
Ad Hoc Networks 54 (2017) 42–52

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

CodeDrip: Improving data dissemination for wireless sensor networks

with network coding

Nildo dos Santos Ribeiro Júnior a , Rodrigo C. Tavares a , Marcos A.M. Vieira

a , ∗,
Luiz F.M. Vieira

a , Omprakash Gnawali b

a Universidade Federal de Minas Gerais Belo Horizonte, Brazil
b Department of Computer Science, University of Houston, Houston, TX, USA

a r t i c l e i n f o

Article history:

Received 12 August 2015

Revised 12 September 2016

Accepted 28 September 2016

Available online 28 September 2016

Keywords:

Wireless sensor networks

Network coding

Dissemination protocol

Experimental and prototype results

a b s t r a c t

Network Coding is a technique that combines packets in the network with the potential to mitigate

packet lost. In wireless communication systems, traditionally, dropped packets are recovered using re-

transmissions. By combining packets using network coding, it is possible to recover the transmitted in-

formation without needing to retransmit all the lost packets to all the nodes. In this paper, we present

a show-case that applying Network Coding to data dissemination for Wireless Sensor Networks provides

benefits even for small values. CodeDrip is a data dissemination protocol with Network Coding capabil-

ity. Dissemination is typically used to query nodes, send commands, and reconfigure the network. Cod-

eDrip utilizes Network Coding to improve energy efficiency, reliability, and speed of dissemination. While

previous work in combining network coding and dissemination focused on bulk data dissemination, we

optimize the design of CodeDrip for dissemination of small values. We perform extensive evaluation of

CodeDrip on simulations and a large-scale testbed and compare against the implementations of Drip, DIP

and DHV protocols. We evaluate with more than 350 physical sensor nodes. Results show that CodeDrip

is faster, smaller and sends fewer messages than Drip, DHV and DIP protocols.

© 2016 Elsevier B.V. All rights reserved.

c

b

e

s

n

p

s

p

f

t

t

t

n

b

s

e

t

1. Introduction

Network Coding [3] is a technique that combines packets in the

network with the potential to increase throughput, decrease en-

ergy consumption, and reduce the number of messages in Wireless

Communication Systems.

Wireless Sensor Network (WSN) consists of a large number of

nodes with sensing, computation, and wireless communication ca-

pability. This sensor network is typically deployed to collect data

from the environment or other physical spaces. Wireless commu-

nication and energy efficiency are key requirements for WSNs, es-

pecially in applications where we retrofit existing infrastructure.

Many WSN applications require the capability to send messages

from a base station or controller node to all the nodes in the

network. This type of communication pattern is called dissemina-

tion , or one-to-many. Dissemination is typically used to send com-

mands, query, reconfigure and reprogram the network. A data dis-

semination protocol for sensor networks needs to overcome several
∗ Corresponding author.

E-mail addresses: nildo@dcc.ufmg.br (N.d.S. Ribeiro Júnior),

rodrigoct@dcc.ufmg.br (R.C. Tavares), mmvieira@dcc.ufmg.br (M.A.M. Vieira),

lfvieira@dcc.ufmg.br (L.F.M. Vieira), gnawali@cs.uh.edu (O. Gnawali).

w

http://dx.doi.org/10.1016/j.adhoc.2016.09.023

1570-8705/© 2016 Elsevier B.V. All rights reserved.
hallenges. First, the energy in each sensor node is limited by the

attery or energy harvesting capacity, thus it is important to save

nergy to increase the sensor node’s operational lifetime. Second,

ensor nodes typically do not have powerful CPUs, so they might

ot be capable of executing complex matrix operations or com-

lex communication protocols. Finally, wireless communication is

usceptible to transmission errors and packet loss. A dissemination

rotocol should not only be reliable and energy efficient, but also

ast.

In this paper, we present CodeDrip, 1 a data dissemination pro-

ocol for Wireless Sensor Networks. CodeDrip uses Network Coding

o improve energy efficiency, reliability, and speed of dissemina-

ion. Instead of simply retransmitting received data packets, sensor

odes combine various packets into one, and retransmit the com-

ined packet to its neighbors. Therefore, packet loss is mitigated

ince lost packets might be recovered through the decoding of oth-

rs combined packets. By avoiding retransmission, the dissemina-

ion process might finish faster.

Existing data dissemination protocols for Wireless Sensor Net-

orks present a tradeoff: save energy at the expense of dissemina-
1 This work is based on preliminary conference version [8] .

http://dx.doi.org/10.1016/j.adhoc.2016.09.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.09.023&domain=pdf
mailto:nildo@dcc.ufmg.br
mailto:rodrigoct@dcc.ufmg.br
mailto:mmvieira@dcc.ufmg.br
mailto:lfvieira@dcc.ufmg.br
mailto:gnawali@cs.uh.edu
http://dx.doi.org/10.1016/j.adhoc.2016.09.023

N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52 43

Fig. 1. Selected classes of dissemination protocols in sensor network. CodeDrip uses

network coding to make dissemination of small data efficient and fast.

t

s

t

i

t

t

H

W

N

C

w

o

s

s

v

p

h

p

w

s

s

f

e

e

r

c

s

w

d

p

p

m

2

W

t

p

p

2

s

T

Fig. 2. Drip example. There are three values to be disseminated. Each value is in-

dependently associated with a Trickle timer. Each packet has a value (rectangles on

the left side). Each dot represents when the timer fires and a message is sent.

c

i

c

t

u

s

a

n

c

m

t

T

a

n

a

a

T

D

c

m

t

W

i

W

t

s

D

s

t

D

i

d

t

p

t

fi

T

s

e

s

a

s

s

w

2

f

m

o
ion speed. These protocols use transmission of summaries or ver-

ion numbers and attempt to selectively transmit the missing data

o avoid redundant transmission. While this strategy saves energy,

t could incur large delays. Through extensive experiments, we find

hat CodeDrip provides faster data dissemination while transmit-

ing fewer messages than most previous approaches.

Network Coding is not a new idea in wireless communication.

owever, previous work such as COPE [16] , cannot be applied to

SNs because these algorithms require large memory overhead.

etwork coding schemes such as Rateless Deluge [13] and Adap-

ode [14] have been previously proposed in wireless sensor net-

orks and are shown to have low memory and computational

verhead. However, these WSN dissemination protocols are de-

igned for bulk data dissemination. There has been no previous

tudy of effectiveness of network coding in dissemination of small

alues . Previously, it was thought that there would be limited op-

ortunity to combine packets in dissemination of small values,

ence the focus on bulk data dissemination. We identify the op-

ortunity to make dissemination of small values efficient with net-

ork coding and fill this gap in sensor network protocol design

pace.

Our main contributions are as follows. First, we present the de-

ign and implementation of CodeDrip. Second, we study the per-

ormance of CodeDrip through extensive simulation and testbed

xperiments on the KanseiGenie testbed [26] . We evaluate Cod-

Drip with more than 350 physical sensor nodes. Our work is a

ealistic show-case that Network Coding benefits real-world appli-

ations. Third, we compare CodeDrip to the data dissemination of

mall values with Drip, DIP [23] and DHV [5] and quantify the Net-

ork Coding gain and show that Network Coding is useful even for

issemination of small values.

Our work is organized as follows. In the next section, we

resent the related work. CodeDrip is explained in Section 3 . We

resent the simulation results in Section 4 and the testbed experi-

ents in Section 5 . We conclude in Section 6 .

. Related work

There is a large body of work in dissemination protocols for

SN. Fig. 1 summarizes the major classes of dissemination pro-

ocols. In this section, we describe how some of the dissemination

rotocols fit in the design space of dissemination protocols and ap-

lication of network coding in dissemination.

.1. Dissemination of small values

Trickle [21] is used as a building block for a number of dis-

emination protocols that propagate code or small values in WSN.

rickle has two key features that allows it to be efficient: the timer
ontrol algorithm and duplicate suppression. Trickle timer doubles

ts interval every time it fires. Thus, over the long run, the interval

onverges to a very large maximum value. The timer can be reset

o a small value when a new message needs to be sent. Trickle

ses version numbers to detect and suppress duplicate transmis-

ions. A node periodically broadcasts its version but stays silent

nd increases the interval if it hears several messages from its

eighbors containing the same version number. When a node re-

eives a new version number, the node resets the timer and trans-

its the message. CodeDrip uses Trickle timer in its design.

Some works [9,27] study the Trickle performance. In [27] ,

he authors present an analytical study of the performance of

rickle algorithm for data dissemination. In [9] , the authors an-

lyzed Trickle parameters and proposed a modification when a

ew node joins the network. Moreover, the CTP work [11] evalu-

tes the Trickle adaptive beaconing and presents some discussion

bout Trickle timers and different parameters.

Drip [28] is the simplest data dissemination protocol that uses

rickle timer. Each time an application transmits a message with

rip, a new version number is used. The new version number

auses the protocol to reset the Trickle timer and thereby trans-

issions in the network to disseminate the new value. Redundant

ransmissions are detected using version numbers and suppressed.

hen the application does not inject new messages, the timer

nterval increases which causes the control overhead to level off.

hen a new message is injected, the new version number causes

he timer to reset and the nodes disseminate the message. Fig. 2

hows how Drip works when it is used to disseminate three values.

issemination of each message is paced by its own Trickle timer.

DIssemination Protocol (DIP) [23] is a data discovery and dis-

emination protocol. DIP continuously measures network condi-

ions and estimates whether each data item requires an update. In

IP, a node periodically broadcasts a summary message, contain-

ng hashes of its keys and versions. A hash-tree based algorithm

etects if there is an update. DIP scales logarithmically with the

otal number of items. DHV [5] is a code consistency maintenance

rotocol. DHV’s key contribution is its technique to efficiently de-

ermine when to perform code updates. DHV detects and identi-

es which code item need updates at the bit level. DHV uses the

rickle timer to control transmission rate and duplicate suppres-

ion.

DIP and DHV are examples of dissemination protocols that op-

rate at the level of a group of messages (for example, to compute

ummaries). On the other hand, Drip operates at the granularity of

 single message. In DIP and DHV, all nodes must agree on a fixed

et of data item identifiers before dissemination. DIP and DHV can

cale to a large number of data item updates, however perform

orse than Drip on small number of data items or updates [12] .

.2. Bulk and middle-sized data dissemination

A different set of dissemination protocols have been proposed

or middle or large-sized objects. Maté [19] and Tenet [24] opti-

ize the design of their dissemination protocols for middle-sized

bjects. Maté virtual machine disseminates code capsules to install

44 N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52

u

n

d

i

A

n

g

t

t

t

e

c

A

c

i

a

n

d

i

3

s

p

c

w

r

h

s

r

t

C

a

f

c

d

fi

C

C

t

t

l

s

i

E

T

c

o

A

t

o

b

b

t

F

b

a

t
small virtual programs. Tenet disseminates tasks, enabling users to

decide what to run in the sensor network during run-time.

Deluge [15] is a data dissemination protocol for code updates. It

focuses on disseminating bulk data. Several optimizations in stor-

age, buffering, and transmission enable it to efficiently disseminate

objects (such as sensor node code) that do not fit in the limited

RAM of sensor nodes. Deluge also uses Trickle timer to time its

control packets.

2.3. Network coding and dissemination

Early work in network coding showed that, in general, in-

network encoding of packets could achieve an optimal capacity

that cannot be realized via any feasible routing-only scheme [2] .

It was shown that network coding can achieve multicast capacity

while routing-only scheme may not. Follow on work showed that

it is sufficient for the encoding function to be linear [22] . In wire-

less environments, network coding has been demonstrated to of-

fer several benefits, such as improved energy efficiency [6] (by re-

ducing the number of distinct transmissions), higher throughput

and robustness (by allowing nodes to receive potentially multiple

copies of a single packet).

A number of network-coding protocols have been proposed

in wireless communication, for example COPE [16] and CodeTor-

rent [18] . COPE [16] demonstrated that the use of network cod-

ing can improve the overall wireless network throughput. CodeTor-

rent [18] performs content distribution in VANETs using network

coding. Unfortunately, a direct application of these protocols from

mesh networks to WSN is challenging primarily due to memory

constraints on sensor nodes that limit the cache size for overheard

packets.

Researchers have proposed network coding protocols with low

memory and computational overhead. Keller et al. [17] experimen-

tally investigate the delay of flooding based multicast protocols

for a sniper detection application using network coding. DutyCode

[4] combines the idea of Network Coding and duty-cycle in the

MAC layer.

Rateless Deluge [13] is an implementation of Deluge with Net-

work coding. AdapCode [14] is another reliable data dissemination

protocol for code update with Network Coding. Both protocols take

advantage of Network Coding to improve reliability and send fewer

messages than Deluge. These protocols are optimized for bulk data

dissemination and have high memory overhead and running time

of O (n 3) due to their use of Gaussian elimination. CodeDrip is opti-

mized for dissemination of small values and uses XOR operator for

encoding and hence has low computational overhead.

A data dissemination protocol in WSNs with network coding is

also presented in [29] , but their focus is different from ours. They

assume a TDMA-like MAC and focus on a packet-scheduling, de-

termining which packets to combine and transmit given the radio

on-off schedule. They prove that the problem is NP-hard and pro-

vide a LP formulation. In contrast to their system, CodeDrip runs

on CSMA MAC. We also provide a rigorous testbed-based evalua-

tion of dissemination of small values using network coding.

Splash [7] is a dissemination protocol for large objects in WSNs.

The approach of this protocol is to combine the advances in con-

structive interference broadcast and multiple-channel pipelining to

eliminate contention overhead among the nodes in the network. Its

constructive interference established that concurrent transmissions

by notes synchronized can improve reception rates by neighbors.

Splash uses a mechanism on its final round to recover missing

packets at different nodes, where each node broadcasts the packets

it has XOR’ed with 19 other packets. This ensures that every sin-

gle packet is retransmitted at least once, and the probability of the

node being able to decode the missing packets is high. Splash only
ses XOR coding to recover lost packets at the end of the dissemi-

ation process.

MT-Deluge [10] is a multi-threaded design for a coding-based

ata dissemination protocol. The main idea is to separate the cod-

ng operation and the transmission operation into two threads.

n adaptive packet-level synchronization provides precise synchro-

ization between multiple threads and an incremental decoding al-

orithm is proposed where the receiver starts to decode after ob-

aining a small number of packets. This algorithm can make use of

he idle-durations in receiving, mitigating the impact of decoding

o dissemination delay.

Synapse [25] is a protocol which was designed to improve the

fficiency of the error recovery phase using network coding to en-

ode a packet before transmission. Synapse implements a hybrid

RQ (HARQ) where data are encoded prior to transmission and in-

remental redundancy is used to recover from losses. For the cod-

ng, digital Fountain Codes were selected as they are rateless and

llow for lightweight implementations. After receiving an expected

umber of encoded packets, the receiving node uses an alternative

ecoding algorithm by Gaussian elimination with a high probabil-

ty of packets with a high degree.

. Algorithm

CodeDrip uses Network Coding to improve the efficiency of dis-

emination in Wireless Sensor Networks. In a sensor network de-

loyment, we often need to disseminate different information (e.g.,

onfiguration, commands) to the network. With network coding,

e can combine different packets and make dissemination more

esilient to failure. We can recover lost packets if the sensor node

ad received a combined message and an original message.

Like Drip, CodeDrip uses the Trickle timer to time the mes-

age transmissions with the goal that the data will eventually ar-

ive at all the nodes in the network. Unlike Drip, CodeDrip some-

imes combines messages and transmits the combined messages.

odeDrip does not use topology information to inform its decision

bout which messages to combine, thus has no control overhead

or topology discovery. Later we will describe when CodeDrip de-

ides to transmit combined messages.

To combine messages, different network coding protocols use

ifferent operators. CodeDrip uses the � operator, which is a Galois

eld of 2, instead of a more complex finite field. This choice allows

odeDrip to run efficiently on resource constraint nodes. On most

PUs, the XOR operator is just one hardware instruction.

We modify the packet format for Drip to accommodate the con-

rol fields required by network coding. The decoding process needs

o know which messages were combined to create the given pay-

oad. We add to the message header a field indicating what mes-

ages where combined. Each data to be disseminated has a 1 byte

dentifier. For more than 256 items, we could extend this identifier.

ach message, besides its payload, has a set of these identifiers.

his set of identifiers is the CodeDrip overhead necessary for the

oding and decoding processes. The unmodified Drip message has

nly one identifier and its payload is the data to be disseminated.

 combined message has two or more identifiers corresponding to

he packets that were combined. The payload consists of the result

f applying the XOR operator among the data that are identified

y the list of identifiers.

Fig. 3 shows how CodeDrip works. There are three values to

e disseminated. Each value has an associated Trickle timer. When

he Trickle timer fires (represented by a dot), a message is sent.

ig. 3 also illustrates the message content, where packets are com-

ined before transmission.

Each sensor node has two buffers, one for the original messages

nd one for the combined messages, which are initially empty. Af-

er receiving a message, the sensor node verifies if the message is

N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52 45

Fig. 3. CodeDrip example. There are three values to be disseminated. Each value

has an associated Trickle timer. Each packet transmission might combine the pack-

ets.

o

s

s

m

n

m

m

m

c

n

n

fi

s

t

i

m

b

o

p

d

n

s

E

fi

s

n

T

j

p

S

s

n

r

s

w

4

p

o

u

v

r

l

4

r

Fig. 4. Number of messages sent for Drip and CodeDrip for different network sizes.

t

t

s

m

e

e

W

4

m

f

n

a

p

t

t

t

i

C

t

f

m

g

l

a

n

l

t

r

t

b
riginal or combined. If the message is original, the sensor node

tores it in the original message buffer and will transmit this mes-

age when the Trickle timer fires. Drip also requires an original

essage buffer to store the data item and its version number.

If the sensor node receives a combined message, the sensor

ode checks if it can decode the new message from the original

essages which it had already received. If it is not possible, the

essage will be stored in the combined buffer until new messages

ake it possible to decode the message. In practice, for example,

onsider the case where only two messages can be combined, the

ode will only store a combined message in the buffer if it does

ot have any of its combined packets.

There are two probabilistic decision policies in CodeDrip. The

rst policy decides what to do when a sensor node receives a mes-

age it has already received. Receiving the same message many

imes indicates that its neighbors already have the message. Thus,

t is reasonable that the sensor nodes does not need to send the

essage right away, since this message is not missing in the neigh-

orhood. A sensor node might decide to suppress the message, in

ther words, delay sending the message. This process is called sup-

ression and is also present in Drip. The suppression probability

etermines if the protocol should suppress the message.

The second policy decides if CodeDrip should send the origi-

al message or a combined message. This decision is made before

ending the message, in other words, when the Trickle timer fires.

ach original message is associated with a timer. When this timer

res, the sensor node decides to either send the original mes-

age, or to combine with other messages and to send the combi-

ation. The other messages to be combined are selected randomly.

he combination can happen independently at every node and not

ust the node that initially generated the packet. The combination

robability affects the protocol performance and is evaluated in

ection 5 .

Since CodeDrip has the potential to decode more than one mes-

age with just one transmission, CodeDrip suppresses sending un-

ecessary messages faster than Drip. For example, CodeDrip can

eceive the combination of two redundant messages and delay the

ender timer of these two messages in a single step while Drip

ould need to receive both messages.

. Simulation experiments

We first perform a set of simulation experiments to study the

erformance of CodeDrip and how its performance compares to

ther dissemination protocols. Although simulation experiments

se modeled wireless propagation characteristics, which might be

ery different from what we find in realistic wireless networks, the

esults are nevertheless helpful in understanding the basic high-

evel properties of the protocols.

.1. Evaluation methodology

We generated WSN topologies by placing the sensor nodes in

andom locations in the network and constructing a communica-
ion graph where the edge weights represent packet loss rate on

hat link. We made sure that all the topologies are connected. We

imulate each scenario ten times and we report the median of the

etrics. In each simulation, the network disseminated three differ-

nt data items. We use the simulator called TOSSIM [20] for our

xperiments. TOSSIM is designed to simulate TinyOS applications.

e use these metrics in our study:

• Efficiency: We use the number of messages as a measure of ef-

ficiency of the protocol. With energy efficient and duty-cycling

MAC, fewer number of transmissions typically leads to less en-

ergy expenditure.

• Reliability: We use the fraction of nodes that receive the dis-

seminated message as a measure of reliability.

• Speed: We use the time it takes for all the nodes to receive the

disseminated message as a measure of speed. We call it dis-

semination time or latency.

.2. Performance analysis

In the first set of simulations, we compare the number of trans-

itted messages for CodeDrip and Drip. Fig. 4 shows the per-

ormance of Drip and CodeDrip for different number of sensor

odes. Roofnet project [1] collected link-level measurements from

 realistic mesh network and shown that most communication

airs (sender/receiver) have intermediate (50%) delivery probabili-

ies. Thus, we fix the packet loss rate to 50%. This setting allows us

o study CodeDrip’s performance in a realistic network. We found

hat, in larger networks, the overhead for CodeDrip relative to Drip

mproves as shown in Fig. 4 . In all our simulation experiments,

odeDrip sends fewer total messages than Drip.

In the second set of simulations, we compare the dissemina-

ion latency of CodeDrip and Drip. Fig. 5 shows the cumulative

raction of sensor nodes that already received all the disseminated

essages according to the dissemination process time in topolo-

ies with 100 sensor nodes. Observe that Drip suffers from packet

oss in the initial stage since there are few nodes transmitting

nd many packets are lost. In CodeDrip, even when there are few

odes transmitting in the beginning, the data propagates through

arger part of the network. We can also observe that dissemina-

ion latency is shorter for CodeDrip. While some nodes do not

eceive the last message with Drip, increasing the dissemination

ime, with CodeDrip the combined messages increases the proba-

ility of receiving the last message, decreasing the dissemination

46 N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52

Fig. 5. Number of sensor nodes (in percentage) that already received all messages

over time. Topology has 100 sensor nodes and 50% packet loss rate.

Fig. 6. Number of messages sent for Drip and CodeDrip for different packet loss

rates in topologies with 100 sensor nodes.

Fig. 7. Dissemination time for Drip and CodeDrip for different packet loss rates in

topologies with 100 sensor nodes.

Fig. 8. The distribution of packet sent per sensor node with 10 messages being

disseminated.

3

b

4

u

c

b

w

m

t

m

n

m

t

e

u

i
latency. Summary: Figs. 4 and 5 show that CodeDrip is faster and

more efficient than Drip.

In the third set of simulations, we study how the link quality

affects CodeDrip and Drip protocols. Figs. 6 and 7 illustrate the per-

formance of Drip and CodeDrip as we vary the link quality in the

network with a 100 sensor node topology. We observe that Cod-

eDrip is less affected by the packet loss rate than Drip since Cod-

eDrip needs fewer messages to finish the process. CodeDrip also

has smaller dissemination latency compared to Drip. When the

packet loss rate is higher than 50%, the measurements have higher

variation, which is expected because different decisions are made

in dissemination depending on whether the packets are success-

fully received. Summary: Figs. 6 and 7 indicate that CodeDrip gain

increases in lossy topologies.

These results indicate that the dissemination process sends

fewer messages when coupled with Network Coding technique.

The gains are improved when the packet loss rate are higher.

Next, we measured the number of packets sent by each node

during dissemination process. We disseminated 10 messages in

random topologies with 100 sensor nodes. Fig. 8 shows the cu-

mulative distribution probability (cdf) of number of packet sent.

Y-axis represents the fraction of sensor nodes. X-axis indicates the

number of messages sent. We can observe that 50% of nodes sent
0 or fewer packets. This metric is important to evaluate the load

alance behavior in wireless sensor network.

.3. Buffer size analysis

Here, we evaluate how many positions in the buffer are actually

sed during the dissemination process. We modified the source

ode of CodeDrip to report the number of messages stored in the

uffer in each node at each time. Then we ran several simulations

ith this implementation using TOSSIM.

Our simulated network has 100 nodes. It is generated randomly

aking sure that every node inserted is connected to the network.

Fig. 9 presents a histogram using blue bars for a single simula-

ion disseminating 50 messages. In the x axis, we have the maxi-

um buffer size used by a node. The y axis represents how many

odes that fall in each category. We see that most nodes used at

ost 3 buffer positions during the dissemination process. The node

hat used more buffer positions need 12 positions.

Fig. 9 also presents cumulative distribution with a line. It is

asy to see through this chart that 80% of the nodes of the network

sed a maximum of 4 positions in the buffer. If we set the max-

mum buffer size to 5 in this case, approximately 8% would loose

N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52 47

Fig. 9. The distribution of the maximum utilization of the buffer in the experiment

with 50 messages being disseminated. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Chart showing the maximum and mean buffer sizes in each simulation.

s

t

s

d

b

n

s

s

i

i

o

i

m

s

t

c

o

5

d

l

5

p

d

Fig. 11. Number of messages sent for CodeDrip and Drip as we increase the number

of physical sensor nodes used in the testbed experiments.

T

t

a

l

a

w

c

p

i

s

m

o

a

s

f

5

p

F

i

1

s

m

p

a

s

i

p

m

b

f

u

w

a

p

i

a

b
ome combined message. Since the number of possible combina-

ions of messages grows exponentially with the number of mes-

ages, a combined message usually does not take too long to be

ecoded. Remember that a combined messages only stays in the

uffer until it is able to be decoded.

Next, we evaluate how the number of messages being dissemi-

ated affects the buffer utilization. We varied the number of mes-

ages from 5 to 50, increasing it by 5 each time. In Fig. 10 , we

how the maximum and the mean buffer size for of all 100 motes

n the network for each experiment. We can observe that the max-

mum utilization of the buffer grows quickly, but as we previously

bserved, very few nodes actually use the maximum buffer size

n the network. The mean of the buffer size does not grow as the

aximum buffer size. Even if we increase the number of the mes-

ages being disseminated in the network, the overhead used with

he buffer in practice do not increase as the number of possible

ombination of messages. We can use relatively small buffers with-

ut compromising too much of the performance.

. Testbed experiments

In this section, we describe testbed experiments used to vali-

ate the performance results for CodeDrip in a more realistic wire-

ess environment.

.1. Evaluation methodology

Testbed experiments involve implementing and running the

rotocol code on physical motes and collecting instrumentation

ata to understand the performance.
We used the public KanseiGenie Wireless Sensor Network

estbed [26] to run our experiments with real sensor motes. This

estbed provides access to TelosBs. The motes on the testbed have

 3 dB attenuator attached to their antennas. At the lowest power

evel of transmission, the reliable range is 3 feet. Thus, this testbed

llows us to evaluate protocols in a realistic wireless environment

ith a mix of reliable and unreliable links. We run the protocol

ode for CodeDrip, Drip, DIP, and DHV on this testbed and collect

erformance information.

To collect data related to the performance of the protocol, we

nstrumented the code of the protocols to send a message to the

erial port of the TelosB motes. The messages contain the id of the

ote, the number of packets the mote sent since the beginning

f the dissemination and the number of messages the mote have

lready received. The system adds a timestamp when a message is

ent. These messages are then sent and stored in a central server

rom which we can download them for performance analysis.

.2. Performance analysis

In the first set of testbed experiments, our goal is to com-

are CodeDrip performance with Drip for different network sizes.

igs. 11 and 12 show the number of messages sent and the dissem-

nation time for Drip and CodeDrip, respectively. We disseminated

0 values from the sink node. We tested topologies from 10 to 70

ensor nodes. We changed the size of the network by program-

ing the protocol code on select nodes and programming “Blink”

rogram on rest of the nodes. Each point on the graph represents

n average of results from 3 experiments and the error bar is the

tandard deviation. Summary: Figs. 11 and 12 show that CodeDrip

s more efficient and faster than Drip.

In the second set of experiments, we study the impact of sup-

ression and combination probability on different performance

etrics. The probability of suppressing a received message or com-

ining multiple packets into a single packet before transmission af-

ects the performance of CodeDrip protocol. These results can give

s guidelines on how to configure these two parameters in a real-

orld deployment.

Fig. 13 depicts the number of sent messages and by the prob-

bility of suppression. The experiments contain topologies with 70

hysical sensor nodes. For comparison against Drip, we add a hor-

zontal line that indicates the Drip’s average of sent messages and

lso Drip’s average dissemination time. We can observe that, for

etter performance, the probability of suppression for CodeDrip

48 N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52

−20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70

D
is

se
m

in
at

io
n

tim
e

(s
)

Number of nodes

Drip
CodeDrip

Fig. 12. Dissemination time for CodeDrip and Drip as we increase the number of

physical sensor nodes used in the testbed experiments.

Fig. 13. Number of messages sent for CodeDrip and Drip for different probability

of suppression in the testbed experiments.

Fig. 14. Number of messages sent for CodeDrip and Drip for different probability

of combining packets in the testbed experiments.

Fig. 15. Percentage of nodes that received all the 10 disseminated values over time

for CodeDrip, Drip, DIP, and DHV protocols in the testbed experiments with 70

motes.

t

D

d

s

i

t

t

s

t

n

e

c

f

t

T

e

i

t

n

C
should be set between 40% and 90%. In general, increasing the

probability of suppression decreases the number of messages but,

on the other hand, increases the dissemination time. Summary:

Suppression Probability between 0.4 and 0.9 maybe appropriate.

Fig. 14 shows the results from experiments that analyze the

impact of the probability of combination parameter on dissemi-

nation performance. The probability of combination determines if

the node should combine the messages when the node transmits

a message. The results suggest a trend where the number of sent

messages increases with the larger probability of combination. We

presume that by combining many times, we do not get an original

message that could be useful to decode all previous messages. Cod-

eDrip is better than Drip for values below 30%. Summary: Larger

combining probability reduces decoding probability.

Thus, we investigated how the probability of suppression and

combination affects CodeDrip performance. For the next set of ex-

periments, we set the probability of combination to 30% and prob-

ability of suppression to 50%.

DIP and DHV are newer dissemination protocols that improve

upon Drip for certain types of dissemination. Drip treats every data

item as a separate entity for dissemination and DIP and DHV treat
hem as a group. We now evaluate CodeDrip against both DHV and

IP.

One of the benefits of applying Network Coding is that it re-

uces the dissemination time. Fig. 15 shows the evolution of dis-

emination with CodeDrip, Drip, DIP, and DHV protocols over time

n a topology with 70 physical sensor nodes. The x-axis represents

ime since the dissemination process started. The y-axis indicates

he percentage of nodes that received all 10 disseminated mes-

ages. For at least 90% of nodes to receive all messages, CodeDrip

akes only 6 s, while Drip needs 15 s, DIP spends 43 s and DHV is

ot able to get 90% in over 100 s.

Fig. 16 shows the number of messages sent over time for Cod-

Drip, Drip, DIP, and DHV protocols in a topology with 70 physi-

al sensor nodes. We observe that the CodeDrip and Drip show a

aster growth in the number of sent messages at the beginning of

he dissemination process, while DIP and DHV grow more slowly.

his is a consequence of how the protocols are implemented. Cod-

Drip and Drip use different Trickle timer for each value that is be-

ng disseminated in the network. DIP and DHV use only one Trickle

imer for all values. Although DIP sends fewer messages, not all

odes receive the dissemination content as shown in Fig. 15 . Thus,

odeDrip transmits fewer packets than DHV and Drip. Although

N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52 49

Fig. 16. Number of messages sent over time for CodeDrip, Drip, DIP, and DHV pro-

tocols in the testbed experiments with 70 motes.

Fig. 17. Percentage of nodes that received all the 10 disseminated values over time

for CodeDrip, Drip, DIP, and DHV protocols in a topology with 368 physical sensor

nodes.

C

o

D

n

s

a

n

a

t

t

s

2

C

n

e

C

t

a

m

Fig. 18. Number of messages sent over time for CodeDrip, Drip, DIP, and DHV pro-

tocols in a topology with 368 physical sensor nodes.

Table 1

RAM, ROM and Code size usage from CodeDrip, Drip, DIP, and

DHV.

Metric CodeDrip Drip DIP DHV

RAM (bytes) 900 845 959 928

ROM (bytes) 17 ,980 21 ,274 22 ,130 21 ,478

Code size (bytes) 42 ,655 50 ,123 49 ,493 49 ,003

Fig. 19. Percentage of nodes that received all the 10 disseminated values over time

for CodeDrip with 2 and 3 combined messages.

m

C

W

c

o

5

c

b

a

i

(

c

l

d

n
odeDrip transmits more packets than DIP, CodeDrip does the job

f completely disseminating the values, which was not the case for

IP.

Someone might wonder if these results hold for even larger

etworks. Thus, we conducted experiments with 368 physical sen-

or nodes, which was the maximum number of sensor nodes avail-

ble for Kansei testbed. Fig. 17 shows the evolution of dissemi-

ation with CodeDrip, Drip, DIP, and DHV protocols over time in

 topology with 368 physical sensor nodes. The x-axis represents

ime since the dissemination process started. The y-axis indicates

he percentage of nodes that received all 10 disseminated mes-

ages. CodeDrip is the only dissemination protocol to finish before

0 s. Again, DHV is not able to get 90% in over 100 s.

Fig. 18 depicts the number of messages sent over time for

odeDrip, Drip, DIP, and DHV protocols with 368 physical sensor

odes. The behavior is the same as the one illustrated in Fig. 16 ,

xcept for the number of messages sent on the x-axis. Summary:

odeDrip completes faster and is generally more efficient.

Finally, we compare memory overhead of the four dissemina-

ion protocols. Table 1 compares the RAM, ROM, and code size us-

ge (in bytes) from CodeDrip, Drip, DIP and DHV. CodeDrip uses

ore RAM than Drip because of buffers. But, this overhead is
arginal since it still consumes less memory than DIP and DHV.

odeDrip consumes fewer ROM memory than Drip, DHV and DIP.

e conjecture that CodeDrip has smaller ROM size than Drip be-

ause all data was encoded in one interface while Drip provides

ne interface for each datum.

.3. Extension

The next research question we address is: what if CodeDrip

ombined more messages? Thus, we extended CodeDrip to com-

ine even 3 messages. We did experiments with 90 sensor nodes

nd 10 messages being disseminated. The suppression probability

s 50% and the combination probability is 30%. We call CodeDrip2

represented with red (darker) line) the CodeDrip version with 2

ombined packets and CodeDrip3 (represented with green (lighter)

ine) the CodeDrip version that combines 2 and 3 packets. Fig. 19

epicts the percentage of nodes that received all the 10 dissemi-

ated values over time for CodeDrip with 2 and 3 combined mes-

50 N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52

Fig. 20. Number of messages sent over time for CodeDrip with 2 and 3 combined

messages.

[

[

[

[

sages. Both cases, all nodes received all messages before 20 s. Cod-

eDrip 2 is faster than CodeDrip3. Fig. 20 illustrates the number of

messages sent over time for CodeDrip with 2 and 3 combined mes-

sages. CodeDrip2 sends fewer messages than CodeDrip3. We con-

juncture this is the same issue with the combination probability:

by combining many times, we do not get an original message that

could be useful to decode all previous messages.

6. Conclusions

Network Coding might mitigate packet lost in Wireless Com-

munication System. Here, we presented a show-case of applying

Network Coding to Wireless Sensor Networks. Unlike previous re-

sults, we show that Network Coding can benefits the data dissem-

ination process of even small values. We developed CodeDrip, a

data dissemination protocol for Wireless Sensor Networks that ap-

plies Network Coding in the dissemination process. We showed

that this decreases the number of transmitted messages and con-

sequently saves energy consumption. CodeDrip requires additional

space in the packet to store message ids and buffers to store com-

bined messages. These overheads can be controlled by specify-

ing the maximum number of messages that can be decoded and

the maximum buffer size. We evaluated the performance of Cod-

eDrip with simulation and testbed experiments. We conducted ex-

periments with more than 350 physical sensor nodes. Our results

showed that CodeDrip is faster than Drip, DIP and DHV proto-

cols to disseminate information. CodeDrip also requires less ROM

memory than Drip, DHV and DIP. Furthermore, CodeDrip trans-

mits fewer packets than DHV and Drip. Although CodeDrip trans-

mits more packets than DIP, CodeDrip’s dissemination reliability is

higher than DIP’s. Thus, CodeDrip is faster, smaller and sends fewer

messages than Drip, DHV and DIP protocols.

Acknowledgement

The authors would like to thank the research agencies NSF,

CNPq, CAPES and FAPEMIG for their financial support.

References

[1] D. Aguayo , J. Bicket , S. Biswas , G. Judd , R. Morris , Link-level measurements
from an 802.11b mesh network, in: Proceedings of the 2004 Conference on

Applications, Technologies, Architectures, and protocols for Computer Commu-

nications, in: SIGCOMM ’04, ACM, New York, NY, USA, 2004, pp. 121–132 .
[2] R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, Network information flow, Inf. Theory

IEEE Trans. 46 (4) (20 0 0) 1204–1216, doi: 10.1109/18.850663 .
[3] R. Ahlswede , N. Cai , S. yen Robert Li , R.W. Yeung , Network information flow,

IEEE TRANS. INF. THEORY 46 (4) (20 0 0) 1204–1216 .
[4] R. Chandanala, R. Stoleru, Network coding in duty-cycled sensor networks, in:
Networked Sensing Systems (INSS), 2010 Seventh International Conference on,

2010, pp. 203–210, doi: 10.1109/INSS.2010.5572223 .
[5] T. Dang, N. Bulusu, W.-c. Feng, S. Park, Dhv: a code consistency main-

tenance protocol for multi-hop wireless sensor networks, in: U. Roedig,
C. Sreenan (Eds.), Wireless Sensor Networks, Lecture Notes in Computer

Science, 5432, Springer Berlin Heidelberg, 2009, pp. 327–342, doi: 10.1007/
978- 3- 642- 00224- 3 _ 21 .

[6] S. Deb , Network coding for wireless applications: a brief tutorial, International

Workshop on Wireless Ad-hoc Networks (IWWAN), 2005 .
[7] M. Doddavenkatappa , M.C. Chan , B. Leong , Splash: fast data dissemination with

constructive interference in wireless sensor networks, in: Presented as Part of
the 10th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 13), 2013, pp. 269–282 .
[8] N. dos Santos Ribeiro Júnior , M.A.M. Vieira , L.F.M. Vieira , O. Gnawali , Codedrip:

data dissemination protocol with network coding for wireless sensor networks,

in: EWSN, 2014, pp. 34–49 .
[9] J. Eriksson , O. Gnawali , Poster Abstract: Synchronizing Trickle Intervals, in: Pro-

ceedings of the 11th European conference on Wireless sensor networks (EWSN
2014), 2014 .

[10] Y. Gao , J. Bu , W. Dong , C. Chen , L. Rao , X. Liu , Exploiting concurrency for ef-
ficient dissemination in wireless sensor networks, IEEE Trans. Parallel Distrib.

Syst. 24 (4) (2013) 691–700 .

[11] O. Gnawali , R. Fonseca , K. Jamieson , M. Kazandjieva , D. Moss , P. Levis , CTP:
an efficient, robust, and reliable collection tree protocol for wireless sensor

networks, ACM Trans. Sens. Netw. (TOSN) 10 (3) (2013) .
[12] O. Gnawali , L. Guibas , P. Levis , A case for evaluating sensor network proto-

cols concurrently, in: Proceedings of the fifth ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation and Characterization, in:

WiNTECH ’10, ACM, New York, NY, USA, 2010, pp. 47–54 .

[13] A. Hagedorn , D. Starobinski , A. Trachtenberg , Rateless deluge: over-the-air pro-
gramming of wireless sensor networks using random linear codes, in: Proceed-

ings of the 7th International Conference on Information Processing in Sensor
Networks, in: IPSN ’08, IEEE Computer Society, Washington, DC, USA, 2008,

pp. 457–466 .
[14] I.-H. Hou, Y.-E. Tsai, T. Abdelzaher, I. Gupta, Adapcode: adaptive network cod-

ing for code updates in wireless sensor networks, in: INFOCOM 2008. The

27th Conference on Computer Communications. IEEE, 2008, pp. 1517–1525,
doi: 10.1109/INFOCOM.2008.211 .

[15] J.W. Hui , D. Culler , The dynamic behavior of a data dissemination protocol for
network programming at scale, in: In Proceedings of the 2nd International,

ACM Press, 2004, pp. 81–94 .
[16] S. Katti , H. Rahul , W. Hu , D. Katabi , M. Medard , J. Crowcroft , XORs in the

air: practical wireless network coding, IEEE/ACM Trans. Netw. 16 (3) (2008)

497–510 .
[17] L. Keller, A. Karaagac, C. Fragouli, K. Argyraki, Evaluation of network coding

techniques for a sniper detection application, in: Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011 International Sympo-

sium on, 2011, pp. 327–333, doi: 10.1109/WIOPT.2011.5930035 .
[18] U. Lee, J.-S. Park, J. Yeh, G. Pau, M. Gerla, Code torrent: content distribution

using network coding in vanet, in: MobiShare ’06: Proceedings of the 1st In-
ternational Workshop on Decentralized Resource Sharing in Mobile Computing

and Networking, ACM, New York, NY, USA, 2006, pp. 1–5. http://doi.acm.org/

10.1145/1161252.1161254 .
[19] P. Levis , D. Gay , D. Culler , Active sensor networks, in: Proceedings of the

2nd Conference on Symposium on Networked Systems Design & Implemen-
tation - Volume 2, in: NSDI’05, USENIX Association, Berkeley, CA, USA, 2005,

pp. 343–356 .
[20] P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: accurate and scalable simulation of

entire tinyos applications, in: Proceedings of the 1st International Conference

on Embedded Networked Sensor Systems, in: SenSys ’03, ACM, New York, NY,
USA, 2003, pp. 126–137, doi: 10.1145/958491.958506 .

[21] P. Levis , N. Patel , D. Culler , S. Shenker , Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks, in: In Pro-

ceedings of the First USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), 2004, pp. 15–28 .

22] S.-Y. Li, R. Yeung, N. Cai, Linear network coding, Inf. Theory IEEE Trans. 49 (2)

(2003) 371–381, doi: 10.1109/TIT.2002.807285 .
23] K. Lin , P. Levis , Data discovery and dissemination with dip, in: Proceed-

ings of the 7th International Conference on Information Processing in Sensor
Networks, in: IPSN ’08, IEEE Computer Society, Washington, DC, USA, 2008,

pp. 433–4 4 4 .
[24] J. Paek , B. Greenstein , O. Gnawali , K.-Y. Jang , A. Joki , M. Vieira , J. Hicks , D. Es-

trin , R. Govindan , E. Kohler , The tenet architecture for tiered sensor networks,

ACM Trans. Sen. Netw. 6 (4) (2010) 34:1–34:44 .
25] M. Rossi , G. Zanca , L. Stabellini , R. Crepaldi , A.F. Harris III , M. Zorzi , Synapse: a

network reprogramming protocol for wireless sensor networks using fountain
codes, in: 2008 5th Annual IEEE Communications Society Conference on Sen-

sor, Mesh and Ad Hoc Communications and Networks, IEEE, 2008, pp. 188–196 .
26] M. Sridharan , W. Zeng , W. Leal , X. Ju , R. Ramnath , H. Zhang , A. Arora , From

kansei to kanseigenie: architecture of federated, programmable wireless sen-

sor fabrics, in: T. Magedanz, A. Gavras, N. Thanh, J. Chase (Eds.), Testbeds and
Research Infrastructures. Development of Networks and Communities, Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, 46, Springer Berlin Heidelberg, 2011, pp. 155–165 .

http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0001
http://dx.doi.org/10.1109/18.850663
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0003
http://dx.doi.org/10.1109/INSS.2010.5572223
http://dx.doi.org/10.1007/978-3-642-00224-3_21
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0006
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0008
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0010
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0011
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0012
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0013
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0013
http://dx.doi.org/10.1109/INFOCOM.2008.211
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0015
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0016
http://dx.doi.org/10.1109/WIOPT.2011.5930035
http://doi.acm.org/10.1145/1161252.1161254
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0019
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0019
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0019
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0019
http://dx.doi.org/10.1145/958491.958506
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0021
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0021
http://dx.doi.org/10.1109/TIT.2002.807285
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0023
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0025
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0026

N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52 51

[

[

[27] M. Stolikj , T.M. Meyfroyt , P.J. Cuijpers , J.J. Lukkien , Improving the performance
of trickle-based data dissemination in low-power networks, in: European Con-

ference on Wireless Sensor Networks, Springer, 2015, pp. 186–201 .
28] G. Tolle , D. Culler , Design of an application-cooperative management system

for wireless sensor networks, in: Second European Workshop on Wireless Sen-
sor Networks (EWSN) Istanbul, Turkey, January 31, - February 2, 20 05., 20 05,

pp. 121–132 .
29] X. Wang, J. Wang, Y. Xu, Data dissemination in wireless sensor networks with
network coding, EURASIP J. Wireless Commun. Netw. 2010 (1) (2010) 465915,

doi: 10.1155/2010/465915 .

http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30238-4/sbref0028
http://dx.doi.org/10.1155/2010/465915

52 N.d.S. Ribeiro Júnior et al. / Ad Hoc Networks 54 (2017) 42–52

he Universidade Federal de Minas Gerais (UFMG). His research interests are in Computer

sidade Federal de Minas Gerais (UFMG). His research interests are in Computer Network-

 at the Universidade Federal de Minas Gerais (UFMG). He received his undergraduate

Belo Horizonte, and M.S. and Ph.D. degrees in Computer Science from the University of
uter Networking.

e Universidade Federal de Minas Gerais (UFMG). He received his undergraduate and M.S.
zonte, and M.S. and Ph.D. degrees in Computer Science from the University of California

etworking.

rsity of Houston, USA. He was a Postdoctoral Scholar at Stanford University, got his Ph.D.
his Masters and Bachelors degrees from the Massachusetts Institute of Technology. His

tworks and embedded sensing systems.
Nildo dos Santos Ribeiro Júnior is a Master student at t

Networking and Network Coding.

Rodrigo Costa Tavares is a junior undergrad at the Univer

ing and Network Coding.

Marcos A. M. Vieira is a Professor of Computer Science

and M.S. at the Universidade Federal de Minas Gerais in
Southern California (USC). His research interest is in Comp

Luiz F. M. Vieira is a Professor of Computer Science at th
at the Universidade Federal de Minas Gerais in Belo Hori

Los Angeles (UCLA). His research interest is in Computer N

Omprakash Gnawali is an Assistant Professor at the Unive
from the University of Southern California, and received

research lies at the intersection of low power wireless ne

	CodeDrip: Improving data dissemination for wireless sensor networks with network coding
	1 Introduction
	2 Related work
	2.1 Dissemination of small values
	2.2 Bulk and middle-sized data dissemination
	2.3 Network coding and dissemination

	3 Algorithm
	4 Simulation experiments
	4.1 Evaluation methodology
	4.2 Performance analysis
	4.3 Buffer size analysis

	5 Testbed experiments
	5.1 Evaluation methodology
	5.2 Performance analysis
	5.3 Extension

	6 Conclusions
	 Acknowledgement
	 References

