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	 Construction activities, involving cutting, drilling, and grinding of materials, often produce  
toxic respirable dust that can cause fatal diseases and illnesses.  To protect workers from 
breathing excessive amounts of respirable dust at job sites, superintendents should continuously 
monitor the level of respirable dust in workspaces and make timely interventions for over-
exposed workers.  However, current practices of respirable dust monitoring have critical 
drawbacks, and superintendents cannot accurately estimate workers’ exposures to respirable 
dust or make prompt decisions to protect the workers.  Therefore, there is a need for real-time 
air dust monitoring that can be deployed ubiquitously at a construction site and be integrated 
as part of daily construction management.  In this research, we developed a real-time dust 
monitoring system that comprises a network of low-cost mobile dust sensors and visualization 
in building information modeling (BIM).  Single-board computers and dust sensors were 
integrated as field deployment units.  Inaccurate sensors were calibrated automatically on the 
basis of an accurate ground truth sensor.  A BIM-based visualization system was developed to 
present the data collected from dust sensors in real time.  A prototype system was developed 
and tested in a controlled environment.

1.	 Introduction

	 Approximately 2.3 million workers are exposed to dust in their workplaces.  In particular, 
2 million construction workers are frequently exposed to the risk of breathing dust when 
they drill, cut, crush, or grind silica-containing materials such as concrete and stone.(1)  
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In fact, more deaths occurred in construction than any other industry in the U.S. due to 
workers breathing respirable dust containing silica.(2)  However, current practices in the 
construction industry have not been effective in minimizing/preventing dust exposure and 
providing workers with healthy working conditions.  Construction managers or employers 
are required to use engineering controls (such as water or ventilation) or respirators if 
engineering controls are not applicable.  Construction managers should also limit all other 
workers from entering high-exposure areas and provide medical exams to highly exposed 
workers according to the monitoring results.  Despite the important roles of construction  
managers, current practices of air dust monitoring have critical drawbacks that limit the 
managers’ ability to minimize the hazardous dust exposures in their daily construction 
management activities.
	 First, current practices of air dust monitoring are mostly based on the postexposure analysis 
of air dust samples.  Air dust samples collected from workplaces require laboratory analysis that 
takes multiple days to weeks.  Owing to the time gap between the exposure and analysis, air 
dust sampling cannot be used to assist construction managers in making decisions immediately 
to protect workers.  Therefore, advanced air dust monitoring is needed to provide an immediate 
estimate of exposures.
	 Second, workers, times, and locations in current air dust monitoring are limited.  The 
circumstances at a construction project are complex and change continuously, but air dust 
monitoring is conducted sparsely for specific workers, times, and locations.  In this way, 
construction managers may have a very limited insight about how workers are exposed to 
hazardous dust during construction.  To overcome this limitation, air dust monitoring tools 
should be easily deployable to multiple workers and locations during the entire construction 
period.  
	 Finally, current practices of air dust monitoring are separated from construction management 
processes and tools that are popular in the field.  Commonly used construction management 
tools, such as building information modeling (BIM) and construction schedules, are not used 
to facilitate environmental monitoring and control.(2,3)  As a result, even existing databases 
on dust exposure cannot be used by contractors with ease.  Many of these databases are 
unreliable owing to the lack of details about construction site circumstances and diverse ways of 
collecting, analyzing, and recording the samples within a database.  Air dust monitoring should 
be incorporated into construction management and visualization tools so that it can be easily 
conducted as an essential part of daily construction management.
	 Therefore, there is a strong need to identify a real-time air dust monitoring system that can 
be deployed ubiquitously in a construction project and managed as part of daily construction 
management.  An appropriate solution for this can be BIM, which serves as real-time 3D 
visualization and as a communication tool that is more accessible and that has the ability to 
analyze risk and landscape modeling, and to exchange information between team/project 
members.  BIM is acknowledged by the construction industry as a possible tool that may 
improve worker safety and health.  For continuous monitoring and exposure estimation of 
individual workers, this project proposes a solution consisting of (1) real-time dust monitoring 
using low-cost dust sensors, (2) worker location tracking, and (3) integration with BIM for 
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visualization and communication.  The limitations of existing technologies and opportunities 
are also discussed.

2.	 Related Work

	 Riaz et al. used wireless sensors to monitor confined workspaces, integrating BIM for 
visualizations of the collected data.(4)  The use of wireless sensor networks (WSNs) and BIM 
is repeated in this and many other research studies, showing the high efficiency of BIM 
and sensors in health and safety plans.  In this study, we monitored oxygen and temperature 
extremes, which contribute to making work environments hazardous.  Positive industry 
feedback from their results shows that real-time sensing and visualization can facilitate 
intelligent and timely decision making to protect workers against unhealthy conditions.  
	 Cheung et al. presented a web-based system for monitoring and assessing construction safety 
and health performance, called the construction safety and health monitoring (CSHM) system.(5)  
In their design, they combined internet and database systems to create a comprehensive safety 
and health management tool.  The conceptual framework of their research has: (a) web-based 
interfaces (templates), (b) knowledge base, (c) output data, and (d) benchmark group.  Their 
research emphasizes gathering knowledge base data such as rules, guidelines, and best practices 
in one easily accessible database and combining this data with field output data to come up 
with a benchmark with which to share and compare performance results.  Designing a template 
of relevant data (related to safety and health performance) is the key of their research as it 
leads to a useful prioritization of numerous possible paramaters.  In their study, the parameters 
adopted are mainly derived from two sources: (a) an intensive literature review, followed 
by (b) interviews with experts in the field.  The focus of their research is data submitted by 
employees and managers but their model can combine data input from sensors with input from 
superintendents and project managers to give a more accurate assessment of site conditions.  
Many studies attempted to improve worker health and safety by collecting jobsite data in real 
time and utilizing the data for decision making.  However, the monitoring of respirable dust has 
not been achieved despite the critical impact on health.  
	 Related to dust level monitoring, the US Environmental Protection Agency (EPA) classified 
low-cost dust sensors as those below $2500 in their dust sensor evaluation.(6)  However, these 
sensors costing thousands of dollars are not suitable for deployment in large construction sites.  
For deployment around large construction sites with hundreds of workers, sensors of even 
lower cost should be used.  Our preliminary sensor tests found that their accuracy is lower 
than that of expensive monitoring tools.  Also, dust composition cannot be identified without 
laboratory tests.  Multiple locations in a large construction site can be monitored economically 
during the entire construction if the performance of the low-cost sensors can be improved.  A 
research study(7) attempted to improve the accuracy by automatically calibrating sensors based 
on a ground truth sensor mounted on a self-navigating robot.  In real-time monitoring, worker 
location information is essential to accurately estimate the exposures of individual workers 
to safety and health risk sources.(8,9)  Even though many approaches in the past measured the 
respirable dust levels in specific locations,(10,11) none could measure exposures to individual 
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workers.  Tracking a worker requires a reliable location sensing technology.  GPS-based 
localization does not work well in indoor and construction environments(12,13) despite many 
improvements proposed in the literature.(14)  Researchers have explored the use of various 
technologies, including fingerprinting of wireless signals,(15) information fusion from different 
sources,(16,17) utilizing other modalities to improve accuracy,(17,18) ultrasonic ranging,(19,20) and 
radio-frequency identification (RFID) tags.(21)  Ultrawide-band (UWB)-based location tracking 
is considered the most promising technology(22) and has been actively studied to improve its 
accuracy.(23–25)  In this research, we use UWB-based tracking and further adapt it for use at 
construction sites.  
	 In a construction setting with obstructions and an indoor environment, tracking of multiple 
objects (workers) at a site is challenging because GPS does not work well.  UWB-based tags 
are most promising for indoor people-location tracking but still suffer from inaccuracies 
according to our preliminary experiments with state-of-the-art UWB tracker tags.  Awareness 
about worker location can enable a more accurate estimation of workers’ exposure to respirable 
dust.  The development of UWB anchor placement guidelines based on empirical studies 
and data fusion including context information should allow us to improve the accuracy of 
UWB location trackers sufficiently so that they can be used on a large scale in a construction 
environment.  BIM is a construction management tool widely used in the construction industry, 
mainly to visualize buildings and analyze construction plans manually(26) or automatically.(27)  
Environmental information has not been incorporated extensively in BIM.  Developing 
customized dashboards and visual summaries is a technically feasible way of helping 
construction superintendents to better use the results of real-time dust monitoring.  

3.	 Real-time Dust Monitoring and Worker Location Tracking for Exposure 
Estimation 

	 The objective of this research is to propose a framework for real-time dust monitoring and 
visualization in BIM.  We have developed a real-time dust monitoring system comprising a 
network of low-cost mobile dust sensors and visualization in BIM.  Single-board computers and 
dust sensors were integrated as field deployment units.  A BIM-based visualization system was 
developed to present the data collected from dust sensors in real time.  A prototype system was 
developed and tested in a real-world construction project.  
	 The proposed framework is illustrated in Fig. 1.  This project overcomes the temporal and 
spatial deficiency of conventional dust monitoring by integrating real-time worker location 
tracking and dust monitoring.  The acquisition of real-time dust levels and locations of 
individual workers in the entire construction site enables the continuous exposure monitoring of 
individual workers.  
	 In pretask dust sensor calibration, low-cost dust sensors were calibrated automatically at a 
designated location in a construction site.  Calibration may be needed daily or weekly depending 
on the results of this project.  After calibration, the performances of individual sensors were 
optimized using a high-precision sensor.  In this way, a construction site needs a maximum of 
one expensive high-precision sensor.  
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	 When construction starts, low-cost dust sensors and location tracking tags are deployed.  
Dust sensors are located in dusty workspaces and tracking tags are attached to all the workers 
and managers in a construction site.  On the basis of the data collected from sensors, total 
respirable dust exposures by individual workers are calculated.  

4.	 Implementation and Data Collection

	 A prototype system was developed and tested in a controlled environment as shown in Fig. 
2.  In pretask dust sensor calibration, low-cost dust sensors such as PMS5003 and PMS7003 
may display erroneous behavior when they measure dust.  To build a reliable system that reports 
dust sensing information, these devices must be calibrated to report the actual ground truth 
data.  For this purpose, we relied on a high-end dust sensor such as TSI DustTrack II to report 
the ground truth data.  The calibration is performed by collecting dust measurements using 
PMS7003 and the ground truth sensor at the same time in a calibration chamber.  We used a 
box as a calibration chamber to reduce the risks of airflow variation and to ensure a uniform 
distribution of dust sprayed around the sensors.  During the calibration, we spray dust in the box 
every 3 min for 30 min.  In every spraying iteration, we used a dust sprayer to perform three 
consecutive sprays.  Data was collected using PMS7003 sensors and the ground truth sensor 
every second.  The pretask dust sensor calibration process is shown in Fig. 3.
	 Once the data collection was done, we analyzed the raw data.  Our first observation was that 
the amount of noise was considerable and we could not find a pattern.  Therefore, we used a 
moving average to smooth the data and remove the noise.  As Fig. 4(a) shows, we applied a fast 
Fourier transform to the originally collected data and to the smoothed data to extract the signal 
frequencies related to dust collection and noise.  We used multiple moving average window 
sizes to find the best window that reduced the noise and preserved a reasonable amount of 
useful data.  We found that a window size of 20 was sufficient to reduce a considerable amount 
of noise and preserve an appropriate amount of useful data as shown by Fig. 4(b).  We noticed 
from the smoothed data that we could use a linear function to calibrate the sensors.  We used 
half of the collected data to train the linear function and the other half to validate the calibration.  

Fig. 1.	 (Color online) Framework of dust monitoring and location tracking.
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(a) (b) (c)

Fig. 3.	 (Color online) (a) A unit with location and dust sensors, (b) dust sensor calibration, and (c) inside the dust 
calibration chamber.

(a) (b)

Fig. 4.	 (Color online) Comparison between different moving average window sizes and their smoothing effect on 
the noisy data: (a) Fast Fourier transform of smoothed sensor data. (b) Smoothed sensor data. 

Fig. 2.	 (Color online) Dust sensing and location tracking experimental setup.
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Although the results were convincing, we investigated the use of higher order polynomials to do 
the data fitting.  For every sensor, we tried 10 polynomial fitting functions with orders varying 
between 1 and 10.  Then, based on the average error between the ground truth and the fitted 
data, we defined the best fitting function order for every sensor.
	 For worker location tracking, UWB was chosen as an RF communication technology using 
frequencies between 3 and 10 GHz with bandwidths exceeding 500 MHz, therefore allowing 
very fine time resolution on the order of picoseconds that could be converted spatially to the 
centimeter level.  For our experiments, we used a radio node equipped with Decawave DW1000 
UWB chips and running the double-sided two-way ranging (DS-TWR) protocol as shown in Fig. 5.  
There are two types of node in our systems: (1) anchors, i.e., spatially static nodes that provide a 
reference for localization, and (2) tags, i.e., spatially mobile nodes that are localized.
	 Both types of nodes ran the DS-TWR protocol.  This protocol has two phases: (1) 
initialization phase: this is their discovery; the tags send a “Blink” message in broadcast to 
inform the surrounding anchors of their existence; then the anchors reply to the detected tag 
with a “Init ranging” message to finish the discovery process, and (2) ranging phase: in this 
phase, the DS-TWR protocol is applied.  The tag initiates a communication with three of the 
detected anchors by sending a “Poll” message to them, specifying the order in which they need 
to reply and the timestamp of the transmission of the “Poll” message.  The anchors reply in the 
designated order to the tag with a “Poll Ack” message that contains the timestamp of reception 
of the “Poll” message and the timestamp of the transmission of the “Poll Ack” message.  At 
this point, the tag replies to the anchors with a “Range” message containing the timestamp of 

Fig. 5.	 (Color online) Ranging protocol.
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“Poll Ack” reception and the timestamp of transmission of “Range” message.  All the anchors 
are, therefore, capable of calculating the time-of-flight between them and the tag by applying the 
formula (formula for ranging) and can generate the range value.  This value is communicated to 
the tag with a “Range report” message.
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5.	 Results

	 In this section, we evaluate our system in terms of three aspects related to dust sensor 
calibration, location tracking, and spatial inference.

5.1	 Dust sensor calibration

	 In this experiment, five PMS 7003 dust sensors were calibrated on the basis of the values 
from a ground truth sensor (TSI DustTrak II).  As a result, the dust concentrations of the low-
cost PMS 7003 were fitted according to more accurate values.  As shown in Figs. 6(a) and 6(b), 
PMS 7003 sensors were reporting significantly greater values than the ground truth sensor.  
	 The possible reasons for these gaps may include fans of dust sensors that are not properly 
calibrated or the irregular distribution of dust in the chamber.  In this experiment, the former 
is considered to be the main reason.  As shown in Fig. 6(c), the dust concentrations of low-cost 
sensors were adjusted properly.  The accuracy of our calibration method is shown in Fig. 6(d), 
where the maximum concentration error with regards to the ground truth sensor is around 6 
mg/m3.  Given that errors of more than 2000 mg/m3 were observed before calibration, it can be 
concluded that the calibration of individual sensors is unavoidable and the results are successful 
with errors of negligible magnitudes.  

5.2	 Location tracking

	 To evaluate location tracking using the tags and anchors, we walked from location to 
location in a clockwise pattern starting at the location of coordinate (0,0).  In every location, 
we collected at least 10 points of ranging data to the three anchors, and we established the 
location with a 2D trilateration algorithm based on a least-squares method.  Figure 7 illustrates 
the trajectory of the dynamic tag.  Compared with the actual movement of the tag, reported 
values deviated from 9.8 to 40.1 cm.  Multiple factors contribute to these deviations.  One is the 
antenna delay that impacts the ranging values.  Another factor can be the trilateration algorithm 
that approximates the location since it does not have correct ranging values.  Although a 40 cm 
error is still acceptable in indoor localization, in our future work, we will focus on producing 
more accurate results.  
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(a) (b)

(c) (d)

Fig. 6.	 (Color online) (a) Collected noisy sensor data, (b) smoothed with a moving average of window size 20, (c) 
calibrated using a linear fitting function, and (d) average calibration error.

Fig. 7.	 (Color online) Tag localization error per location as the tag moves along the designated track.
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Fig. 8.	 (Color online) Visualization of dust levels using spatial inference demonstrating the effect of spraying dust 
in the vicinity of a dust sensor on the surrounding space.

5.3	 Spatial inference

	 A spatial inference was used to better visualize the result of dust level monitoring.  We split 
the experimentation space into a 10 × 20 grid of small locations and we used a 2D interpolation 
spline function to infer the levels of dust in every section of the grid.  As shown in Fig. 8, when 
the dust concentration level changes in the vicinity of the sensor, we can see via different colors 
that the dust concentration level changes in other sectors of the experimentation space.

6.	 Conclusions

	 Workers are continuously exposed to the risk of inhaling toxic dust produced during 
construction activities.  Despite the seriousness of the problem, the construction industry 
does not currently have an effective method of monitoring respirable dust continuously.  In 
this research, we presented a framework and a prototype system that enables the low-cost and 
continuous monitoring of respirable dust in workspaces.  The framework is composed of the 
automated calibration of low-cost sensors, deployment using location tracking sensors, and real-
time visualization in a construction management platform.  A test in a controlled environment 
demonstrated that the proposed concept has the potential to improve the current process of 
monitoring dust levels in large construction projects without an excessive investment.  Even 
though this research focused on proposing a new framework, a practical implementation of 
the approach is possible by addressing many technical problems that were not solved by this 
research.  First, the accuracy of dust sensor calibration can be greatly improved by incorporating 
other factors (e.g., temperature, humidity, and airflow) that may impact the performances after 
calibration.  Similarly, the accuracy of location tracking still must be improved by applying 
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proper location-estimating algorithms.  Also, the spatial inference and visualization of dust 
levels should incorporate the movements of dust particles.  In this research, many of these 
variables were not fully considered while the prototype system was being developed.  Our 
future research will address the technical limitations identified and discussed in this report.  
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