
This paper appeared in IEEE Trans. on Software Engineering, vol. SE-5, no. 3, May 1979, pp. 226-236. 
 
 

Detection of Data Flow Anomaly Through Program Instrumentation 
 

J. C. HUANG, MEMBER, IEEE 

 

1. INTRODUCTION 

It appears that there are two basic ways to increase the power of  a program test.  One is to find 
better criteria for test-case selection.  The other is to find a test scheme that will produce 
additional information (i.e. information  other than the output of the program under test) that can 
be used for error detection. 

Fosdick and Osterweil [1] have shown that information concerning the creation and use of data 
definitions in a program can be used for error-detection purposes.  Such information can be 
obtained by performing a data flow analysis.  All known data flow analysis methods 
(see,e.g.,[1]-[8]) are designed to carry out the analysis by systematically scanning the text of the 
program in question.  This paper describes a method for obtaining the desired information by 
means of program instrumentation.  By program instrumentation  here we mean the process of 
inserting additional statements into a program for information gathering purposes.  The desired 
information is to be obtained by executing the instrumented program for a properly chosen set of 
input data. The significance of this approach is that we can increase the power of a program test 
simply by instrumenting the program to be tested for data flow  anomaly detection as described 
in the following sections. 

We begin by presenting the main idea in Section II.  One important advantage of the present 
method is that array elements can be handled individually.  We explain how this can be 
accomplished in Section III.  In Section IV we present a criterion for determining whether a set 
of test cases is sufficient to  reveal all possible data flow anomalies.  The problem of variable 
aliasing  and multiple use of a name are discussed in Section V.  In Section VI we explain what 
needs to be done if a subprogram is not available for instrumentation for some reason and 
discuss how to detect data flow anomalies in a program by applying the method to its 
subprograms individually.  Additional comments about the method  

and a comparison with existent methods are given in Section VII.  The presentation is focused on 
basic problems  associated with the instrumentation method -- which in principle can be  applied 
to any program written in a procedural language -- as well as special problems that may arise 
when the method is to be applied to Fortran programs. 
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2. DETECTION OF DATA FLOW ANOMALIES 

It is observed that, in program execution, a statement may act on a variable (datum) in three 
different ways, viz., define, reference, and undefine.  A  variable is defined in a statement if an 
execution of the statement assigns a value to that variable.  A variable is referenced in a 
statement if an  execution of the statement requires that the value of that variable be obtained 
from memory.  Thus in the assignment statement  

 x := x + y - z 

y and z are both referenced while x is first referenced and then defined.  A variable may become 
undefined in many circumstances. For example, in a Fortran program, the index variable of a DO 
statement becomes undefined when the loop is terminated, and the local variables of a 
subprogram become undefined when  the RETURN statement is executed.  Also, if a program is 
written in a language that allows block structure, the local variables of a block may become 
undefined when the control exits from the block. 

A sequence of actions may be taken on a variable in a program while it is being executed.  A 
reference to a variable constitutes a programming error unless the value of the variable is defined 
previously.  Furthermore, there is  no need to define a variable unless it is to be referenced (i.e., 
its value to  be used) later. Therefore, if we find that a variable in a program is (1) undefined and 
then referenced, (2) defined and then undefined, or (3) defined  and then defined again, then we 
may reasonably conclude that a programming  error might have been committed. This idea has 
been utilized by Fosdick and Osterweil [1] to detect programming errors. 

A method for detecting the three types of data flow anomalies mentioned above has been 
developed by Fosdick and Osterweil [1]. The basic idea is to  compute the so-called path 
expressions of paths in a flow graph by making use  of data flow analysis algorithms developed 
in connection with program  optimization [1-8].  A path expression describes the sequence of 
actions taken on a variable when the program is executed along the path. The presence  of data 
flow anomalies can thus be detected by examining the constituent  components of path 
expressions. 
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Fig.1.  Program variables may assume one of the four states of this state diagram (U, undefined; 
D, defined but not referenced; R, referenced; A, abnormal). 

In the following we shall present a new method for detecting data flow anomalies by means of 
program instrumentation.  For this purpose, it is useful to regard a variable as being in one of 
four possible states during program  execution.  The four possible states are state U: undefined, 
state D: defined  but not referenced, state R: defined and referenced, and state A: abnormal state.  
For error-detection purposes it is proper to assume that a variable is  in the state of being 
undefined when it is declared implicitly or explicitly.  Now if the action taken on this variable is 
"define," then it will enter the  state of being defined but not referenced.  Then, depending on the 
next action taken on this variable, it will assume a different state as shown in Fig. 1.  Note that 
each edge in this state diagram is associated with d, r, or u, which  stand for "define," 
"reference," and "undefine," respectively.  The three types of data flow anomalies mentioned 
previously can thus be denoted by ur, du, and  dd in this shorthand notation.  It is easy to verify 
that, if a sequence of  actions taken on the variable contains either ur, du, or dd as a subsequence,  
the variable will enter state A, which indicates the presence of a data flow  anomaly in the 
execution path.  We let the variable remain in state A once that state is entered.  Its implication 
and possible alternatives will be  discussed in Section VII. 

It is obvious from the above discussion that there is no need to compute the sequence of actions 
taken on a variable along the entire execution path.   Instead, we need only to know if the 
sequence will contain ur, du, or dd as a  subsequence.  Since such a subsequence will invariably 
cause the variable to  enter state A, all we need to do is to monitor the states assumed by the 
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variable during execution.  This can be readily accomplished by means of  program 
instrumentation. 
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Fig. 2. In this diagram S is a statement, α is the sequence of actions taken on variable x by S, 
and q and q' are states assumed by x before and after an execution of S.  Furthermore, 
q'=f(q, α). 

To see how this can be done, let us consider a fragment of a flowchart shown in Fig. 2.  Suppose 
we wish to detect data flow anomalies with respect to a variable, say, x.  If x is in state q before 
statement S is executed, and  if α is the sequence of actions that will be taken on x by S, then an 
execution of S will cause x to enter state q', as depicted in Fig.2.  Given q and α, q' can be 
determined based on the state diagram given in Fig. 1. However, for the discussions that follow, 
it is convenient to write 

  q'=f(q, α)         (1) 

where f is called the state transition function and is completely defined by  the state diagram 
shown in Fig. 1.  Thus, for example, f(U, d)=D, and f(D, u)=A. For the cases where α is a 
sequence of more than one action, the definition of  f can be given as follows.  Let α = aβ, where 
a is either d, r, or u, and  β is  a  sequence of d's, r's, and u's.  Then 

 f(q, aβ) = f(f(q, a), β) 

for any q in  {A, D, R, U}.   Thus f(U, dur) = f(f(U, d), ur) = f(D, ur) = f(f(D, u), r) = f(A, r) = A. 

Next, we observe that the computation specified by (1) can be carried out by using a program 
statement of the form 

  q := f(q, α).         (2) 
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S; q := f(q,  )α

 

 

Fig. 3. Program instrumented with q:=f(q, α). 

Now if we insert the above statement next to statement S in Fig. 2, as shown in Fig. 3, then the 
new state assumed by variable x will be automatically computed upon an execution.  The 
augmented program depicted in Fig. 3 is said to have been instrumented with the statement q := 
f(q, α).  This statement should be  constructed in such  a way that there will be no interference 
between this inserted statement and the original program.  A simple way to accomplish this is to 
use variables other than those which appeared in the program to construct the inserted statement. 

To illustrate the idea presented above, let us consider an execution path shown in Fig. 4.  
Suppose we wish to detect possible data flow anomalies with  respect to variable x along this 
path.  According to the method described  above, we need to instrument the program with 
statements of the form  xstate := f(xstate, α), as shown in Fig. 5.  The variable "xstate" contains 
the state assumed by x.  At the entry variable x is assumed to be undefined, and therefore, 
variable xstate is initialized to U.  By an execution along the  path, xstate will be set to different 
values as indicated on the right-hand  side of Fig. 5.  Note that there is no need to place an 
instrument following a  statement unless that statement will act on variable x.  To see if there is a 
data flow anomaly with respect to x on the path, all we need to do is to print  out the value of 
xstate by instrumenting the program with an appropriate output statement at the exit.  In this 
example, the data flow with respect to x is  anomalous in that x is defined and defined again, and 
the value of xstate will  be set to A to indicate this fact. 
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begin

read x, y, e

print x, y, e

w := y - x

w < e

x := x + w / 3

y := y - w / 3

x := sqrt(w)

F T ...

. 

. 

.  

Fig. 4.  A program path. 
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begin

read x, y, e

print x, y, e

w := y - x

w < e

x := x + w / 3

y := y - w / 3

x := sqrt(w)

F T

xstate:=U

xstate:=f(xstate,d)

xstate:=f(xstate,r)

xstate:=f(xstate,r)

xstate:=f(xstate,rd)

xstate:=f(xstate,d)

values of xstate
upon an execution

xstate = U

xstate = D

xstate = R

xstate = R

xstate = D

xstate = A
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Fig. 5.  This diagram illustrates how the program path shown in Fig. 4 can be instrumented to 
monitor the data flow with respect to variable x (variable xstate contains the state assumed by x). 

In practice, it is more appropriate to instrument programs with procedure calls instead of 
assignment statements.  The use of a procedure allows us to  save the identification of an 
instrument as well as the state assumed by the  location as well as the type of data flow anomaly 
detected.  This will greatly facilitate anomaly analysis. 

 

 

 

3. DATA FLOW OF ARRAY ELEMENTS 

To instrument a program for detection of data flow anomalies, as described in the preceding 
section, we need to be able to identify the actions taken by  each statement in the program as 
well as the objects of actions taken.  This requires additional considerations if array elements are 
involved.  The sequence of actions taken by a statement on a subscripted variable can be 
determined as usual. However, identification of the object may become a  problem if the 
subscript is a variable or an arithmetic expression.  First, we do not know which element of the 
array that variable is meant to be without looking elsewhere.  Second, the object of action taken 
may be different every time that statement is executed. 

This problem becomes very difficult when data flow anomalies are to be  detected by means of 
static analysis.  In the method described in [1], this  problem is circumvented entirely by 
ignoring subscripts and treating all  elements of an array as if they were a single variable.  It is 
interesting  to see what entails when this approach is taken.  For this purpose, let us consider the  
amiliar sequence of three statements given below which exchanges  the values of a[j] and a[k]: 

  temp := a[j]; 
 a[j] := a[k]; 
 a[k] := temp; 

It is obvious that the data flow for every variable involved is not anomalous, provided j <> k.  
However, if a[j] and a[k] are created as the same variable, the data flow becomes anomalous 
because it is defined and defined again by the last two statements.  This example shows that a 
false alarm may be produced if we treat all elements of an array as if they were a single variable.  
False alarm is a nuisance, and most importantly, a waste of programmer's time and effort.  In 
some cases, a data flow anomaly will not be detected if we treat all elements of an array as if 
they were a single variable.  For example, let us consider the following program: 

     i := 1; 
     while i <= 10 do begin a[i] := a[i+1]; i := i + 1 end; 
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If a[i] is mistakingly written as a[1], the data flow for a[1] becomes anomalous because it is 
repeatedly defined ten times.  This is not so if all elements of the array are treated as a single 
variable. 

From the above discussion it is obvious that separate handling of array elements is highly 
desirable.  The problem posed by array elements can be  easily solved if the present method of 
program instrumentation is used.  In this method data flow anomalies are to be detected by the 
software instruments  placed among program statements.  When it comes to execute a software  
instrument involving a subscripted variable, the value of its subscript has already been computed 
(if the subscript is a single variable)  or can be  readily computed (if it is an arithmetic 
expression). Therefore, in the process of instrumenting a program for checking the data flow of a 
subscripted  variable, there is no need to know which element of the array that variable is  meant 
to be.  The true object of actions taken on this variable can be  determined dynamically at the 
execution time. 

To implement the idea outlined above on a computer, we need 1) to allocate  a separate memory 
location to each and every element in the array for the  purpose of storing the state presently 
assumed by that element, and 2) to  instrument the program with statements that will change the 
state of the right  array element at the right place.  The complexity of statements required  
depends on the data structure used in storing the states of the array elements. 

One simple structure that can be used is to store the states of elements of an rray in the 
corresponding elements of another array of the same dimension. Statements of the form shown in 
Fig. 5 can then be used to monitor the states  assumed by the array elements.  For example, 
suppose a program makes use of a  two-dimensional array a[1:10, 1:20].  To instrument the 
program to monitor the  data flow of elements in this array, we can declare another integer array 
of the same size, say, sta[1:10, 1:20], for the purpose of storing the states of elements in array a.  
Specifically, the state of a[i, j] will be stored in sta[i, j].  If the program contains the following 
statement: 

  a[i, j] := a[i, k] * a[k, j] 

then the required instruments for this statement will be 

  sta[i, k] := f(sta[i, k], r); 

 sta[k, j] := f(sta[k, j], r); 

and sta[i, j] := f(sta[i, j], d). 

Here f is the state transition function defined by the state diagram shown in  Fig. 1. 

 

 

4. SELECTION OF INPUT DATA 
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After having a program instrumented, as described in the preceding sections, possible data flow 
anomalies can be detected by executing the program for a properly chosen set of input data.  The 
input data used determines the execution paths and, therefore, affects the number of anomalies 
that can be  detected in the process.  The question now is: how do we select input data so that all 
data flow anomalies can be detected?  It turns out that there is a  relatively simple answer to this 
question.  Roughly speaking, we need to select a set of input data that will cause the program to 
be executed along all possible execution paths that iterate a loop zero or two times.  For instance, 
if the program has a path structure depicted in Fig. 6, we need to choose a  set of input data that 
will cause the program to be executed along paths ae,  abd, and abccd.  In the remainder of this 
section we show how this selection criterion is derived, and discuss how a set of input data 
satisfying this criterion can be found. 
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Fig. 6.  A graph. 

It is intuitively clear that all data flow anomalies will be detected if the instrumented program is 
executed along all possible execution paths.  However, it is impractical, if not impossible, to do 
so because in general the number of possible execution paths is very large, especially if the 
program contains a loop and the number of times the loop will be iterated is input dependent.  
The crucial problem then is to determine the minimum number of times a loop has to  be iterated 
in order to ensure detection of all data flow anomalies. 

To facilitate discussion of the problem stated above, we shall adopt the following notational 
convention.  We shall use special symbols α, β, and γ to denote strings of d's, r's, and u's.  If α is 
a string and n is a nonnegative  integer, then αn denotes a string formed by concatenating n α's.  
For any string α, α0 is defined to be an empty string. 

Now let us consider the data flow with respect to a variable, say, x, on an execution path.  Let β 
represent the sequence of actions taken on x by the constituent statements of a loop on this path. 
If the loop is iterated n times in an execution, then the sequence of actions taken by this loop 
structure can  be represented by βn.  Thus, if the program is executed along this path, the string 
representing the sequence of actions taken on x will be of the form αβnγ.  Recall that to 
determine if there is a data flow anomaly with respect to x is to determine if dd, du, or ur is a 
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substring of αβnγ.  Therefore, the  present problem is to find the least integer k such that if αβnγ 
(for some n > k) contains either dd, du, or ur as a substring, then so does αβkγ. 

For convenience, we shall use .substr. to denote the binary relation "is a substring of".  Thus r 
.substr.  rrdru, and ur .substr. ddrurd. 

Theorem 1:  Let α, β, and γ be any nonempty strings, and let τ be any string of two symbols.  
Then, for any integer n > 0, 

 τ .substr.  αβnγ implies τ .substr.  αβ2γ 

Proof:  For n > 0, τ can be a substring of αβnγ only if τ is a substring of α, β, γ, αβ, ββ, or βγ.  
However, all of these are a substring of αβ2γ.  Thus the proof immediately follows from the 
transitivity of the binary relation .substr.. Q.E.D. 

Note that dd, du, and ur are strings of two symbols, representing the sequences of actions that 
cause data flow anomalies.  Theorem 1 says that, if there exists a data flow anomaly on an 
execution path that traverses a loop at least once, anomaly can be detected by iterating the loop 
twice during  execution.  Such a data flow anomaly may not be detected by iterating the loop  
only once because dd, du, and ur may be a substring of ββ, and  ββ is not necessarily a substring 
of αβγ. 

 

d

d
rdr

 

 

Fig. 7.  An example execution path in which the data flow becomes anomalous only if the loop is 
not executed. 

Observe that Theorem 1 does not hold for the case n = 0.  This is so because τ .substr. αγ implies 
that τ is a substring of α, γ, or αγ, and αγ is not necessarily a substring of αβnγ for any n > 0. 
The significance of this fact  is that a certain type of data flow anomaly may not be detected if a 
loop is traversed during execution.  Fig. 7 exemplifies this type of data flow anomaly. In general, 
if the data flow anomaly is caused by exclusion of a loop from the execution path, then it may 
not be detected if the loop is traversed during  execution. 
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Fig. 8.  A path structure. 

 

Based on Theorem 1 and the above discussion, we can conclude that  to ensure detection of all 
data flow anomalies, each loop in a program has to be iterated zero and two times in execution.  
Unfortunately, it is not clear how this result can be applied to the cases where a loop consists of 
more than one  path.  For instance, if we have a path structure, shown in Fig. 8, we are certain 
that paths abbd, accd, and ad have to be covered in input data  selection.  However, it is not clear 
whether paths such as abbccd, abcbcd, or abcd have to be covered.  

a b
a

b

a

ab a+b a*
 

 

Fig. 9.  Three basic path structures and their descriptions. 

 

To clarify this point, first we need to be able to speak of a path structure precisely and concisely.  
This can be accomplished by making use of the  language of regular expressions (see, e.g., [9-
11]).  Briefly, a set of  paths between any two nodes in a (directed) graph can be described in 
terms  of symbols associated with the constituent edges as follows.  For two edges (labeled by) a 
and b, we shall use ab to describe the path formed by  connecting a in cascade with b, use a+b to 
describe the path structure  formed by connecting a and b in parallel, and use a* to describe the 
loop  formed by using a, as shown in Fig. 9.  The same rules also apply to the cases  where a and 
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b are expressions describing complex path structures.  Hence a set  of paths can be described by 
an expression composed of edge symbols and three connectives: concatenation, disjunction (+), 
and looping (*).  For example, the set of paths between nodes 1 and 4 in Fig. 6 can be described 
by a(e + bc*d),  and that between nodes 1 and 3 in Fig. 8 can be described by a(b + c)*d.   
(Remark:  Those who are familiar with the concept may have noted that the latter can be 
alternatively described by a(b*c*)*d. We shall comment on this later.) 

If p describes a path, then p* describes a loop formed by p and hence a set  of paths obtained by 
iterating the loop for any number of times.  Formally,  p* = λ + p + pp + ppp + ....  Here λ is a 
special symbol denoting the identity  under concatenation (i.e., xλ = λx = x for any x) and is to 
be interpreted as a  path of length zero (obtained by iterating the loop zero times).  According to 
the result presented above, we need only to iterate the loop zero and two times in order to ensure 
detection of all data flow anomalies.  Thus if a path  description contains p* as a subexpression, 
we can replace it with (λ + p2)  to yield the description of the paths that have to be traversed in 
execution. 

Does the same method apply if p is a description of a set of two or more  paths?  In that case, an 
execution of statements on p will result in having  two or more sequences of actions taken on the 
variable.  Therefore, the answer  hinges on whether or not we can extend Theorem 1 to the cases 
where β is a set of strings. It turns out that the answer is affirmative. 

To see why this is so, we shall first restate Theorem 1 for the cases where α, β, and γ are sets of 
strings.  Note that the concatenation of two sets is defined as usual.  That is, if α and β are sets of 
strings, then αβ = {ab | a in α and b in β} is again a set of strings. 

Theorem 2:  Let α, β, and γ be any nonempty sets of nonempty strings, τ be any string of two 
symbols, and n be an integer greater than zero.  If τ is a substring of an element in αβnγ then τ is 
a substring of an element in αβ2γ. 

Theorem 2 is essentially the same as Theorem 1 except that the binary relation of "is a substring 
of" is changed to that of "is a substring of an element in."  As such, it can be proved in the same 
manner. The proof of Theorem 1 mutatis mutandis  can be used as the proof of Theorem 2. 

For convenience, we now introduce the notion of a zero-two (ZT) subset.   Given an expression 
E that describes a set of paths, we can construct another expression E02 from E by substituting (λ 
+ p2) for every subexpression of the  form p* in E.  For example, if E is a*bc*d, then E02 is (λ + 
a2)b(λ + c2)d.  The set of paths described by E02 is called a ZT subset of that  described by E. 

The development presented above shows that, to ensure detection of all data flow anomalies, it 
suffices to execute the instrumented program along paths in a ZT subset of the set of all possible 
execution paths.  The question now is: how do we select input data to accomplish this?  
Described in the following are the steps that may be taken to find the required set of input data 
for a given program. 
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Step 1:  Find all paths from the entry to the exit in the flow chart of the  program.  A flowchart is 
essentially a directed graph, and there are several methods available for finding all paths between 
two nodes in a directed graph (see, e.g., [12-15]). 

Step 2:  Find a ZT subset of the set of paths found in Step 1.  Note that the regular-expression 
representation of a set of paths is not unique in  general.  For instance, the set of paths between 
nodes 1 and 3 in Fig. 8 can  be described by a(b + c)*d or equivalently by a(b*c*)*d.  Since a ZT 
subset is defined based on the set description, a set may have more than one ZT subset.   In this 
example, there are two.  One is described by a(λ + (b + c)2)d and the other by a(λ + ((λ + b2)(λ + 
c2))2)d.  However, this is of no consequence because in the light of Theorem 2 the use of either 
one is sufficient to  ensure detection of all data flow anomalies. 

Step 3:   For each path in the set obtained in Step 2, find input data that will cause the program to 
be executed along that path.  This may prove to be a  rather difficult task in practice.  The reader 
may wish to refer to [16-18]  for methods available.  Note that the set obtained in Step 2 may 
contain paths  that  cannot be executed at all.  If a path is unexecutable because there is a  loop 
on the path that has to be iterated for a fixed number of times other than that specified, then 
disregard the number of times the loop will be iterated in execution.  Just select input data that 
will cause the path (and the loop)  to be executed.  If a path is found to be unexecutable because 
a loop can only be traversed a number of times other than that specified, then replace it with  an 
executable path that traverses the loop two or more times.  If a path is found to be unexecutable 
because it is intrinsically so, then it can be excluded from the set.  The result is a set of input data 
that will ensure  detection of all data flow anomalies. 

 

 

5. VARIABLE ALIASING AND RELATED PROBLEMS 

In a program, the same name may be used by different data, and the same datum may have 
different names.  This complicates the process of program  instrumentation in two ways.  First, 
additional analysis will be required to  recognize multiple use of a name and to identify aliases of 
a variable.   Second, based on the analysis results, appropriate mechanisms must be  incorporated 
into the software instruments to ensure that there will be no  confusion about the identity of a 
datum.  The first part can be done in a straightforward manner and, therefore, will not be 
discussed here.  The second part will be treated in detail in this section. 

In most programming languages, local variables in different blocks or subroutines may have the 
same name.  It is possible to instrument the program  in such a way that the state of the data with 
the same name will be stored in  the same memory location.  However, this requires additional 
software  instruments at the boundaries to store and restore properly the state of the variable in 
the outer block or the calling program.  Another possible solution is to give each local variable 
an additional identification so that they will become different.  This can be done, for example, by 
identifying each datum  by its name in conjunction with the name of the block or subroutine in 
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which  it exists.  The state of each variable will then be stored in a separate location, and thus no 
additional instruments will be required at the block or subroutine boundaries. 

Two different variables, say, x and y, may in fact represent the same datum  under the following 
circumstances. 1) Through the use of an EQUIVALENCE statement in Fortran or DEFINED 
attribute in PL/1, the same memory space is  allocated to x and y. 2) Through the use of 
COMMON statements in Fortran,  variable x in one subprogram shares the same memory with 
variable y in another subprogram.  3) x is the so-called actual name used in the invoking 
procedure,  and y is the so-called dummy name used in the invoked procedure.  To show a  
possible solution to the problem of variable aliasing, let us suppose that the  states assumed by x 
and y are to be contained in variables stx and sty.  Then,  in the first two cases mentioned above, 
all we need  to do is to make variables stx and sty share the same memory through the use of the 
same mechanism.  If  there is an EQUIVALENCE statement for x and y in the original program, 
then we  should have the corresponding EQUIVALENCE statement for stx and sty in the  
instrumented program.  If x and y are declared common in two subprograms, then stx and sty 
should be similarly declared. 

To see how we may solve the problem for the third case, let us suppose that y is the sole 
parameter of a subroutine named exampro.  What needs to be done  when this subroutine is 
invoked by the statement: call exampro(x)?  Obviously,  we need to initialize the value of sty to 
the value of stx just before the subroutine exampro is entered.  Furthermore, the value of stx 
must be restored  to the value of sty upon the exit from exampro.  The transfer of value between  
stx and sty cannot be achieved through the use of an assignment statement  because stx is not 
accessible to the subroutine exampro, and sty is not  accessible to the calling program.  In 
general, they cannot be made accessible  by means of inserting additional statements into the 
program.  A possible solution to this problem is to make use of a software instrument which we 
call  a subroutine named que(func, var).  The first parameter can be "in" or  "out,"  and the 
second parameter is a variable name.  When invoked by the statement:  call que(in, stx), this 
subroutine will store the value of variable stx in a queue (i.e., a first-in-first-out memory device).  
When invoked by the  statement: call que(out, stx), the subroutine wil delete an element from the  
queue and store it in stx.  We can use this instrument to properly transfer  the value from stx to 
sty and vice versa, as illustrated below.  

 

       calling program       called subroutine 

         . 

         . 

         . 

   call que(in, stx); 

   call exampro(x);              subroutine exampro(y); 
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   call que(out, stx);             call que(out, sty); 

         .      . 

         .      . 

         .      . 

                                (body of the subroutine) 

         . 

          . 

         . 

                                   call que(in, sty); 

                                   return; 

The italicized statements are the software instruments.  Their purpose is  to store the state 
assumed by x just before the subroutine exampro is called and then to initialize the state of y to 
the stored value immediately after the subroutine is entered.  The reverse of this process is 
carried out at the  exit. A queue is used to store the state because a subroutine may have more 
than one parameter.  The states of parameters thus can be passed through  subroutine boundaries 
one at a time by using a sequence of calls to subroutine  que(func, var).  The subroutine que must 
be designed in such a way that the content of the queue will not be lost upon termination. 

In summary, there is a need to pass the value of state variables when the  control crosses block or 
subroutine boundaries.  The above example is used to  show how the problem can be solved in 
principle.  In practice, the use of a global queue described above has several shortcomings.  For 
example, when the  variable x is an array, stx will also be an array.  Not many languages allow a 
subroutine to have scalars, arrays, and arrays of different dimensions to be  called all in the same 
argument position.  Instruments for expressions containing several function calls must be 
properly ordered to ensure that elements are stored in the queue according to the order in which 
the functions will be called.  Clearly, a more elaborate mechanism for interprogram 
communication must be employed in implementing the present method. 

 

 

6. SEGMENTATION OF DATA FLOW 

In the previous discussions we have tacitly assumed that the whole program will be instrumented 
for the data flow analysis.  However, there are cases in which we would like to apply the method 
to a portion of the program only.  For instance, we might have made changes to a small part of a 
large program and  want to apply the method to detect possible errors in the portion changed. We 
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should be able to do this without instrumenting the entire program.  The applicability of this 
method to parts of a program is also important in the development of a large software.  A large 
program normally consists of many subprograms, each of which is constructed and tested 
separately.  It will be very helpful if the method can be applied to each subprogram individually.  
The need  

to analyze an isolated segment of data flow may also arise when the  program calls a subroutine 
that is not available for instrumentation.  A system library routine is an example.  We should be 
able to analyze data flow  in the rest of the program when a part of it is not instrumented.  In the  
remainder of this section, we shall discuss the problems involved and show how  they may be 
solved. 

Part 1

Part 2

Part 3
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a

a
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1

2

n

0

1

n

 

 

Fig. 10.  An execution path. 
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To see what is involved, let us suppose that we wish to analyze the data flow with respect to a 
variable, say, x, along the middle part of the execution path depicted in Fig. 10.  Let us further 
suppose that the statements on this  part will take a sequence of n actions a1, a2, ..., an on variable 
x, and as the result x will change its state from the initial state so to a sequence of new states s1, 
s2, ..., sn.  If we start the analysis from the entry of the program,  we know that so = U, i.e., the 
variable is in the state of being undefined.   However, if we start the analysis from any point 
other than the program entry,  we would not know the state of the variable at the starting point.  
Without this knowledge, we cannot compute the subsequent states assumed by the variable.  A 
possible solution to this problem is to assume that the variable  is in a certain state at the starting 
point.  There are four possible choices, viz., we can assume that so is U, D, R, or A. 

Recall that state A indicates the existence of a data flow anomaly, and the variable will stay in 
state A once that state is entered.  Hence it is pointless to assume that so is A. 

Next, we observe that if s0 = U and a1 is "reference", then s1 will be A (cf., Fig. 1).  Also, if s0 = 
D, and if a1 is "define" or "undefine," then s1  will become A as well.  Since our purpose here is 
to analyze the data flow  within the middle part of the execution path depicted in Fig. 10, and 
since it  takes two consecutive actions to cause a data flow anomaly, it is undesirable to produce 
an indication of data flow anomaly after the first action.   Therefore, it is undesirable to assume 
that s0 is U or D. 

We shall assume that so is R because state R does not have the above-mentioned problem with 
states U and D.  In addition, the variable will enter  state A if the sequence of actions a1a2...an 
contains dd, du, or ur as a  subsequence.  That is, by assuming that s0 = R, we can detect all data 
flow  anomalies that may exist within the boundaries of the execution path under  consideration. 

From the above analysis it is clear that we can instrument a portion of a program for data flow 
analysis as usual.  And if we do not know the state of  the variable at the starting point, simply 
assume it to be state R.  The same  rule applies to the case in which the program calls a 
subroutine that is not instrumented for some reason.  All we need to do is to reset the state of a  
variable to R when the control returns to the calling program and continue the  analysis as usual. 
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Fig. 11.  Data flow at the subprogram boundary. 

If we wish to analyze the data flow of a program by applying the method to each subprogram 
individually, we need to be able to detect the data flow  anomalies that may occur on the 
boundarry of two subprograms.  To see how  this can be accomplished, let us consider the 
execution path depicted in  Fig. 11, which crosses the boundary of two subprograms.  Let a1m be 
the last  action taken by subprogram 1 on a particular variable, and let a21 be the first action 
taken by subprogram 2 on the same variable.  By definition, there is a  data flow anomaly if 
a1ma21 is either dd, du, or ur.  We can make use of the  following relation to detect such 
anomalies: 

     a1m = d  if  s1m = D 

     a1m = r  if  s1m = R 

     a1m = u if  s1m = U 
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     a21 = d if  s21 = D 

     a21 = r if  s21 = R 

     a21 = u  if  s21 = U 

We need not be concerned with the case in which s1m = A because it is an indication that there is 
a data flow anomaly within subprogram 1.  Presently,  we are concerned with the detection of 
anomalies on the boundary.  We also  need not consider the case in which s21 = A.  That will 
never happen because we assume that s20  =  R in computing s21.  Combining the results, we see 
that there is a data flow anomaly on the boundary if and only if 

     s1m = D and s21 = D  (because a1ma21 = dd) 

     s1m = D and s21 = U  (because a1ma21 = du) 

or 

     s1m = U and a21 = R  (because a1ma21 = ur).                      (3) 

For the sake of argument, let us call s20 and s21 the initial state and the first computed state, 
respectively.  For a variable whose data flow crosses a  subprogram boundary, we can determine 
if there is a data flow anomaly on the boundary if we know its last state in the first subprogram 
and its first  computed state in the second subprogram, provided the initial state is set to R in 
performing the analysis.  Hence in applying the present method to a  subprogram, we shall use 
appropriate software instruments to initialize the variable state to R at the entry, and to record the 
first computed state and the last state. 

The information so obtained can be interpreted as follows.  According to (3), there is no anomaly 
at the boundary if the last state is R.  If the last  state is either U or D, then we have to check if 
one of the three conditions  in (3) is satisfied.  If so, and if it occurs on a possible execution path,  
then there is a data flow anomaly at the boundary.  If the last state is A,  there is a data flow 
anomaly within the subprogram. 

 

 

7. CONCLUDING REMARKS 

The state diagram shown in Fig. 1 is such that, once a variable enters  state A, it will remain in 
that state all the way to the end of the execution path.  This implies that, once  the data flow with 
respect to a variable is  found to be anomalous at a certain point, the error condition will be  
continuously indicated throughout that particular execution.  No attempt will  be made to reset 
the state of the variable and continue to analyze the rest of the execution path.  This appears to be 
a plausible thing to do because in  general it takes a close examination of the program by the 
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programmer to  determine the nature of the error committed at that point.  Without knowing  the 
exact cause of the anomalous condition, it is impossible to correctly  reset the state of that 
variable. 

A possible alternative would be to abort the program execution once a data flow anomaly is 
detected.  This can be accomplished by instrumenting programs  with procedure calls that invoke 
a procedure with this provision.  By halting  program execution upon discovery of a data flow 
anomaly, we may save some  computer time, especially if the program is large. 

As explained in [1], the presence of a data flow anomaly does not imply that execution of the 
program will definitely produce incorrect results.  It  implies only that execution may produce 
incorrect results.  Thus we may wish  to register the existence of a data flow anomaly when it is 
detected and then  continue to analyze the rest of the execution path.  In that case, we can design 
the software instrument in such a way that, once a variable enters  state A, it will properly 
register the detection of a data flow anomaly and  then reset the state of the variable to state R.  
The reason for resetting it  to state R is obvious in the light of the discussions presented in the  
preceding section.  Another alternative is to use the state diagram shown in  Fig. 12 instead of 
the one shown in Fig. 1.  The data flow with respect to a variable is anomalous if the variable 
enters either state define-define (DD), state define-undefine (DU), or state undefine-reference 
(UR).  The use of this state diagram has the additional advantage of being able to identify the 
type  of data flow anomaly detected. 
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Fig. 12.  An alternative to the state diagram shown in Fig. 1. 
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To simplify the discussion, we have limited ourselves to analysis of data flow with respect to a 
single variable.  However, the method presented can be  readily extended to analyze more than 
one variable at the same time.  All we  need to do is to modify the method to handle vectors of 
variables, states, and  sequences of actions instead of single ones. 

The utility of data flow analysis in error detection is obvious and has been confirmed by practical 
experience [19], [20] for Fortran programs.  Fosdick and Osterweil have developed a static 
analysis method to obtain the desired information [1].  In this paper we present another method 
to achieve the same goal by properly instrumenting a program and then executing it for a set of 
input data.  In comparison, the present method has the following advantages. 

1) The present method is conceptually much simpler than that described in  [1] and, therefore, is 
much easier to implement. 

2) From the nature of computation involved, it is obvious that the present method requires a 
much smaller program to implement it on a computer. 

3) From the user's point of view, the present method is easier to use and more efficient because it 
produces information about the locations and types of data flow anomalies in a single process.  
In the method developed by Fosdick and Osterweil, additional effort is required to locate the 
anomaly once it is  detected. 

4) As indicated in Section II, the present method can be readily applied to monitor the data flow 
of elements of an array, which cannot be adequately handled in the static method.  Thus the 
present method has a greater error-detection capability and will produce fewer false warnings. 

5) In the present method, there is no need to determine the order in which the subroutines are 
invoked, and thus the presence of a recursive subprogram will not be a problem. 

The method presented in this paper is particularly advantageous if it is used in conjunction with a 
conventional program test to enhance the error-detection capability.  In a conventional test, a 
program has to be exercised as thoroughly as possible (see, e.g., [16]), and, therefore, the task of 
finding a suitable set of input data to carry out the data flow analysis will not be an extra burden 
to the programmer. 

It is difficult to compare the cost.  Very roughly speaking, the cost of applying the method 
described in [1] is linearly proportional to the number of statements in the program whereas that 
of applying the present method is linearly proportional to the execution time.  Therefore, it may 
be more economical to use the method described in [1] if the program is of the type that consists 
of a relatively small number of statements, but it takes a long time to execute (viz., a program 
that iterates a loop a great number of times is of this type). 

In conclusion, we have shown that the data flow anomaly can be detected by means of program 
instrumentation.  Most importantly, we have found a simple criterion for input data selection, 
satisfaction of which guarantees detection of all data flow anomalies.  It is interesting to note that 
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the technique of instrumenting a program for information gathering purposes has many other 
applications.  For example, it has been utilized to generate a program profile by Russell and 
Estrin [21], to measure instruction mix and execution time by Bussell and Koster [22], to 
produce information about syntactic and operational characteristics of programs by Stucki [23], 
and to measure the thoroughness of a test [24-29].  The work reported in this paper further 
demonstrates the utility of this technique as a tool for program analysis and testing. 
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