves are a flat line in the horizontal axis,
because their performance is 0.00%.

transformations such as Speed1.5 and Tempo1.5 where the other methods failed. Dejavu also per-
forms significantly better than all other methods in Tempo0.5, and that is the only method capable
of recognizing an audio file played in reverse. Among the strong points of SAMAF, it outperformed
in all Pitch and Speed distortions, excluding Speed0.5, Speed1.5, and Pitch0.5. RAFS and Panako
were unable to identify queries with 1-second-long samples. However, the performance improved
with larger excerpts but only for simple transformations such as Original, Truncate, Low/High
Pass Filters. Neither RAFS nor Panako could handle Echo, Pitch, Speed, Tempo, and Noise trans-
formations, although Panako showed slight improvements as audio length increased.

A visual description of the performance benchmark for time-frequency distortions is shown
in Figure 8, where Pitch, Speed, and Tempo are dissected. RAFS and Panako 1-second curves are
shown as a flat line over the horizontal axis because their accuracy is 0.00%. For Pitch, SAMAF
outperformed the baselines and surprisingly Pitch1.5 reached almost 90% accuracy while Pitch0.5
is 0.0%. Dejavu, RAFS, and Panako only scored for the Original classification. For Speed, a similar
pattern was found where SAMAF performed better than the baselines and could handle positive
distortions (Speed1.1, Pitch1.5, etc.) better than negative distortions (Tempo0.5, Pitch0.9, etc.). De-
javu, RAFS, and Panako all performed for the Original with success dependent on the length of
audio. However, Dejavu outperformed SAMAF on Tempo changes. Dejavu and SAMAF methods
can handle small positive/negative distortions, and Dejavu is the only one able to handle with an
accuracy of 60.0% an extreme transformation such as Tempo1.5. Even for the counterpart trans-
formation, Tempo0.5, Dejavu reached about 30.0% accuracy, being the only technique resilient to
variations in tempo. Although RAFS and Panako performed well only in the Original classification,
Panako showed a slight performance improvement in positive and negative Tempo transforma-
tions for 5- and 6-second curves.

From a machine learning perspective, it is important to know the performance of the model for
known data (training set) and unknown data (testing set) to validate the generalization capacity
of the model for unseen data. Table 6 reports this metric for the most simple (top) and complex
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Table 6. Most Simple (Top) and Complex (Bottom) SAMAF Models for Known vs. Unknown Comparison
in the Audio Identification Task

1LST128 - Acc 1LST128 - Loss

Length M MH MHE M MH MHE

KWN UNK KWN UNK KWN UNK KWN UNK KWN UNK KWN UNK

1 second 14.83% 13.36% 3.54% 3.38% 13.91% 11.71% 15.01% 13.23% 2.16% 1.95% 13.44% 10.64%

2 seconds 41.76% 40.45% 30.98% 30.83% 41.30% 38.31% 42.52% 40.37% 27.67% 25.07% 39.66% 36.08%

3 seconds 51.31% 50.78% 39.79% 39.54% 49.85% 47.00% 52.47% 51.20% 35.86% 33.02% 46.22% 42.96%

4 seconds 54.96% 55.62% 44.30% 43.29% 53.25% 50.88% 56.55% 55.91% 40.01% 37.23% 49.37% 46.32%

5 seconds 56.82% 57.33% 46.39% 44.22% 54.82% 52.42% 57.91% 57.69% 42.48% 40.01% 51.19% 47.07%

6 seconds 56.19% 57.10% 47.00% 44.69% 55.18% 52.54% 57.60% 57.88% 43.71% 40.82% 51.39% 47.60%

2LST256 - Acc 2LST256 - Loss

Length M MH MHE M MH MHE

KWN UNK KWN UNK KWN UNK KWN UNK KWN UNK KWN UNK

1 second 37.41% 35.76% 34.68% 32.91% 34.65% 32.65% 37.63% 35.26% 34.83% 32.88% 34.67% 32.50%

2 seconds 50.85% 50.75% 45.95% 43.38% 45.86% 42.48% 51.07% 49.50% 45.35% 42.61% 46.08% 42.79%

3 seconds 56.57% 56.48% 48.98% 46.45% 49.15% 45.65% 56.19% 54.76% 48.65% 45.59% 49.52% 46.03%

4 seconds 58.70% 58.90% 50.18% 47.56% 50.53% 46.59% 58.41% 57.21% 49.97% 46.93% 50.81% 47.09%

5 seconds 59.05% 59.73% 50.04% 47.44% 50.37% 46.68% 58.92% 57.56% 50.17% 47.27% 50.75% 46.94%

6 seconds 57.99% 58.49% 49.07% 46.74% 49.35% 46.01% 57.60% 56.64% 49.40% 46.77% 49.55% 46.55%

(bottom) models where the difference between known and unknown data is not significant, mean-
ing that the model is not overfitting. However, it cannot be stated that is generalizing well either.
Among the different loss terms, Mean Square Error (M) was the one achieving a similar perfor-
mance for known and unknown data, while MH and MHE are biased towards the known data.
These results indicate that adding constraints to the hash space, in fact, harms the generalization
performance and that a regularization term might alleviate this issue.

Finally, a detailed view of the performance of all the models can be found in the Appendix sec-
tion, where the audio identification and transformations accuracy scores are exhaustively recorded
with the full combination of the different parameters, such as number of layers, hash size, strategy,
loss function terms, and audio length.

5 CONCLUSIONS

In this work, a Sequence-to-Sequence Autoencoder Model for Audio Fingerprinting (SAMAF) was
developed to improve the creation of audio fingerprints through a new loss function made up of
three different terms: Mean Square Error (M), Hash Loss (H), and Bitwise Entropy Loss (E). The
evaluation of the model was done over a subset of the VoxCeleb1 data set. The performance of the
SA model was benchmarked against three baselines: Dejavu (a Shazam-like algorithm), RAFS (a
Bit Error Rate (BER) algorithm), and Panako (variation of the constellation algorithm adding time-
frequency distortion resilience). Furthermore, the hash space vs. audio identification performance
curves and the learning curves (training process) offered additional insight into the behavior and
performance of the model.

As found in this study, a structured hash space is related to the performance of the model but not
necessarily for better or worse. As a matter of fact, the selection and combination of different model
parameters must be considered. Nevertheless, the model with a structured hash space delivering
the best audio identification performance was composed of two LSTM layers, a 256-bit hash size,
and was selected during training with maximal accuracy strategy.
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The capacity of the models was tested through the audio identification task, but also the at-
tributes an audio signal is composed of were considered to perform additional classification evalu-
ations. It was discovered that the unsupervised nature of the SA model, the number of layers, and
the hash size significantly affected the classification performance. Therefore, parameter selection
could increase/decrease the classification performance per attribute, also affecting the classifica-
tion scores of the audio identification task. An analysis of the learning curves from training showed
the link between the progression of each loss term and audio identification performance. It was
discovered that those models capable of minimizing the variation inside clusters (Bitwise Entropy
Loss term) were likely to achieve the best identification task performance.

The audio identification task was performed in a subset of the VoxCeleb1 dataset. Our methodol-
ogy achieved the highest score of 59.32%, while Dejavu highest score was 42.66%, RAFS 17.61%, and
Panako 20.49%. The SAMAF model consistently outperformed the baselines in all the classification
tasks: Audio Identification, Transformation, Speaker and Video accuracy. A detailed description of
the model performance per transformation was given in Table 5 and in Figure 8 where SAMAF’s
best model (2LST256M-Acc), on average, performed better than the other methodologies. How-
ever, the runner-up, Dejavu, was the only method capable of either recognizing audio played in
reverse or handling extreme transformations such as Speed1.5 and Tempo1.5. RAFS and Panako
did not work for excerpts 1-second long or for Pitch, Speed, and Tempo transformations. Last,
experimental results concluded that (1) all baselines identified audio samples under simple trans-
formations but SAMAF did better for complex transformations; and (2) each methodology had a
different tolerance to sample length over the task of audio identification.

From a Machine Learning perspective, the analysis of Known and Unknown data contributed to
the proper assessment of the generalization capacity of the model. Even though the models did not
overfit, they did not generalize well. As a matter of fact, adding more constraints to the creation
of hashes (MH/MHE) diminished the generalization performance slightly.
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