
CodeDrip: Data Dissemination Protocol with
Network Coding for Wireless Sensor Networks

Nildo dos Santos Ribeiro Júnior1, Marcos A. M. Vieira1, Luiz F. M. Vieira1,
and Omprakash Gnawali2

1 Universidade Federal de Minas Gerais, Brazil,
{nildo,mmvieira,lfvieira}@dcc.ufmg.br ,

2 University of Houston, USA,
gnawali@cs.uh.edu

Abstract. In this paper, we present CodeDrip, a data dissemination
protocol for Wireless Sensor Networks. Dissemination is typically used
to query nodes, send commands, and reconfigure the network. CodeDrip
utilizes Network Coding to improve energy efficiency, reliability, and
speed of dissemination. Network coding allows recovery of lost packets by
combining the received packets thereby making dissemination robust to
packet losses. While previous work in combining network coding and dis-
semination focused on bulk data dissemination, we optimize the design of
CodeDrip for dissemination of small values. We perform extensive evalu-
ation of CodeDrip on simulations and a large-scale testbed and compare
against the implementations of Drip, DIP and DHV protocols. Results
show that CodeDrip is faster, smaller and sends fewer messages than
Drip, DHV and DIP protocols.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a large number of nodes with sens-
ing, computation, and wireless communication capability. These sensor networks
are typically deployed to collect data from the environment or other physical
spaces. Many sensor networks have been deployed in outdoor environment such
as forests and streets and in indoor setting such as buildings and factories. Wire-
less communication and energy efficiency are key requirements of these networks,
especially in applications where we retrofit existing infrastructure with smart
sensing and actuation capabilities.

Many WSN applications require the capability to send messages from a cen-
tral server or controller node to all the nodes in the network. This type of com-
munication pattern is called dissemination. Dissemination is typically used to
query, send commands, reconfigure and reprogram the network. A data dissem-
ination protocol for sensor networks needs to overcome several challenges. First,
the energy in each sensor node is limited by the battery or energy harvesting
capacity, thus it is important to save energy to increase the sensor node’s op-
erational lifetime. Second, sensor nodes typically do not have powerful CPUs,
so they might not be capable of executing complex communication protocols.

Finally, wireless communication is susceptible to transmission errors and packet
loss. A dissemination protocol should not only be reliable and energy efficient,
but also fast.

In this paper, we present CodeDrip, a data dissemination protocol for Wire-
less Sensor Networks. CodeDrip uses Network Coding to improve energy effi-
ciency, reliability, and speed of dissemination. Instead of simply retransmitting
received data packets, sensor nodes combine various packets into one, and re-
transmit the combined packet to its neighbors. Therefore, packet loss is mit-
igated since lost packets might be recovered through the decoding of others
combined packets. By avoiding retransmission, the dissemination process might
finish faster.

Existing data dissemination protocols for Wireless Sensor Networks present
a tradeoff: save energy at the expense of dissemination speed. These protocols
use transmission of summaries or version numbers and attempt to selectively
transmit the missing data to avoid redundant transmission. While this strategy
saves energy, it could incur large delays. Through extensive experiments, we
find that CodeDrip provides faster data dissemination while transmitting fewer
messages than most previous approaches.

Network Coding is not a new idea in wireless communication. However, pre-
vious work such as COPE [11], can not be applied to WSNs because these
algorithms require large memory overhead. Network coding schemes such as
Rateless Deluge [8] and AdapCode [9] have been previously proposed in wireless
sensor networks and are shown to have low memory and computational over-
head. However, these WSN dissemination protocols are designed for bulk data
dissemination and require O(n3) instructions for decoding with the Gaussian
elimination. There has been no previous study of effectiveness of network coding
in dissemination of small values. Previously, it was thought that there would be
limited opportunity to combine packets in dissemination of small values, hence
the focus on bulk data dissemination. We identify the opportunity to make dis-
semination of small values efficient with network coding and fill this gap in sensor
network protocol design space.

Our main contributions are as follows. First, we present the design and imple-
mentation of CodeDrip. Second, we study the performance of CodeDrip through
extensive simulation and testbed experiments on the KanseiGenie testbed [20].
Third, we compare CodeDrip to the data dissemination of small values with
Drip, DIP [18] and DHV [5] and quantify the Network Coding gain and show
that Network Coding is useful even for dissemination of small values.

Our work is organized as follows. In the next section, we present work related
to CodeDrip. In Section 3, we give an overview of network coding. CodeDrip is
explained in Section 4. We present the simulation results in Section 5 and the
testbed experiments in Section 6. We conclude in Section 7.

Small%Data%
(One%Value)%

Bulk%Data%

Network%
Coding%

Tradi:onal%

Small%Data%
(Grouped)%

Drip% DIP,%DHV% Deluge%

Rateless,%
AdapCode%

CodeDrip)

Fig. 1. Selected classes of dissemination protocols in sensor network. CodeDrip uses
network coding to make dissemination of small data efficient and fast.

2 Related Work

There is a large body of work in dissemination protocols for WSN. Figure 1 sum-
marizes the major classes of dissemination protocols. In this section, we describe
how some of the dissemination protocols fit in the design space of dissemination
protocols and application of network coding in dissemination.

2.1 Dissemination of small values

Trickle [16] is used as a building block for a number of dissemination protocols
that propagate code or small values in WSN. Trickle has two key features that
allows it to be efficient: the timer control algorithm and duplicate suppression.
Trickle timer doubles its interval every time it fires. Thus, over the long run, the
interval converges to a very large maximum value. The timer can be reset to a
small value when a new message needs to be sent. Trickle uses version numbers
to detect and suppress duplicate transmissions. A node periodically broadcasts
its version but stays silent and increases the interval if it hears several messages
from its neighbors containing the same version number. When a node receives
a new version number, the node resets the timer and transmits the message.
CodeDrip uses Trickle timer in its design.

Drip [21] is the simplest data dissemination protocol that uses Trickle timer.
Each time an application transmits a message with Drip, a new version number is
used. The new version number causes the protocol to reset the Trickle timer and
thereby transmissions in the network to disseminate the new value. Redundant
transmissions are detected using version numbers and suppressed. When the
application does not inject new messages, the timer interval increases which
causes the control overhead to level off. When a new message is injected, the
new version number causes the timer to reset and the nodes disseminate the

1 dado1

2 dado2

3 dado3

Fig. 2. Drip example. There are three values to be disseminated. Each value is inde-
pendently associated with a Trickle timer. Each packet has a value (rectangles on the
left side). Each dot represents when the timer fires and a message is sent.

message. Figure 2 shows how Drip works when it is used to disseminate three
values. Dissemination of each message is paced by its own Trickle timer.

DIssemination Protocol (DIP) [18] is a data discovery and dissemination
protocol. DIP continuously measures network conditions and estimates whether
each data item requires an update. In DIP, a node periodically broadcasts a
summary message, containing hashes of its keys and versions. A hash-tree based
algorithm detects if there is an update. DIP scales logarithmically with the total
number of items. DHV [5] is a code consistency maintenance protocol. DHV’s
key contribution is its technique to efficiently determine when to perform code
updates. DHV detects and identifies which code item need updates at the bit
level. DHV uses the Trickle timer to control transmission rate and duplicate
suppression.

DIP and DHV are examples of dissemination protocols that operate at the
level of a group of messages (for example, to compute summaries). On the other
hand, Drip operates at the granularity of a single message. In DIP and DHV, all
nodes must agree on a fixed set of data item identifiers before dissemination. DIP
and DHV can scale to a large number of data item updates, however perform
worse than Drip on small number of data items or updates [7].

2.2 Bulk and middle-sized data dissemination

A different set of dissemination protocols have been proposed for middle or large-
sized objects. Maté [14] and Tenet [19] optimize the design of their dissemination
protocols for middle-sized objects. Maté virtual machine disseminates code cap-
sules to install small virtual programs. Tenet disseminates tasks, enabling users
to decide what to run in the sensor network during run-time.

Deluge [10] is a data dissemination protocol for code updates. It focuses on
disseminating bulk data. Several optimizations in storage, buffering, and trans-
mission enable it to efficiently disseminate objects (such as sensor node code)
that do not fit in the limited RAM of sensor nodes. Deluge also uses Trickle
timer to time its control packets.

2.3 Network coding and dissemination

Early work in network coding showed that, in general, in-network encoding of
packets could achieve an optimal capacity that cannot be realized via any feasible

routing-only scheme [2]. It was shown that network coding can achieve multicast
capacity while routing-only scheme may not. Follow on work showed that it is
sufficient for the encoding function to be linear [17]. In wireless environments,
network coding has been demonstrated to offer several benefits, such as improved
energy efficiency [6](by reducing the number of distinct transmissions), higher
throughput and robustness (by allowing nodes to receive potentially multiple
copies of a single packet).

A number of network-coding protocols have been proposed in wireless com-
munication, for example COPE [11] and CodeTorrent [13]. COPE [11] demon-
strated that the use of network coding can improve the overall wireless network
throughput. CodeTorrent [13] performs content distribution in VANETs using
network coding. Unfortunately, a direct application of these protocols from mesh
networks to WSN is challenging primarily due to memory constraints on sensor
nodes that limit the cache size for overheard packets.

Researchers have proposed network coding protocols with low memory and
computational overhead. Keller et al. [12] experimentally investigate the delay
of flooding based multicast protocols for a sniper detection application using
network coding. DutyCode [4] combines the idea of Network Coding and duty-
cycle in the MAC layer.

Rateless Deluge [8] is an implementation of Deluge with Network coding.
AdapCode [9] is another reliable data dissemination protocol for code update
with Network Coding. Both protocols take advantage of Network Coding to
improve reliability and send fewer messages than Deluge. These protocols are
optimized for bulk data dissemination and have high memory overhead and
running time of O(n3) due to their use of Gaussian elimination. CodeDrip is
optimized for dissemination of small values and uses XOR operator for encoding
and hence has low computational overhead.

A data dissemination protocol in WSNs with network coding is also pre-
sented in [23], but their focus is different from ours. They assume a TDMA-like
MAC and focus on a packet-scheduling, determining which packets to combine
and transmit given the radio on-off schedule. They prove that the problem is
NP-hard and provide a LP formulation. In contrast to their system, CodeDrip
runs on CSMA MAC. We also provide a rigorous testbed-based evaluation of
dissemination of small values using network coding.

3 Network Coding

Network Coding [3] is a technique that combines packets in the network thereby
increasing the throughput, decreasing energy consumption, and reducing the
number of messages that are transmitted [22].

In wireless networks, traditionally, dropped packets are recovered using re-
transmissions. By combining packets using network coding, it is possible to re-
cover the transmitted information without needing to retransmit all the lost
packets to all the nodes. We explain how Network Coding works with a simple
example.

sink

1 2

P1
P2

P1
P2

P1

P2

Fig. 3. Sink node needs
to disseminate two
packets to the nodes 1
and 2.

sink

1 2

P1
P2

P1
P2

P1

P2

P1
P2

P1 P2

Fig. 4. With traditional
retransmission, we need
a total of 4 transmis-
sions.

sink

1 2

P1
P2

P1
P2

P1

P2

P1+P2

P1+P2 P1+P2

Fig. 5. With retrans-
mission with Network
Coding, we need only 3
transmissions.

Consider the topology in Figure 3. The sink node, at the center of the figure,
wishes to disseminate two packets, denoted P1 and P2. Sensor nodes 1 and 2 are
in the communication range of the sink node and might receive the packets. The
sink node transmits packet P1 but only sensor node 1 receives it. Later, the sink
node transmits packet P2, but at this time, only sensor node 2 properly receives
packet P2. Thus, each sensor node receives a different packet.

With the traditional approach, lost packets are recovered using retransmis-
sions. In our example, the sink node retransmits packets P1 and P2. If these
retransmissions are successful, sensor node 1 will receive the missing packet P2

and sensor node 2 will receive the missing packet P1. Thus, even if these first
retransmissions are successful, we need a total of 4 transmissions for both the
nodes to successfully receive the message. We show this scenario in Figure 4.

Network Coding allows packets to be combined using a logic operator. We
can combine packets using, for instance, the XOR (exclusive or ⊕) operator.
A new packet is created by performing a bit-wise XOR of each each bit in the
packets P1 and P2. The new packet is of the same size as the packets P1 and P2.

In a network coding system, the sink node, instead of retransmitting packets
P1 and P2, retransmits a new packet which is P1 ⊕ P2. Sensor node 1, after
receiving this packet, is capable of decoding packet P2 by applying the XOR
operator between the packet P1, which it has already received, over the new
packet. Thus, sensor node 1 decodes P2 since P2 = P1 ⊕ (P1 ⊕ P2). In the same
way, sensor node 2 is capable of decoding P1 when it receives the new packet and
applies the XOR operator with packet P2, which it has already received. Thus,
sensor node 2 decodes P1 since P2 = P1⊕ (P1⊕P2). Thus, we are able to recover
both the packets with only three total transmissions, as shown in Figure 5.

This example illustrates the benefit of using Network Coding in the single
hop topology example. The number of messages was reduced from 4 to 3. For a
larger topology with many more hops, the gains are much larger.

4 Algorithm

CodeDrip uses Network Coding to improve the efficiency of dissemination in
Wireless Sensor Networks. In a sensor network deployment, we often need to dis-
seminate different information (e.g., configuration, commands) to the network.
With network coding, we can combine different packets and make dissemina-
tion more resilient to failure. We can recover lost packets if the sensor node had
received a combined message and an original message.

Like Drip, CodeDrip uses the Trickle timer to time the message transmis-
sions with the goal that the data will eventually arrive at all the nodes in the
network. Unlike Drip, CodeDrip sometimes combines messages and transmits
the combined messages. CodeDrip does not use topology information to inform
its decision about which messages to combine, thus has no control overhead for
topology discovery. Later we will describe when CodeDrip decides to transmit
combined messages.

To combine messages, different network coding protocols use different oper-
ators. CodeDrip uses the ⊕ operator, which is a Galois field of 2, instead of a
more complex finite field. This choice allows Drip to run efficiently on resource
constraint nodes. On most CPUs, the XOR operator is just one hardware in-
struction.

We modify the packet format for Drip to accommodate the control fields
required by network coding. The decoding process needs to know which messages
were combined to create the given payload. We add to the message header a field
indicating what messages where combined. Each data to be disseminated has a
1 byte identifier. For more than 256 items, we could extend this identifier. Each
message, besides its payload, has a set of these identifiers. This set of identifiers
is the CodeDrip overhead necessary for the coding and decoding processes. The
unmodified Drip message has only one identifier and its payload is the data to
be disseminated. A combined message has two or more identifiers corresponding
to the packets that were combined. The payload consist of the result of applying
the XOR operator among the data that are identified by the list of identifiers.

Figure 6 shows how CodeDrip works. There are three values to be dissemi-
nated. Each value has an associated Trickle timer. When the Trickle timer fires
(represented by a dot), a message is sent. Figure 6 also illustrates the message
content, where packets are combined before transmission.

Each sensor node has two buffers, one for the original messages and one for
the combined messages, which are initially empty. After receiving a message,
the sensor node verifies if the message is original or combined. If the message is
original, the sensor node stores it in the original message buffer and will transmit
this message when the Trickle timer fires. Drip also requires an original message
buffer to store the data item and its version number.

If the sensor node receives a combined message, the sensor node checks if it
can decode the new message from the original messages which it had already
received. If it is not possible, the message will be stored in the combined buffer
until new messages make it possible to decode the message. In practice, for
example, consider the case where only two messages can be combined, the node

1 d10

2 d20

3 d30

1 d1 + d22

3 d3 + d22 2 d2 + d11

Fig. 6. CodeDrip example. There are three values to be disseminated. Each value has
an associated Trickle timer. Each packet transmission might combine the packets.

will only store a combined message in the buffer if it does not have any of its
combined packets.

There are two probabilistic decision policies in CodeDrip. The first policy
decides what to do when a sensor node receives a message it has already received.
Receiving the same message many times indicates that its neighbors already have
the message. Thus, it is reasonable that the sensor nodes does not need to send
the message right away, since this message is not missing in the neighborhood. A
sensor node might decide to suppress the message, in other words, delay sending
the message. This process is called suppression and is also present in Drip. The
suppression probability determines if the protocol should suppress the message.

The second policy decides if CodeDrip should send the original message or a
combined message. This decision is made before sending the message, in other
words, when the Trickle timer fires. Each original message is associated with a
timer. When this timer fires, the sensor node decides to either send the original
message, or to combine with other messages and to send the combination. The
other messages to be combined are selected randomly. The combination can hap-
pen independently at every node and not just the node that initially generated
the packet. The combination probability affects the protocol performance and is
evaluated in Section 6.

Since CodeDrip has the potential to decode more than one message with
just one transmission, CodeDrip suppresses sending unnecessary messages faster
than Drip. For example, CodeDrip can receive the combination of two redundant
messages and delay the sender timer of these two messages in a single step while
Drip would need to receive both messages.

5 Simulation Experiments

We first perform a set of simulation experiments to study the performance of
CodeDrip and how its performance compares to other dissemination protocols.
Although simulation experiments use modeled wireless propagation characteris-
tics, which might be very different from what we find in realistic wireless net-
works, the results are nevertheless helpful in understanding the basic high-level
properties of the protocols.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 s

e
n
t

Number of nodes

Drip
CodeDrip

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

D
is

s
e
m

in
a
ti
o
n
 t
im

e
 (

s
)

Number of nodes

Drip
CodeDrip

Fig. 7. Number of messages sent for Drip
and CodeDrip for different network sizes.

0 %

20 %

40 %

60 %

80 %

100 %

 0 10 20 30 40 50 60

N
o

d
e

s
 t

h
a

t
re

c
e

iv
e

d
 a

ll
m

e
s
s
a

g
e

s

Time (s)

Drip
CodeDrip

Fig. 8. Number of sensor nodes (in per-
centage) that already received all mes-
sages over time. Topology has 100 sensor
nodes and 50% packet loss rate.

5.1 Evaluation Methodology

We generated WSN topologies by placing the sensor nodes in random locations
in the network and constructing a communication graph where the edge weights
represent packet loss rate on that link. We made sure that all the topologies are
connected. We simulate each scenario ten times and we report the median of
the metrics. In each simulation, the network disseminated three different data
items. We use the simulator called TOSSIM [15] for our experiments. TOSSIM
is designed to simulate TinyOS applications. We use these metrics in our study:

– Efficiency: We use the number of messages as a measure of efficiency of
the protocol. With energy efficient and duty-cycling MAC, fewer number of
transmissions typically leads to less energy expenditure.

– Reliability: We use the fraction of nodes that receive the disseminated mes-
sage as a measure of reliability.

– Speed: We use the time it takes for all the nodes to receive the disseminated
message as a measure of speed. We call it dissemination time or latency.

5.2 Performance Analysis

In the first set of simulations, we compare the number of transmitted messages
for CodeDrip and Drip. Figure 7 shows the performance of Drip and CodeDrip
for different number of sensor nodes. Roofnet project [1] collected link-level mea-
surements from a realistic mesh network and shown that most communication
pairs (sender/receiver) have intermediate (50%) delivery probabilities. Thus, we
fix the packet loss rate to 50%. This setting allows us to study CodeDrip’s perfor-
mance in a realistic network. We found that, in larger networks, the overhead for

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 s

e
n

t

Packet loss rate (%)

Drip
CodeDrip

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

D
is

s
e

m
in

a
ti
o

n
 t

im
e

 (
s
)

Packet loss rate (%)

Drip
CodeDrip

Fig. 9. Number of messages sent and Dissemination time for Drip and CodeDrip for
differnet packet loss rates in topologies with 100 sensor nodes.

CodeDrip relative to Drip improves as shown in Figure 7. In all our simulation
experiments, CodeDrip sends fewer total messages than Drip.

In the second set of simulations, we compare the dissemination latency of
CodeDrip and Drip. Figure 8 shows the cumulative fraction of sensor nodes that
already received all the disseminated messages according to the dissemination
process time in topologies with 100 sensor nodes. Observe that Drip suffers from
packet loss in the initial stage since there are few nodes transmitting and many
packets are lost. In CodeDrip, even when there are few nodes transmitting in the
beginning, the data propagates through larger part of the network. We can also
observe that dissemination latency is shorter for CodeDrip. While some nodes
do not receive the last message with Drip, increasing the dissemination time,
with CodeDrip the combined messages increases the probability of receiving the
last message, decreasing the dissemination latency.

In the third set of simulations, we study how the link quality affects CodeDrip
and Drip protocols. Figure 9 illustrates the performance of Drip and CodeDrip
as we vary the link quality in the network with a 100 sensor node topology. We
observe that CodeDrip is less affected by the packet loss rate than Drip since
CodeDrip needs fewer messages to finish the process. CodeDrip also has smaller
dissemination latency compared to Drip. When the packet loss rate is higher
than 50%, the measurements have higher variation, which is expected because
different decisions are made in dissemination depending on whether the packets
are succssfully received.

These results indicate that the dissemination process sends fewer messages
when coupled with Network Coding technique. The gains are improved when
the packet loss rate are higher.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 s

e
n
t

Number of nodes

Drip
CodeDrip

−20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70

D
is

s
e
m

in
a
ti
o
n
 t
im

e
 (

s
)

Number of nodes

Drip
CodeDrip

Fig. 10. Number of messages sent and dissemination time for CodeDrip and Drip as
we increase the number of physical sensor nodes used in the testbed experiments.

6 Testbed Experiments

In this section, we describe testbed experiments used to validate the performance
results for CodeDrip in a more relistic wireless environment.

6.1 Evaluation Methodology

Testbed experiments involve implementing and running the protocol code on
physical motes and collecting instrumentation data to understand the perfor-
mance.

We used the public KanseiGenie Wireless Sensor Network Testbed [20] to run
our experiments with real sensor motes. This testbed provides access to TelosBs.
The motes on the testbed have a 3dB attenuator attached to their antennas. At
the lowest power level of transmission, the reliable range is 3 feet. Thus, this
testbed allows us to evaluate protocols in a realistic wireless environment with
a mix of reliable and unreliable links. We run the protocol code for CodeDrip,
Drip, DIP, and DHV on this testbed and collect performance information.

To collect data related to the performance of the protocol, we instrumented
the code of the protocols to send a message to the serial port of the TelosB
motes. The messages contain the id of the mote, the number of packets the mote
sent since the beginning of the dissemination and the number of messages the
mote have already received. The system adds a timestamp when a message is
sent. These messages are then sent and stored in a central server from which we
can download them for performance analysis.

6.2 Performance Analysis

In the first set of testbed experiments, our goal is to compare CodeDrip per-
formance with Drip for different network sizes. Figure 10 shows the number of

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Probability of suppressing packets (%)

Drip Average
CodeDrip

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

D
is

se
m

in
at

io
n

tim
e

(s
)

Probability of suppressing packets (%)

Drip Average
CodeDrip

Fig. 11. Number of messages sent and dissemination time for CodeDrip and Drip for
different probability of suppression in the testbed experiments.

messages sent and the dissemination time for Drip and CodeDrip. We dissemi-
nated 10 values from the sink node. We tested topologies from 10 to 70 sensor
nodes. We changed the size of the network by programming the protocol code
on select nodes and programming “Blink” program on rest of the nodes. Each
point on the graph represents an average of results from 3 experiments and the
error bar is the standard deviation. Figure 10 shows that CodeDrip sends fewer
messages than Drip and CodeDrip is faster than Drip.

In the second set of experiments, we study the impact of suppression and
combination probability on different performance metrics. The probability of
suppressing a received message or combining multiple packets into a single packet
before transmission affects the performance of CodeDrip protocol. These results
can give us guidelines on how to configure these two parameters in a real-world
deployment.

Figure 11 depicts the number of sent messages and the dissemination time
by the probability of suppression. The experiments contain topologies with 70
physical sensor nodes. For comparison against Drip, we add a horizontal line that
indicates the Drip’s average of sent messages and also Drip’s average dissemina-
tion time. We can observe that for small probability of suppression, CodeDrip
sends more messages than Drip. However, the average dissemination time for
CodeDrip is always smaller than Drip. For better performance, the probability
of suppression should be set between 40% and 80%. In general, increasing the
probability of suppression decreases the number of messages but, on the other
hand, increases the dissemination time.

Figure 12 shows the results from experiments that analyze the impact of the
probability of combination parameter on dissemination performance. The prob-
ability of combination determines if the node should combine the messages when
the node transmits a message. The results suggest a trend where the number of

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 10 20 30 40 50 60 70

N
um

be
r

of
 m

es
sa

ge
s

se
nt

Probability of combining packets (%)

Drip Average
CodeDrip

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

D
is

se
m

in
at

io
n

tim
e

(s
)

Probability of combining packets (%)

Drip Average
CodeDrip

Fig. 12. Number of messages sent and dissemination time for CodeDrip and Drip for
different probability of combining packets in the testbed experiments.

sent messages increases with the larger probability of combination. We presume
that by combining many times, we do not get an original message that could be
useful to decode all previous messages. CodeDrip is better than Drip for values
below 30%. Again, the average dissemination time for CodeDrip is always smaller
than Drip. For better performance, the probability of combination should be set
between 10% and 30%.

Thus, we investigated how the probability of suppression and combination
affects CodeDrip performance. For the next set of experiments, we set the prob-
ability of combination to 30% and probability of suppression to 50%.

DIP and DHV are newer dissemination protocols that improve upon Drip for
certain types of dissemination. Drip treats every data item as a separate entity
for dissemination and DIP and DHV treat them as a group. We now evaluate
CodeDrip against both DHV and DIP.

One of the benefits of applying Network Coding is that it reduces the dis-
semination time. Figure 13 shows the evolution of dissemination with CodeDrip,
Drip, DIP, and DHV protocols over time in a topology with 70 physical sensor
nodes. The x-axis represents time since the dissemination process started. The
y-axis indicates the percentage of nodes that received all 10 disseminated mes-
sages. For at least 90% of nodes to receive all messages, CodeDrip takes only 6
seconds, while Drip needs 15 seconds, DIP spends 43 seconds and DHV is not
able to get 90% in over 100 seconds.

Figure 14 shows the number of messages sent over time for CodeDrip, Drip,
DIP, and DHV protocols in a topology with 70 physical sensor nodes. We observe
that the CodeDrip and Drip show a faster growth in the number of sent messages
at the beginning of the dissemination process, while DIP and DHV grow more
slowly. This is a consequence of how the protocols are implemented. CodeDrip
and Drip use different Tricke timer for each value that is being disseminated in

0 %

20 %

40 %

60 %

80 %

100 %

 0 20 40 60 80 100

N
o
d
e
 c

o
m

p
le

ti
o
n

Time (s)

Drip
CodeDrip

DIP
DHV

Fig. 13. Percentage of nodes that re-
ceived all the 10 disseminated values
over time for CodeDrip, Drip, DIP, and
DHV protocols in the testbed experi-
ments with 70 motes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 s

e
n
t

Time(s)

Drip
CodeDrip

DIP
DHV

Fig. 14. Number of messages sent over
time for CodeDrip, Drip, DIP, and
DHV protocols in the testbed experi-
ments with 70 motes.

Table 1. RAM, ROM and Code size usage from CodeDrip, Drip, DIP, and DHV.

Metric CodeDrip Drip DIP DHV

RAM (bytes) 900 845 959 928
ROM (bytes) 17980 21274 22130 21478

Code size (bytes) 42655 50123 49493 49003

the network. DIP and DHV use only one Tricke timer for all values. Although
DIP sends fewer messages, not all nodes receive the dissemination content as
shown in Figure 13. Thus, CodeDrip transmits fewer packets than DHV and
Drip. Although CodeDrip transmits more packets than DIP, CodeDrip does the
job of completely disseminating the values, which was not the case for DIP.

Finally, we compare memory overhead of the four dissemination protocols.
Table 1 compares the RAM, ROM, and code size usage (in bytes) from CodeDrip,
Drip, DIP and DHV. CodeDrip uses more RAM than Drip because of buffers.
But, this overhead is marginal since it still consumes less memory than DIP and
DHV. CodeDrip consumes fewer ROM memory than Drip, DHV and DIP.

7 Conclusions

In this work, we presented CodeDrip, a data dissemination protocol for Wireless
Sensor Network. The main idea behind this protocol is to apply Network Coding
in the dissemination process, decreasing the number of transmitted messages and
consequently saving energy consumption. CodeDrip requires additional space in
the packet to store message ids and buffers to store combined messages. These
overheads can be controlled by specifying the maximum number of messages that
can be decoded and the maximum buffer size. We evaluated the performance of

CodeDrip with simulation and testbed experiments. Our results showed that
CodeDrip is faster than Drip, DIP and DHV protocols to disseminate infor-
mation. CodeDrip also requires less ROM memory than Drip, DHV and DIP.
Furthermore, CodeDrip transmits fewer packets than DHV and Drip. Although
CodeDrip transmits more packets than DIP, CodeDrip’s dissemination reliability
is higher than DIP’s. Thus, CodeDrip is faster, smaller and sends fewer messages
than Drip, DHV and DIP protocols.

For future work, we plan to analyze the impact of different topology types
and link qualities on the performance of CodeDrip. Another interesting work is
to develop new policies to combine messages using more complex operators.

References

1. Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris. Link-
level measurements from an 802.11b mesh network. In Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’04, pages 121–132, New York, NY, USA, 2004. ACM.

2. R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow.
Information Theory, IEEE Transactions on, 46(4):1204–1216, Jul 2000.

3. Rudolf Ahlswede, Ning Cai, Shuo yen Robert Li, and Raymond W. Yeung. Net-
work information flow. IEEE TRANSACTIONS ON INFORMATION THEORY,
46(4):1204–1216, 2000.

4. R. Chandanala and R. Stoleru. Network coding in duty-cycled sensor networks.
In Networked Sensing Systems (INSS), 2010 Seventh International Conference on,
pages 203–210, 2010.

5. Thanh Dang, Nirupama Bulusu, Wu-chi Feng, and Seungweon Park. Dhv: A code
consistency maintenance protocol for multi-hop wireless sensor networks. In Utz
Roedig and CormacJ. Sreenan, editors, Wireless Sensor Networks, volume 5432
of Lecture Notes in Computer Science, pages 327–342. Springer Berlin Heidelberg,
2009.

6. S. Deb. Network coding for wireless applications: a brief tutorial. In International
Workshop on Wireless Ad-hoc Networks (IWWAN), May 2005.

7. Omprakash Gnawali, Leonidas Guibas, and Philip Levis. A case for evaluating sen-
sor network protocols concurrently. In Proceedings of the fifth ACM international
workshop on Wireless network testbeds, experimental evaluation and characteriza-
tion, WiNTECH ’10, pages 47–54, New York, NY, USA, 2010. ACM.

8. Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. Rateless deluge:
Over-the-air programming of wireless sensor networks using random linear codes.
In Proceedings of the 7th international conference on Information processing in
sensor networks, IPSN ’08, pages 457–466, Washington, DC, USA, 2008. IEEE
Computer Society.

9. I-Hong Hou, Yu-En Tsai, T.F. Abdelzaher, and I. Gupta. Adapcode: Adaptive
network coding for code updates in wireless sensor networks. In INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, pages 1517–1525, 2008.

10. Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemi-
nation protocol for network programming at scale. In In Proceedings of the 2nd
international, pages 81–94. ACM Press, 2004.

11. Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Medard, and
Jon Crowcroft. XORs in the Air: Practical Wireless Network Coding. IEEE/ACM
Transactions on Networking, 16(3):497–510, June 2008.

12. L. Keller, A. Karaagac, C. Fragouli, and K. Argyraki. Evaluation of network coding
techniques for a sniper detection application. In Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011 International Symposium
on, pages 327–333, 2011.

13. Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla. Code
torrent: content distribution using network coding in vanet. In MobiShare ’06:
Proceedings of the 1st international workshop on Decentralized resource sharing in
mobile computing and networking, pages 1–5, New York, NY, USA, 2006. ACM.

14. Philip Levis, David Gay, and David Culler. Active sensor networks. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design & Implemen-
tation - Volume 2, NSDI’05, pages 343–356, Berkeley, CA, USA, 2005. USENIX
Association.

15. Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and scal-
able simulation of entire tinyos applications. In Proceedings of the 1st international
conference on Embedded networked sensor systems, SenSys ’03, pages 126–137, New
York, NY, USA, 2003. ACM.

16. Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor networks. In In
Proceedings of the First USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), pages 15–28, 2004.

17. S.-Y.R. Li, R.W. Yeung, and Ning Cai. Linear network coding. Information The-
ory, IEEE Transactions on, 49(2):371–381, Feb. 2003.

18. Kaisen Lin and Philip Levis. Data discovery and dissemination with dip. In
Proceedings of the 7th international conference on Information processing in sensor
networks, IPSN ’08, pages 433–444, Washington, DC, USA, 2008. IEEE Computer
Society.

19. Jeongyeup Paek, Ben Greenstein, Omprakash Gnawali, Ki-Young Jang, August
Joki, Marcos Vieira, John Hicks, Deborah Estrin, Ramesh Govindan, and Eddie
Kohler. The tenet architecture for tiered sensor networks. ACM Trans. Sen. Netw.,
6(4):34:1–34:44, July 2010.

20. Mukundan Sridharan, Wenjie Zeng, William Leal, Xi Ju, Rajiv Ramnath, Hongwei
Zhang, and Anish Arora. From kansei to kanseigenie: Architecture of federated,
programmable wireless sensor fabrics. In Thomas Magedanz, Anastasius Gavras,
NguyenHuu Thanh, and JeffryS. Chase, editors, Testbeds and Research Infrastruc-
tures. Development of Networks and Communities, volume 46 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 155–165. Springer Berlin Heidelberg, 2011.

21. Gilman Tolle and David Culler. Design of an application-cooperative management
system for wireless sensor networks. In Second European Workshop on Wireless
Sensor Networks (EWSN) Istanbul, Turkey, January 31 - February 2, 2005., pages
121–132, 2005.

22. L.F.M. Vieira, A. Misra, and M. Gerla. Performance of network-coding in multi-
rate wireless environments for multicast applications. In Military Communications
Conference, 2007. MILCOM 2007. IEEE, pages 1–6. IEEE, 2007.

23. Xiumin Wang, Jianping Wang, and Yinlong Xu. Data dissemination in wireless
sensor networks with network coding. EURASIP Journal on Wireless Communi-
cations and Networking, 2010(1):465915, 2010.

