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Abstract—Pose estimation is a building block for many
location-based applications, such as safety applications in a
construction site. Ultra-WideBand (UWB) Radios have been
widely used for localization and can be used in pose (location
and orientation angle of the object) estimation primarily because
of the accuracy with which these radios can estimate the arrival
time of radio signals. Current UWB pose estimation solutions do
not perform adequately in Non-Line of Sight (NLoS) conditions.
Some of these existing solutions in pose estimation rely on
two or more types of sensors to tackle the NLoS challenge.
These methods suffer from data fusion complexity, making the
system not generalizable and limited to some specific simple
environments, such as labs. In this paper, we propose ViPER,
a UWB-based pose estimating system using only UWB radios.
Our goal is to reduce the effects of the NLoS without the inclusion
of any auxiliary sensors. ViPER uses low-pass filter, anchor and
reference selection method to reduce the effect of NLoS in the
measurements. It also estimates the pose of the entities using
an optimization problem. We have evaluated ViPER in real-
world highway construction and parking lot setting. We find
that it improves the average packet reception ratio by 117% and
decreases the error rate by 70% over the state of the art in
Non-Line of Sight situation.

Index Terms—Pose estimation, Indoor localization, Ultra-
wideband, Vehicle tracking, Non-Line of sight, Reference selec-
tion, Anchor selection

I. INTRODUCTION

The improvements in wireless technology and embedded
systems have resulted in accurate and robust localization so-
lutions. Among all these wireless technologies, ultra-wideband
(UWB) localization is one of the technologies gaining popu-
larity in the deployment of indoor localization systems due
to its specific characteristics, including the ability to perform
accurate timestamping of arriving signals [1]. The low-cost
commercial UWB chips, such as DW1000, enable accurate
localization in indoor and outdoor settings. In the industrial
environment, indoor localization has brought many applica-
tions to improve productivity [2].

Pose estimation is the method of estimating the location,
orientation of an object, and has many applications. Fig. 1
displays these parameters for a vehicle. The system estimates
the location and orientation from data gathered by sensors and
calculates the boundary based on the shape of the object. Pose
estimation can be useful in safety applications in a construction
site to track the location and boundary of working equipment
inside of a working area. It can increase the construction safety
for both the workers and the machinery, which is critical inside
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Fig. 1: Pose of the vehicle that is consist of location, orienta-
tion, and its boundary

construction sites [3]. Pose estimators are able to track the
location and orientation angle of entities inside a construction
zone in real-time. By doing this, the system is able to monitor
the policies (e.g. proximity detection of equipment) applied
for ensuring construction safety. Thus, they can reduce the
number of casualties inside a construction zone. Moreover,
these systems can be used for indoor and outdoor vehicle
tracking.

Estimating the location and orientation of the equipment is
one of the main challenges in implementing these systems.
Despite the reported centimeter-level accuracy of the UWB
radios in estimating the range between the sender and the
receiver, their accuracy can drastically fall in realistic scenarios
if the first path of a signal was to be obstructed. These con-
ditions, referred to as Non-Line of Sight (NLoS) conditions,
and factors, such as time synchronization of nodes, temper-
ature, or environmental noise, can also affect the accuracy
of the localization [4]. Such errors can make it challenging
to accurately determine the location and orientation of the
equipment. Moreover, in many applications of pose estimation,
the data must be available for analysis in real-time to adapt to
the changing activities of the workers and the equipment in a
construction field and to raise alerts in case of potential safety
violations. Therefore, providing an acceptable pose update rate
is also an important issue in these systems.

Existing UWB pose estimation solution mostly disregarded
the problem of NLoS situation in their works because they
evaluated the feasibility of their solution. However, NLoS solu-
tions are unavoidable in real-world environments, especially in
construction sites. Therefore, their solutions are not applicable
to these environments. Multi-sensor pose estimators use other
auxiliary sensors to mitigate the effect of NLoS errors in UWB



radios. The problem with these solutions is that the process of
combining data from multiple sensors, know as data fusion, is
a very complicated task. The complexity of this task leads to
assumptions and limitations for the environment and objects,
making the solution not generalizable for all environments.

In this work, we propose ViPER, a real-time equipment pose
estimation system that tackles the pose inaccuracy problem in
UWB pose estimation methods. In our design, we first remove
the noise of the data gathered from the anchors to reduce
errors before the localization process. Later we use our pose
estimator to estimate the location and orientation based on the
points generated by the localization engine.

We implemented ViPER on radinoL4 DW1000 platform
and evaluated it in a real construction field with equipment
and workers and an outdoor campus setting with a passenger
vehicle. Our system reduced the error rate by 70% and
improved the average update rate by 117% in NLoS situation
compared to the state of the art. Our contributions are:

• Design of a reference anchor selection method to reduce
the NLoS error in TDoA localization.

• Design of an optimization based pose estimator method
for calculating the pose of the objects.

• Evaluation of our solution against a state-of-the-art al-
ternative in both NLoS and LoS conditions both nlos
and los conditions in a real-world highway construction
environment.

II. RELATED WORK

We describe the three main areas of localization-related
research that are related to our work.

A. Pose Estimation

Pose estimation is an established area of research with a
rich body of literature briefly outlined in Table I. No location
or IMU sensor is perfect. Hence, this research tries to compute
pose within an acceptable error margin despite errors in the
sensor and input data.

Zhang et al. designed a system to track the boom of a
crane by aggregating, averaging, and interpolating data from
multiple UWB tags installed on different parts of the boom [3].
Their technique uses the UWB tags that are always in the line
of sight (LoS) while ViPER is designed for scenarios in which
there is no fixed subset of UWB tags that are always in LoS
with the anchors. Formulating the pose estimation problem
as an optimization problem has been shown to be better than
the averaging-based approaches. Optimization-based excavator
pose estimation [5] has a specific formulation for finding the
center of rotation that does not apply to general vehicles.
ViPER provides a formulation that is applicable to general
vehicles and has specific mechanisms to address NLoS issues
in the field.

The second group of solutions deploy two or more types of
sensors (e.g. some combination of UWB, GPS, and IMU) for
pose estimation [6], [7]. These solutions require sophisticated
data fusion techniques increasing the design and operational
complexity over ViPER’s UWB-only approach.

B. Non-Line of Sight Mitigation

For both ranging and localization to be accurate, the first-
path of the signal has to travel from the sender to the receiver
in a straight line, without any object blocking the way. In
NLoS condition, the first-path is somehow omitted, delayed,
or diffracted so that the receiver fails to estimate the true arrival
time of the signal. This situation can lead to error in estimating
the range or location.

There are two general methods in mitigating the NLoS
error [8]. The first method is the first-path detection which
tries to detect the first-path [9]. The second type of NLoS
mitigation approaches are statistics-based methods. Residual
Weighting [10] works reasonably well but computationally
expensive to run in real-time systems. Some researchers miti-
gate the errors caused by NLoS scenario by applying Kalman
Filter to the ranging information gathered by the anchors
[11]. ViPER uses filters for localization input to improve the
accuracy but introduces additional mechanisms because in the
TDoA algorithm, anchors do not report ranging information.

C. Reference and Anchor Selection in TDoA

Anchor Selection can be used to select a subset of anchors
with less errors so we do not use data from anchors with
large errors in TDoA. Reference Selection is used to select
one of the anchors to provide global reference time. TDoA
performance can degrade if timekeeping in the reference
anchor is unreliable (too high variance, jitters, drift, etc.): the
reference time impacts how time is computed throughout the
network in TDoA [12].

Guvenc et al. used signal-to-noise ratio to find the nearest
anchor to the tag and choose the nearest anchor as the
reference anchor [13]. However, the nearest anchor is not
necessarily in LoS or with the most accurate and reliable
clock. Xu et al. calculated the position for every anchor as the
reference and chooses the one with minimum residual value
as the reference [14]. Residual value method for finding the
best reference anchor is more general and accurate but has
computational overhead making it challenging for real-time
localization systems. Our proposed method for anchor and
reference selection is less computationally expensive, making
it suitable for real-time localization systems.

III. SYSTEM DESIGN

We design ViPER to decrease the error caused by NLoS
conditions. We use low-pass filtering, anchor and reference
selection, and an optimization method to improve the estima-
tion of the location and orientation of equipment. Our design
strives for simplicity by not using data fusion with information
from sensors/radios other than UWB.

The system is composed of three subsystems: sensing in-
frastructure, localization engine, and pose estimator as shown
in Fig. 2. Sensing infrastructure consists of the tags that are
mounted on the equipment we want to track. For tracking
location, only one tag is suitable; however, more than a single
tag is needed for pose estimation. Mounted tags send radio
signals that are received by the anchors. These anchors are



TABLE I: Proposed methods for pose estimation

Publication Sensors Update Rate Experiment Environment NLoS Situation Data Fusion Technique
(locations / second)

[3] Multiple UWB 4 Construction Site Body of the boom Averaging
[5] Multiple UWB 0.2 Lab None Optimization
[6] IMU + single UWB 5 Lab None Kalman Filter
[7] GPS + IMU 75 Outdoor None Kalman Filter

ViPER Multiple UWB 5 Outdoor Body of the Vehicle Optimization
Construction Site Loader blocking some anchors

Fig. 2: Design overview of ViPER. The output of the pose
estimator is the pose of the vehicle.

connected to the server via WiFi infrastructure. Anchors report
the timestamp of the received signals along with some other
data to the server.

ViPER has a server on the cloud running localization and
pose estimation engines. The localization engine calculates the
location of tags using the TDoA algorithm. TDoA, among ToA
algorithms, is known to be the most robust in NLoS situations
[12]. In order for TDoA to calculate the location of the tag, at
least four anchors have to report the timestamp of the received
signal from that tag to the localization engine. The system then
chooses one of the anchors to be the reference anchor. The
location is then calculated by solving an optimization problem.
The optimization problem tries to find the (Xmin, Ymin) that
minimize the value of f(x, y) in Eq. 1.

f(x, y) =

N∑
i

(
√

(x− xi)2 + (y − yi)2 − ∆di)
2 (1)

di = C ∗ (ti − tref ) (2)

where N is the number of reported timestamps, di is the
distance difference for anchor i and the reference anchor, ti is
the received timestamp for anchor i, tref is the timestamp for
reference anchor, C is the speed of light, and (Xmin, Ymin)
is the location of the tag.

Finally, when the locations of the tags are calculated, they
are passed to the pose estimator for pose determination. The
pose estimation calculates the location and the orientation of
the object based on the location of the tags.

A. Low-pass filtering

We apply the low-pass filter to the raw ranging data before
passing them to the anchor selection and reference selection
methods. Thus, those selection methods have reasonably clean
input data and are able to achieve better results.

The TDoA inputs, which are distance differences, are cal-
culated using Eq. 2. The value of di is derived from ti and
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Fig. 3: The recorded distance differences (raw input) and its
filtered result (LPF result) for different tags. The LPF result
contains fewer fluctuations that indicate less noise compared
to the raw input.

tref that are the received timestamp of the signals reported by
anchors. Our experience suggests that such filtering is critical
to achieving good results.

To understand the extent and type of error the raw ranging
data has, we do a simple experiment. We put a static tag in
one location and two anchors with one as a reference in the
vicinity and recorded the distance difference. Fig. 3(a) displays
the distance difference data from the anchors for a static tag
using a solid line (Raw input). When the tag is not moving,
we expect the values to be constant because the signal travels
the same distance in every measurement. However, the results
show frequent changes in the input in some measurements.
In order to enhance the accuracy, these frequent changes,
considered as noise, are required to be removed from the input.

We also had the same observation for a mobile tag moving
in different directions. The result is shown in Fig. 3(b)
with different Y-scale compared to Fig. 3(a). Even for the
mobile tags, TDoA inputs follow a smooth changing pattern.
Therefore removing the frequent changes can also enhance the
accuracy of the localization in these tags.

The advantage of using a low-pass filter over the Kalman
Filter is that it requires fewer environmental parameters. The
only environmental parameter we had to determine was the
frequency cutoff for the filter. This value can be different for
every tag depending on how quickly the target changes its
location. High-frequency cut-off reduces the effect of low-pass
filter on smoothing the data. Meanwhile, low-frequency cut-
off can cause errors when the object is moving quickly. We
empirically determined 5 to be a good threshold and applied



the low-pass filter to the input. The output results are shown
in Fig. 3(a) and Fig. 3(b) with a dashed line (LPF result).

B. Anchor Selection

Despite the correction done by the low-pass filtering, our
observation suggests that low-pass filtering does not work well
in cases where the error in one or more anchors are too high.
In these cases, where we failed to adequately correct the input
error, the data from that anchor has to be removed. Therefore,
we designed an anchor selection method to detect and remove
the TDoA inputs with high errors.

In our design, TDoA inputs having a high difference be-
tween the raw and the filtered value are good candidates for
removal because of the error they introduce in localization.
Fig. 4(a) and 4(b) show all TDoA inputs of all anchors along
with their filtered results for the static tag with anchor #1
being bolder than other anchors. We have also included the
output of our anchor selection method on the top of the figure
making the reference anchor bolder than other anchors. As
shown in the figure, in sample number 245, the difference
between the raw input and the filtered result is approximately
5 m for the anchor #1, causing the filtered result to curve
toward the error. In situations like this, the proposed anchor
selection solution does not feed the data for this anchor to
the next step in the pipeline. Even though we removed the
timestamp of that anchor, there are still five other anchors that
are sufficient for localization. A new round of anchor selection
happens each time the location of the tag is being calculated
by the localization engine.

C. Reference Selection

According to Eq. 2, the timestamp of the reference anchor
is used to calculate all the TDoA inputs for the localization
process. Therefore, error in the received timestamp of the
reference anchor can lead to miscalculation of TDoA input for
all anchors. It is important for reference selection to choose
the anchor with the least amount of error as a reference.

The goal of reference selection is to choose the best anchor
to be the reference, avoiding the propagation of error to all
TDoA inputs. For example, in sample number 101 in Fig. 4(b),
all anchors except the reference are removed by the anchor
selection method due to exceeding the difference limit. In
situations like this, there is a probability that the miscalculation
in received timestamp of the reference anchor caused the
error to propagate to other TDoA inputs. In Fig. 4(c), we
have generated the TDoA input time series for anchor four
as reference. With the new calculation, only anchor zero, the
previous reference, is removed by the anchor selection method.

Therefore, in our reference and anchor selection method,
first, the distance differences are calculated for each anchor as
the reference. Then, for each reference, the anchor selection
removes the incorrect inputs. Finally, the reference selection
method chooses the anchor with the smallest number of
removed anchors as reference. This process occurs every
time the location of the tag is being estimated because the

correctness of the timestamp is different for anchors in each
calculation.

D. Pose Estimator

The pose estimator computes the vehicle position and its
orientation based on the provided locations in a certain time
slot. The locations generated by the localization engine are
passed to the pose estimator at the end of each time slot. The
pose estimator determines the location and the orientation of
the vehicle based on the locations provided. Depending on the
precision of the locations, the pose estimator may not be able
to estimate the position of the vehicle. In this situation, it will
not report the pose for that time slot.

In our method for pose estimation, we calculate the location
and orientation of the vehicle by solving two optimization
problems. The first optimization problem calculates the loca-
tion of the center of the vehicle and the second one determines
the orientation, based on the generated locations of tags
installed on the specific places of the vehicle.

One of the steps in reducing error is removing the points
that might be erroneous. We use residual value as an indicator
for the accuracy of the calculated location as typically done
for this type of problem [10]. Therefore, before passing the
locations to the pose estimator, we remove the locations
with residual values higher than a threshold. We empirically
determined 5 as the best threshold value for this step.

After removing the inaccurate locations, the next step in
determining the pose of the vehicle using optimization prob-
lems to estimate its location and orientation. Our optimization
method for pose estimation tries to find the (x, y, θ) that
minimizes the objective function in Eq. 3:

f(x, y, θ) =

T∑
i=1

sizei∑
j=1

(
√

(Xi − xi,j)2 + (Yi − yi,j)2) (3)

[
Xi

Yi

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
∗
[
px,i
py,i

]
+

[
x
y

]
; (4)

where

(x, y) Position of the center of the vehicle
θ Orientation of the vehicle
T Number of tags on the vehicle
sizei Number of locations from tag i
(xi,j , yi,j) jth location of tag i
(px,i, py,i) Position of the ith tag relative to the center

of the vehicle
(Xi, Yi) (px,i, py,i) with θ rotation

Solving this non-convex optimization is computationally
difficult when there are three parameters in the objective
function. We also had the local-optima problem in some points
where the optimizer could not find the correct location and
the orientation of the vehicle. To solve these two challenges,
we made the problem easier by breaking it into two separate
optimization problems to reduce the optimization parameters
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Fig. 4: Our proposed method for anchor selection in (a) removes the anchor #1 for sample #245. In (b) all anchors are removed
by the anchor selection method in sample #101. The reference selection in (c) reduces the number of removed anchors in
sample #101 by choosing the best anchor as reference.

required for each objective function. In our observations, we
figured out that if we had a rough estimation of our orientation,
we can fix the orientation and try to find the location of
the vehicle by solving the problem in Eq. 3. In our design,
we can assume that the orientation of the vehicle does not
change dramatically between time slots. We used the previous
orientation as our rough estimate. Therefore, first, we solve
the problem described in Eq. 5, with only two parameters (x
and y) to find the location of the center of the vehicle.

f1(x, y) = f(x, y, θ̂) (5)

where θ̂ is the previous orientation of the vehicle.
The second optimization problem calculates the orientation

of the vehicle based on the location generated by the first steps.
Eq. 6 calculates the new orientation of the vehicle.

f2(θ) = f(Xmin, Ymin, θ) (6)

where (Xmin, Ymin) is the location of the vehicle which is
the output of the first step. In this function also we had only
one parameter, θ, that needs to be optimized.

E. Error threshold for pose estimation

Existing works in proximity detection systems, suggest
using 8 m as the safe boundary for vehicles in the construction
zone [15]. They also stated that, in their design, they consid-
ered 1 meter as the error threshold. We considered 15◦ as an
error threshold for the orientation angle, as they cause under
1 m error in distance. The maximum speed limit is 4.47 m/s
(10 mph), in order to have under 1 m of displacement between
two updates, the pose of the entities is updated every 0.2 s.

According to our calculation, 0.6 s is required for the system
to notify. with our 0.2 s update interval, three measurements
are taken. With the error rate of less than 37% and pose
reception rate (PRR) of more than 70%, the probability of

missing an alert will fall below 5%, which is acceptable for
our system.

IV. EVALUATION

We evaluated ViPER in two real-world outdoor environ-
ments. The first experiment was done in the University of
Houston campus parking lot in a near-perfect setting. The goal
was to evaluate the feasibility of the pose estimator solutions.
The environment for this experiment was chosen so that the
effect of the NLoS condition was minimized. We also deployed
all of our tags on the vehicle to make sure the pose estimators
have sufficient data to determine the pose of the vehicle.

The second experiment was held at a highway construction
site with vehicles and trucks creating NLoS condition for the
system. This experiment was designed to evaluate ViPER in
a harsh NLoS environment. In this experiment, the number
of tags installed on the vehicle was also reduced so the
settings could be closer to the real environmental settings of
the system.

A. Experiment Setup

In both experiments, we dedicated a field known as the
tracking zone. The placement of anchors along with their IDs
is shown in Fig. 5(a) for the first experiment that was done in
the and Fig. 5(b) for the second experiment.

We evaluate ViPER with two different types of vehicles.
For each vehicle, we selected a different number of tags with
different placements to evaluate ViPER in different settings.
The placement of tags and their IDs is shown in Fig. 6(a) for
vehicle 1 and Fig. 6(b) for vehicle 2. Vehicle 1 was used for
the first environment and vehicle 2 was used in the second
one. Vehicle 1 is a 4-door sedan. Vehicle 2 is a pickup truck
used in the construction site.

Three different sets of scenarios were tested in these en-
vironments for the evaluation of ViPER. In the first one,
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Fig. 6: Tag placement on vehicles for each experiment (a)
campus parking lot (b) road construction site

the vehicle was stationary in the center of the tracking zone
with 0◦ orientation with the x-axis. In the second scenario,
the car drove around a circle centered in the middle of
the tracking zone at a constant speed. These two scenarios
were conducted in the first benign environment. In the final
scenario, the vehicle traversed a line parallel to the x-axis
through the tracking zone and came back with the reverse
gear. This last scenario took place in the second environment,
i.e., construction site.

B. Platform/Implementation

We implemented a substantial part of ViPER on radinoL4
DW1000 platform for all our tags and anchors. We connected
each anchor to a Raspberry Pi device for data collection and
communication with the localization engine.

For time synchronization between all anchors, we placed
a time reference anchor that broadcasts SYNC messages to
all other nodes in the network every 500 ms. Upon reception
of SYNC message, anchors reply in a TDMA-based scheme.
Finally, tags send multiple replies in a TDMA-based scheme
with a round-robin protocol. Anchors collect all these mes-
sages and forward them to the server for further processing.

We implemented our server using Python language. For
solving the optimization problems, we used Scipy library
designed for solving optimization problems.

C. Single tag localization

We evaluate the performance of ViPER’s anchor and refer-
ence selection technique with the minimum distance reference

Error
Threshold

ViPER
SOA

(a) static tag

Error
Threshold

ViPER
SOA

(b) mobile tag

Fig. 7: Comparison of error rate CDF between ViPER and
the state-of-the-art (SOA) in single tag localization for (a) a
static tag with 370 locations and (b) a moving tag with 260
locations. Our anchor and reference selection method enhances
the localization output compared to the SOA.

selection, mentioned in the related work for the single anchor
localization scenario. The error results are shown in Fig. 7(a)
and Fig. 7(b) for the static tag with approximately 370 location
points and the mobile tag with roughly 260 locations. The
vertical line indicates the acceptable error margin for our
application domain. It can be concluded that our selection
method achieved approximately 10% improvement in static
tag localization and 30% in moving tag localization over the
SOA method.

D. Multi-tag pose estimation

In this part, we evaluate four cases of pose estimation
in each scenario. Case 1 (SOA) is the state-of-art pose es-
timation mentioned that uses the averaging method [3] for
pose estimation. Case 2 (OPT) uses the optimization method
for pose estimation instead of the averaging method. This
case evaluates the effect of our optimization method as a
replacement for the averaging method. Case 3 (AR) uses
averaging pose estimation but applies the proposed anchor
and reference method. The goal of this case is to evaluate
our anchor and reference selection method. Finally, Case
4 (ViPER) uses both the proposed techniques, anchor and
reference selection and our method for pose estimation to
consider the total improvement of our methods. In all cases,
we remove the points with high residual values to improve the
performance of all the techniques we compared.

For each case, we have evaluated the Pose Reception Rate
and the error rate of the cases in tables II and III. The
Pose Reception Rate refers to the ratio of the time slots that
the pose estimator was successful in estimating the location
and orientation. Error rate refers to the ratio of the calculated
locations or orientations that exceed the error margin. We also
provided the CDF of the location and orientation error in each
case to evaluate the performance of the pose estimation in
calculating each parameter individually.

1) Static Vehicle in near-perfect environment : For this
scenario, we gathered data from 132 time slots. The results
of this experiment are shown in Table II. Despite the near-



TABLE II: Evaluation results for static vehicle in near-perfect
environment

SOA OPT AR ViPER
Pose Reception Rate 0.47 0.47 0.77 0.77

Error Rate 0.15 0.02 0.58 0.01
Location Error Rate 0.08 0.02 0.13 0.00

Orientation Error Rate 0.07 0.0 0.48 0.01

TABLE III: Evaluation results for moving vehicle in near-
perfect environment

SOA OPT AR ViPER
Pose Reception Rate 0.94 0.96 0.97 0.98

Error Rate 0.66 0.08 0.58 0.06
Location Error Rate 0.02 0.00 0.03 0.00

Orientation Error Rate 0.66 0.08 0.57 0.06

perfect environment, where NLoS situations were avoided as
much as possible, SoA results indicate 47% PRR. This low
PRR occurred due to malfunctions as some of the UWB nodes
reported incorrect Time-of- Arrivals.

Meanwhile, the results for ViPER demonstrate that our
anchor and reference selection method improved PRR by
approximately 63% over the SoA method by detecting and
removing these incorrect inputs.

2) Moving Vehicle in near-perfect environment: In this
scenario, 262 time slots were reported. The results in Table III
show a near-perfect Pose Reception Rate because of the LoS
condition of the environment. Meanwhile, other sources of
error led to the miscalculation of orientation.

In this experiment, we had nearly 100% pose reception rate
because all of our sensors were working correctly. Thus, the
AR method did not make much improvement in the results.The
results also suggest that the accuracy of the averaging method
in calculating the orientation was lower by nearly 90%,
suggesting that our proposed optimization method has better
performance in determining the orientation.

3) Moving Vehicle in construction environment: Our pro-
posed method for anchor and reference selection achieved a
117% improvement in the Pose Reception Rate as shown in
Table IV. Thus, we can conclude that the anchor and reference
selection method outperformed the state-of-the-art reference
selection method in both LoS and NLoS environments. In
terms of error rate, our proposed solution reduced the error
by 70% by reducing the orientation error.

E. Robustness

One challenge in a real-world deployment is the loss of tags
or damage to the tags during construction work. It is critical
for localization or pose estimation systems to be resilient to
such tag damages or losses. In this section, we evaluate the
robustness of ViPER against those adverse events. To emulate
tag loss or damage, we randomly remove the tags from the
vehicles. We then measure the impact of tag removal on
ViPER’s performance. Table V reports the effect of removed
tags on the Pose Reception Rate and error rate for the moving
LoS scenario.

TABLE IV: Evaluation results for moving vehicle in the
construction environment

SOA OPT AR ViPER
Pose Reception Rate 0.46 0.46 1.00 1.00

Error Rate 0.88 0.27 0.51 0.24
Location Error Rate 0.19 0.23 0.23 0.11

Orientation Error Rate 0.76 0.12 0.44 0.19

TABLE V: Evaluation results related to the robustness of
ViPER in near-perfect condition. The tag numbers correspond
to the tag IDs in the tag placement map of Vehicle 1 shown
in Fig. 6(a)

Case # Removed Tags Pose Reception Rate Error Rate
1 [0,2,5] 0.93 0.12
2 [0,2,4,5,8,9] 0.93 0.37
3 [0,1,3,6,8,9] 0.93 0.45
4 [0,1,2,4,5,6,8,9] 0.92 0.37

The results show that the number and the location of
removed tags can affect the error rate. Fig. 8(a) and Fig. 8(b)
display the CDF of the location and orientation error. The
results of these figures denote that the tag removal has more
effect on the orientation than the location.

V. DISCUSSION

Although we did our experiments in two environments and
with two different vehicles, they presented enough diversity
in scenarios that there is some confidence that ViPER can be
used in a broad range of scenarios. ViPER can also be utilized
in applications other than tracking vehicles. In our design, the
only assumption needed for pose estimation is the location of
tags relative to a certain location of the object we want to
track.

Our evaluation indicates that our proposed anchor and ref-
erence selection methods improved the average pose reception
rate by reducing the number of time slots that the pose
estimation failed to calculate the pose of the vehicle. By
applying the anchor and reference selection methods before the
running the TDoA estimator, we can reduce the localization
error and decrease the residual values for points generated by
the localization engine. Therefore, we remove less number of
locations, making the pose estimation process converge to a
result.

The observed location and orientation error indicate that
simple pose estimation methods such as averaging are not
effective in determining the orientation. In the averaging
method, the error for orientation estimated using tags that are
close to each other is comparatively high, leading to inaccurate
orientation estimate. However, ViPER utilizes our knowledge
of the relative location of the tags on the object we want
to track. ViPER estimates the location and orientation by
fitting the shape and orientation of the object according to
the location of the tags.

One of the key factors in designing ViPER is removing a
number of assumptions and limitations in pose estimation. We
also aimed to reduce the number of environmental variables
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Fig. 8: CDF of error rate for (a) location (b) orientation
estimate for each case mentioned in TABLE V. Location esti-
mation is more robust to tag removal compared to orientation
estimation

required for pose estimation to just anchor placements and
tag placements. Nevertheless, in our design, we defined a few
variables regarding our observations. We have tested these
values in two different environments for different types of
tags such as static tags, tags mounted on the vehicle, and
tags carried by construction workers. The results indicate that
our proposed method is helpful in improving accuracy without
changing the values of the threshold. Therefore, our solution
is still deployable in most indoor/outdoor environments with
a maximum speed of movement for objects.

One limitation of ViPER is the scalability of the number of
tags in the system. ViPER adopts time-division multiple access
(TDMA) to avoid packet collisions. In our implementation, we
define 160 time- slots per second for tags to send their signals
individually. This approach limits the maximum number of
tags in our system. The limitation in the maximum number of
tags affects the number of objects that can be tracked in our
system. The maximum number of tracking objects depends on
the number of tags installed per object. With the update rate
of 1 Hz and 2 tags per object that is the minimum required
for pose estimation, ViPER should be able to track 80 objects
in the best case.

For our future work, we would like to consider the effect
of tag placement on the pose estimation error. In ViPER, we
used two different tag placements for our experiments. The
number of tags mounted on the vehicle and their positions
can be critical parameters in tuning the performance of our
pose estimation system.

VI. CONCLUSIONS

In this paper, we have designed and implemented ViPER, a
pose estimation system with UWB radios. Our main goal in
design was to increase the average update rate and reducing
the error rate in NLoS situations. In order to reach our goal,
we developed an optimization method for pose estimation. We
have also designed anchor and reference selection techniques
to reduce the error in the localization process for better results
in pose estimation. Our results indicate 117% increase in pose
reception ratio and 70% decrease in the error rate.

Our proposed solution has been evaluated in the highway
construction site for safety applications. With our proposed
contributions, the probability of the false alarm false below
5%, which is acceptable for this application.
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