Chapter 4

Simplification of Boolean Expressions

Factors to be considered

in evaluating the merit of a network include

- Cost
- Reliability
- Propagation delay: the times it takes the network to respond to changes at its inputs

Cost measure

- The cost of a network can be measured in many different ways.
- In this course, unless otherwise specified, the cost of a network is defined to be the total number of gates plus the total number of gate inputs.
- Availability of inputs in complemented and uncomplemented form is assumed.

The cost of a Boolean expression

• is defined to be the cost of the corresponding network.

Relations among Boolean expressions

- Boolean expression f_1 implies Boolean expression f_2 if any assignment of values to the variables involved makes $f_1 = 1$, it also makes $f_2 = 1$. For example, $f_1 = x'z+y'z$ implies $f_2 = x'y + y'z$.
- A term t_1 subsumes term t_2 if any literal that occurs in t_2 also occurs in t_1 . For example, wx'yz subsumes x'z, and x + y subsumes x.

Implicants

- A product term is said to be an implicant of a Boolean function if it implies the function.
- For example, if a function is expressed in sum of products, then any product term therein is an implicant. If f(x, y) = x'y + xy' then x'y is an implicant. So is xy'.

Prime implicants

- An implicant of a function is said to be a prime implicant if the implicant does not subsume any other implicant with fewer literals of that function.
- For example, consider f(x, y, z) = x'y + z.
 Both x'y and xz are implicants of f. But while x'y is a prime implicant of f, xz is not because it subsumes z.

Irredundant disjunctive normal formula

An irredundant disjunctive normal formula (IDNF) is a Boolean expression in sum-ofproduct form such that (1) every product term involved is a prime implicant, and (2) no product term may be eliminated without changing the definition of that function. For example, x'y + z is an IDNF but not x'y + z+ x'z or x'y.

The minimization problem

• The the minimization problem to be discussed in the following is to find, for a given Boolean expression, an equivalent one that has the minimum cost, and that satisfies any other constraints imposed.

Simplification methods

- A graphic method that can handle Boolean expressions up to 6 variables - Karnaugh maps
- A tabular method that has no limit on the number of variable and can be implemented on a computer Quine-McCluskey method

Graphic method

• It is a simplification method that makes use of the following relations:

$$x + x' = 1$$

 $y \cdot 1 = 1 \cdot y = y$

• It facilitates recognition of applicability of these relations by describing a Boolean function in a graphic form (Karnaugh map).

Basic idea

- Two product terms of a Boolean function can be combined and simplified if they have a distance of 1.
- The distance between two product terms is defined as the number of literals that occur differently (i.e., one is complemented while the other is not) in these terms.

Karnaugh maps

- The Karnaugh map of a function consists of a number of cells (squares) that is equal to number of its minterms.
- Each cell is associated with a minterm in such a way that, if two cells are immediately adjacent to each other, their corresponding minterms have a distance of 1.

Karnaugh maps (continued)

- The entry to a cell is equal to the value of the associated minterm.
- Possibilities of simplification is signified by the presence of 1's occupying adjacent cells.
- A group of 2ⁿ cells can be combined to form a simpler term.

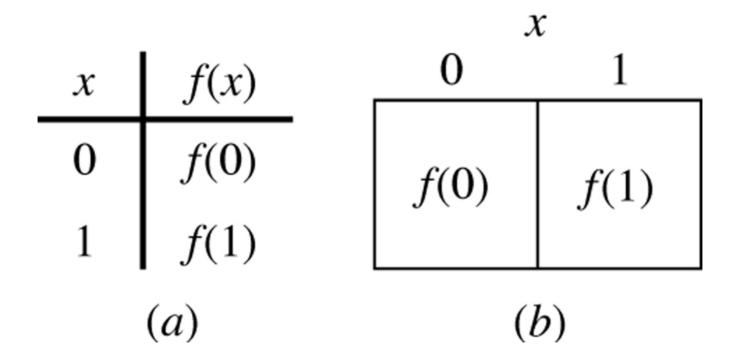
Karnaugh maps and implicants

A Karnaugh map of a Boolean function allows us to visualize its implicants, prime implicants, and different ways to describe it as a irredundant disjunctive normal formula.

A different view

Conceptually, it may be useful to think of a Karnaugh map as a different form of the truth table. Each row of the truth table is embedded in a cell in in the map in such a way that the possibility of simplification becomes obvious.

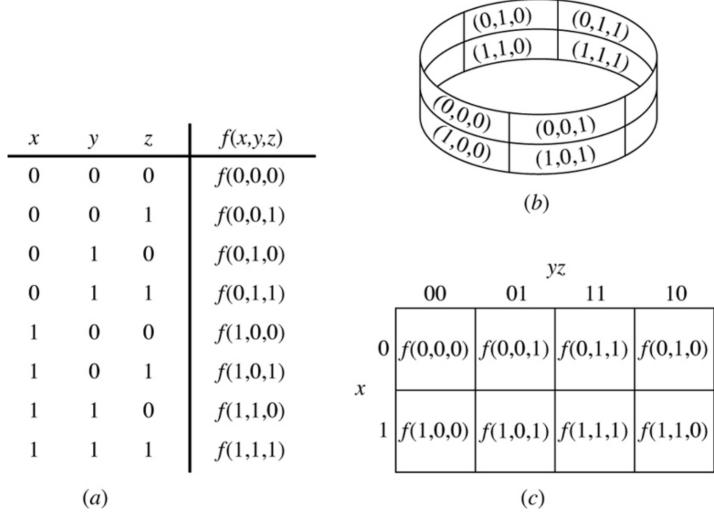
Karnaugh map of function of one variable.



Map of a function of 2 variables

		_		2	V
x	у	f(x,y)		0	1
0	0	f(0,0)	0	f(0,0)	f(0,1)
0	1	f(0,1)	x	J (0,0)	<i>J</i> (0,1)
1	0	f(1,0)	1	f(1,0)	f(1,1)
1	1	f(1,1)	-	J (1,0)	$J^{(1,1)}$
	(a)			(<i>b</i>)	

Map of a function of 3 variables



J. C. Huang, 2005

Digital Logic Design

An example map

х	у	z	f					
0	0	0	1					
0	0	1	0					
0	1	0	1			V	'Z	
0	1	1	0		00	01	11	10
1	0	0	1	0	1	0	0	1
1	0	1	1	x				
1	1	0	0	1	1	1	0	0
1	1	1	0	1	1	1	U	
		(a)				(b	p)	

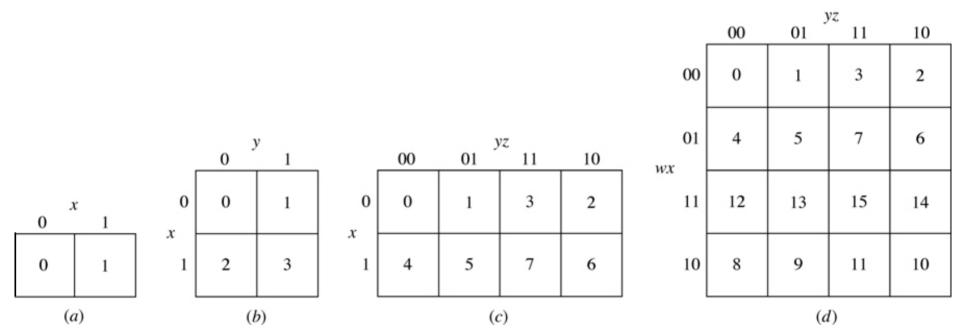
J. C. Huang, 2005

Digital Logic Design

Map of a function of 4 variables

w	x	у	z	f(w,x,y,z)						
0	0	0	0	f(0,0,0,0)						
0	0	0	1	f(0,0,0,1)						
0	0	1	0	f(0,0,1,0)						
0	0	1	1	f(0,0,1,1)						
0	1	0	0	f(0,1,0,0)					vz	
0	1	0	1	f(0,1,0,1)			00	01	11	10
0	1	1	0	f(0,1,1,0)		00		~~~~		
0	1	1	1	f(0,1,1,1)		00	f(0,0,0,0)	f(0,0,0,1)	f(0,0,1,1)	f(0,0,1,0)
				1 1 1 1 1 1 1						
1	0	0	0	f(1,0,0,0)						
1	0	0	1	f(1,0,0,1)		01	f(0,1,0,0)	f(0,1,0,1)	f(0,1,1,1)	f(0,1,1,0)
1	0	1	0	f(1,0,1,0)	wx					
1	0	1	1	f(1,0,1,1)			(1 1 0 0)	e(1 1 0 1)	61 1 1 1)	£(1.1.1.0)
1	1	0	0	f(1,1,0,0)		11	f(1,1,0,0)	J(1,1,0,1)	<i>f</i> (1,1,1,1)	J(1,1,1,0)
1	1	0	1	f(1,1,0,1)						
1	1	1	0	f(1,1,1,0)		10	f(1,0,0,0)	f(1,0,0,1)	f(1,0,1,1)	f(1,0,1,0)
1	1	1	1	f(1,1,1,1)						
			(a)					(<i>b</i>)	

Maps with cells designated by decimal numbers



A variant of Karnaugh map

- There are many different ways to construct Karnaugh maps.
- The ones shown next make the simplification process less error prone.

Map for a function of two variables

	y'	У
х'	f(0, 0)	f(0, 1)
X	f(1, 0)	f(1, 1)

Map of function of three variables

	y'z'	y'z	yz	yz'
x'	f(0,0,0)	f(0,0,1) 1	f(0,1,1)	f(0,1,0)
X	f(1,0,0)	f(1,0,1) 5	f(1,1,1) 7	f(1,1,0)

Map of function of four variables f(w, x, y, z)

	y'z'	y'z	yz	yz'
w'x'	0	1	3	2
w'x	4	5	7	6
WX	12	13	15	14
wx'	8	9	11	10

Map of function of five variables f(v, w, x, y, z)

	v'				V			
,	y'z'	y'z	yz	yz'	yz'	уz	y'z	y'z'
w'x'	0	1	3	2	18	19	17	16
w'x	4	5	7	6	22	23	21	20
WX	12	13	15	14	30	31	29	28
wx'	8	9	11	10	26	27	25	24

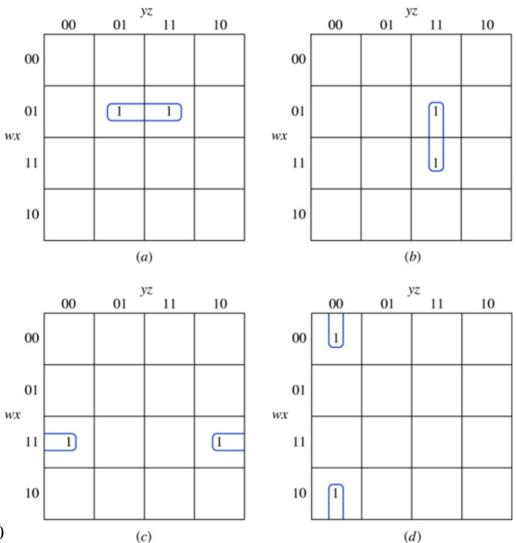
Map of function of six variables f(u, v, w, x, y, z)

			V	, '		V			
	_	y'z'	y'z	yz	yz'	yz'	yz	y'z	y'z'
	w'x'	0	1	3	2	18	19	17	16
11 [†]	w'x	4	5	7	6	22	23	21	20
u'	WX	12	13	15	14	30	31	29	28
	wx'	8	9	11	10	26	27	25	24
u	wx'	40	41	43	42	58	59	57	56
	WX	44	45	47	46	62	63	61	60
	w'x	36	37	39	38	54	55	53	52
	w'x'	32	33	36	34	50	51	49	48

Example of a four-variable map

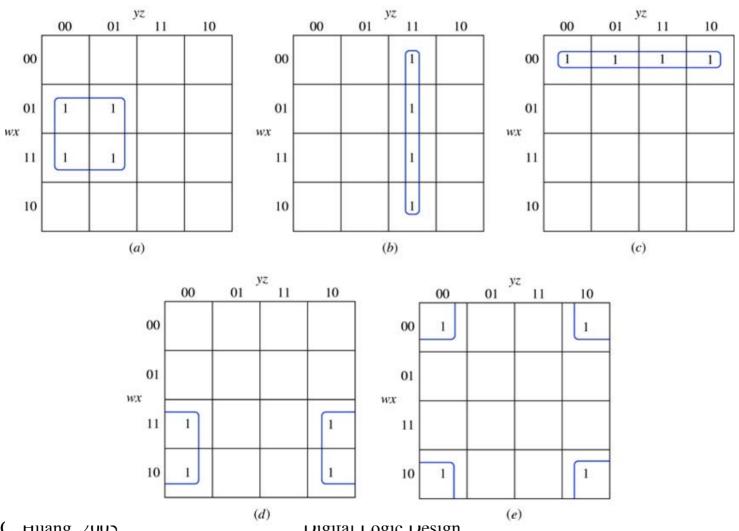
			3	IZ.	
		00	01	11	10
wx	00	1	1	0	1
	01	1	1	0	0
	11	0	0	0	0
	10	1	0	0	1

Typical subcubes for elimination of one variable.



J. C. Huang, 200

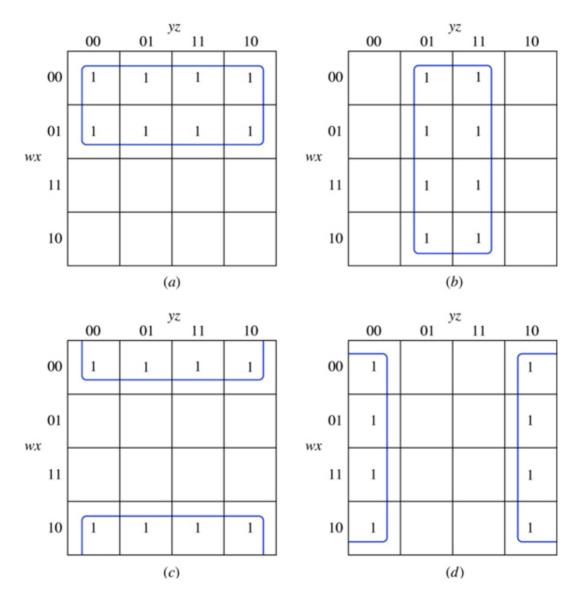
Typical subcubes for elimination of two variables



J. C. Huang, 2003

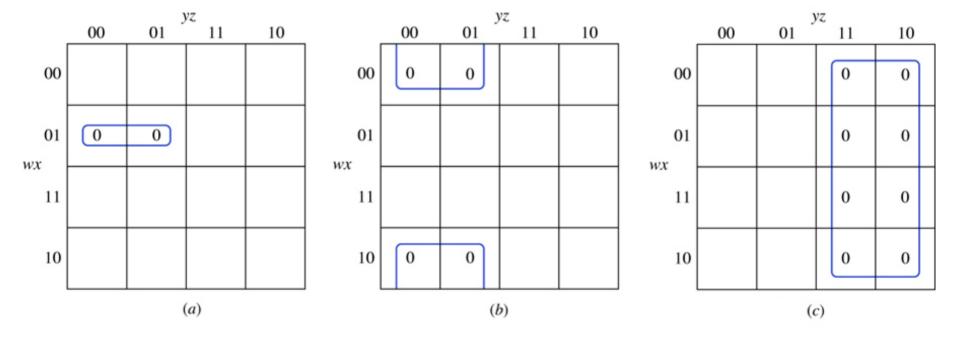
Digital Logic Design

Typical subcubes for elimination of three variables

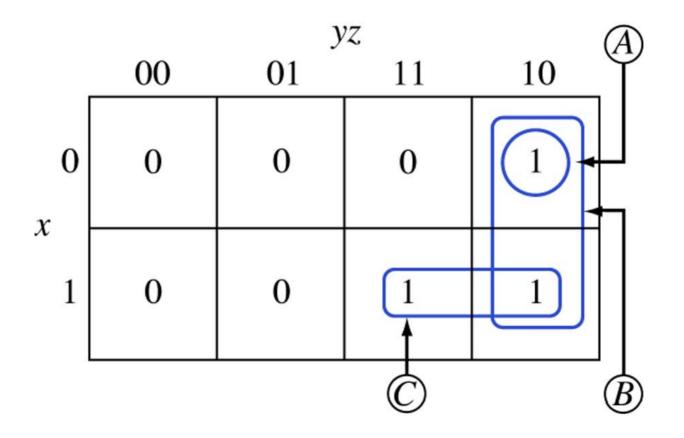


Digital Logic Design

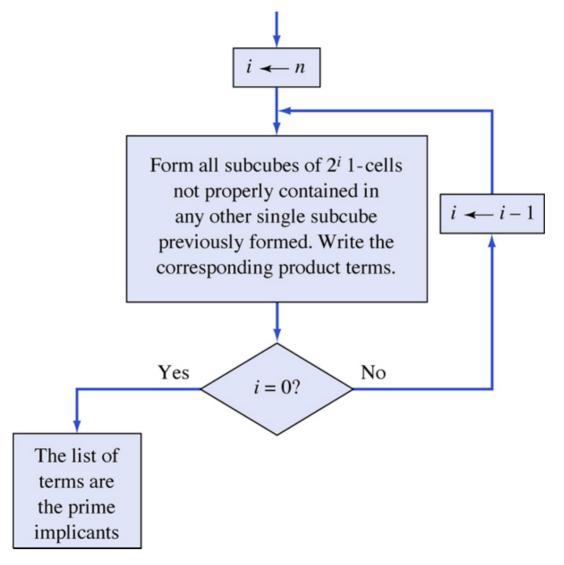
Typical subcubes describing sum terms



Prime implicants on a map



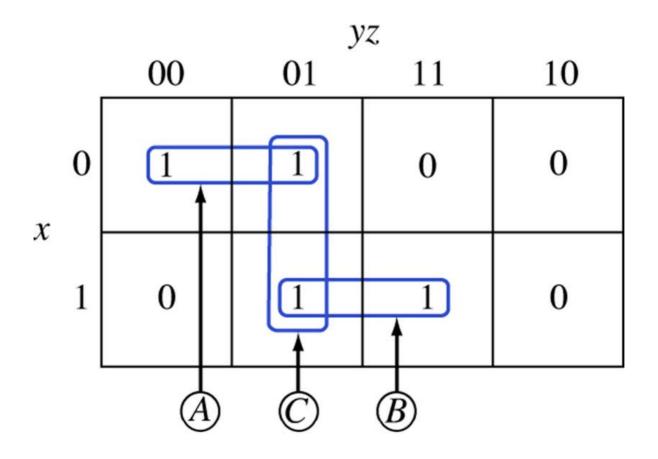
An algorithm for finding all prime implicants



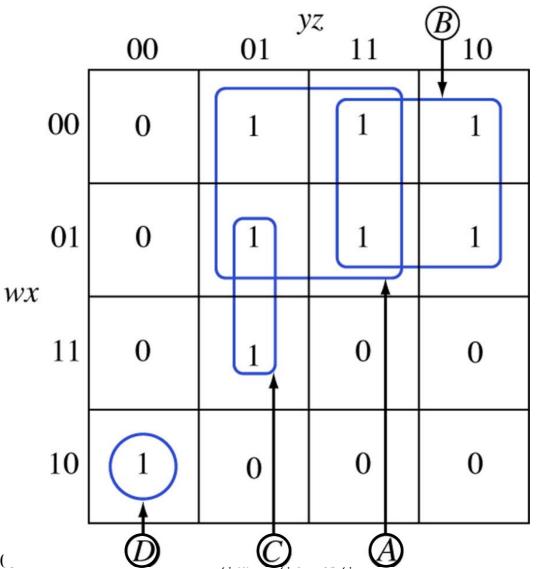
J. C. Huang, 2005

Digital Logic Design

The map for $f(x,y,z) = \sum m(0,1,5,7)$

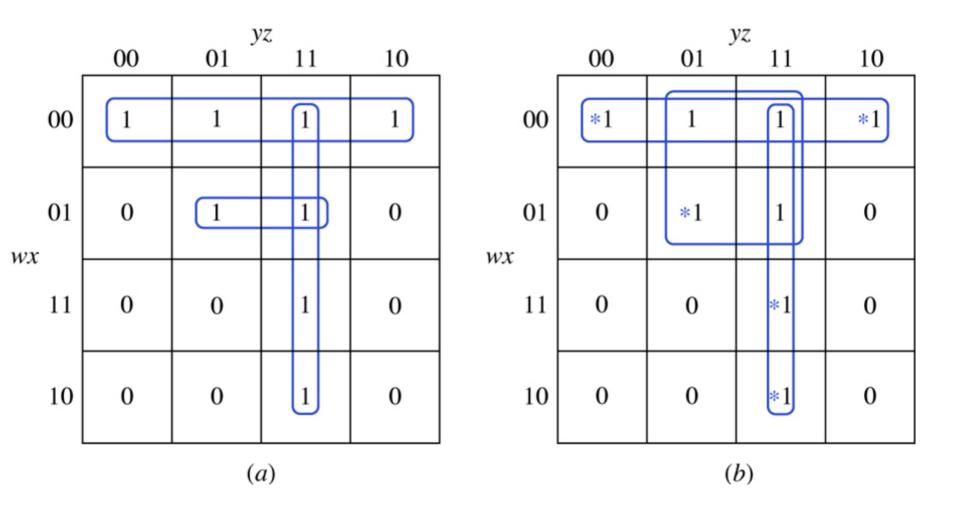


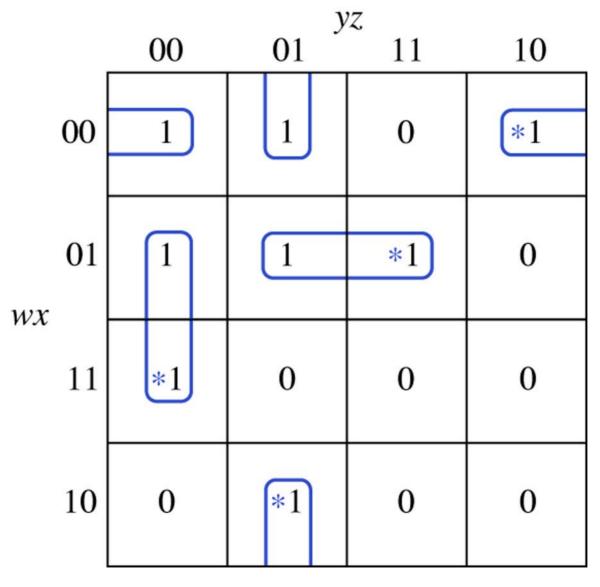
The map for $f(w,x,y,z) = \sum m(1,2,3,5,6,7,8,13)$



A quick way to construct the map of f = xy' + wxz + wx'yz

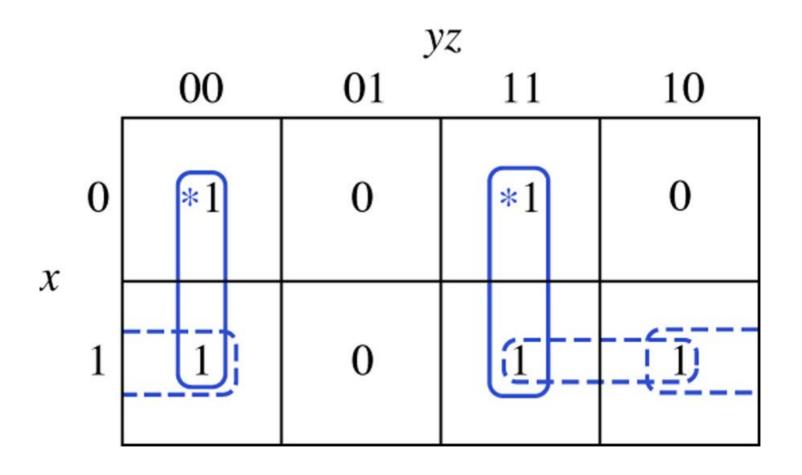
			y	Z	
		00	01	11	10
	00	0	0	0	0
wx	01	1	1	0	0
WA	11	1	1	1	0
	10	0	0	1	0

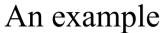


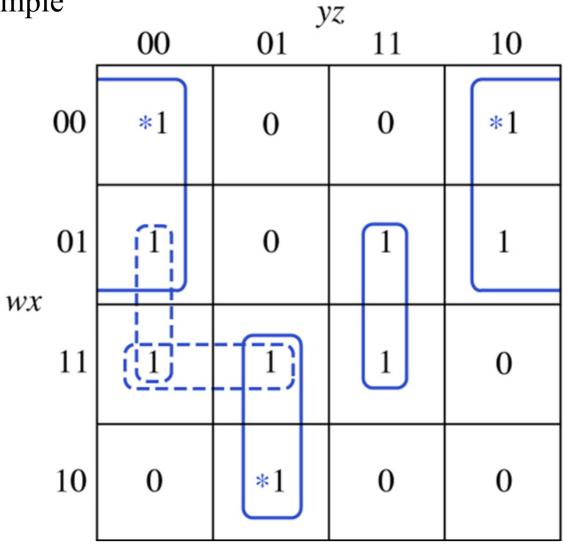


J. C. Huang, 2005

Digital Logic Design

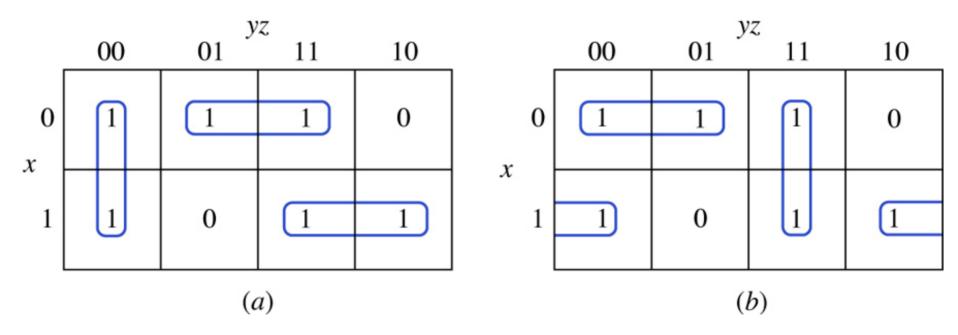




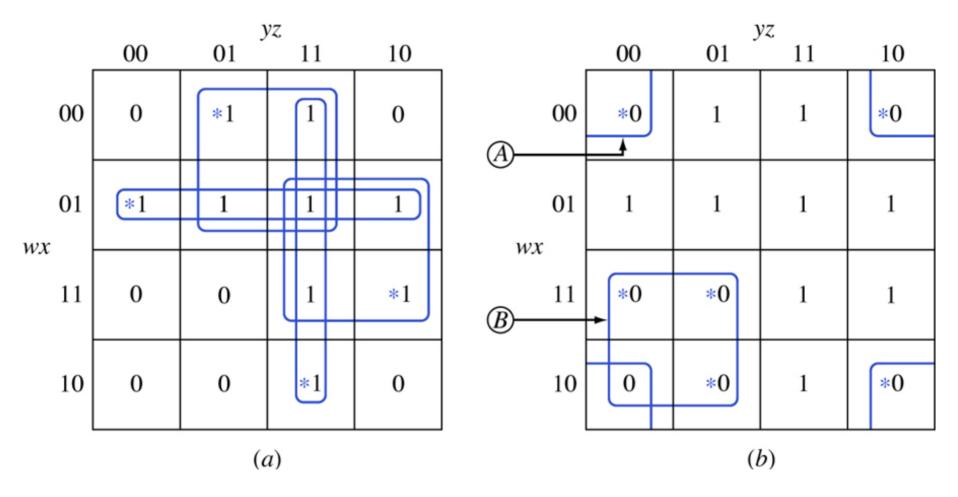


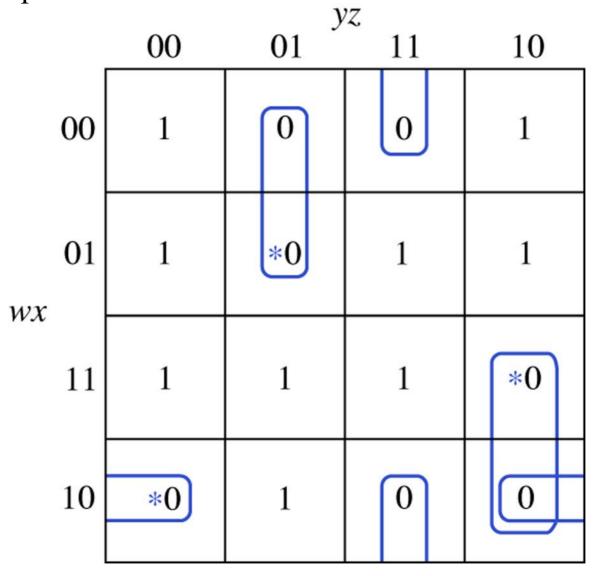
J. C. Huang, 2005

Digital Logic Design



Map for the functions $f(w,x,y,z) = \sum m(1,3,4,5,6,7,11,14,15)$





Incompletely specified Boolean function

$$f(w,x,y,z) = \Sigma m(0,3,7,8,12) + dc(5,10,13,14).$$

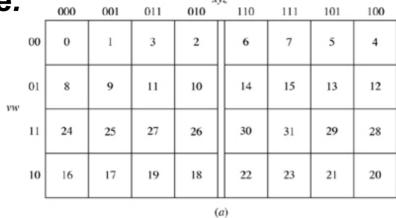
w	х	у	z	f										
0	0	0	0	1										
0	0	0	1	1										
0	0	1	0	0										
0	0	1	1	1										
0	1	0	0	0										
0	1	0	1	-										
0	1	1	0	0				z				,)	z	
0	1	1	1	1	1	00	01	11	10		00	01	11	10
1	0	0	0	1	00	(1)	1)	*1	0	00	1	1	1	*0
1	0	0	1	0		·								
1	0	1	0	-	01	0	-	*1	0	01	(0)	<u> </u>	1	(0
1	0	1	1	0	wx					wx				
1	1	0	0	1	11	1	_	0	_	11	1	_	0	_
1	1	0	1	-										
1	1	1	0	-	10	$(\overline{1})$	0	0	-	10	1	*0	0	_
1	1	1	1	0										
		(a)					(b)				(6	c)	

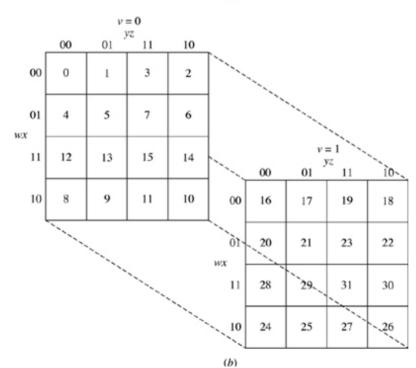
Digital Logic Design

Five-variable Karnaugh maps. (a) Reflective structure.

(b) Layer structure.

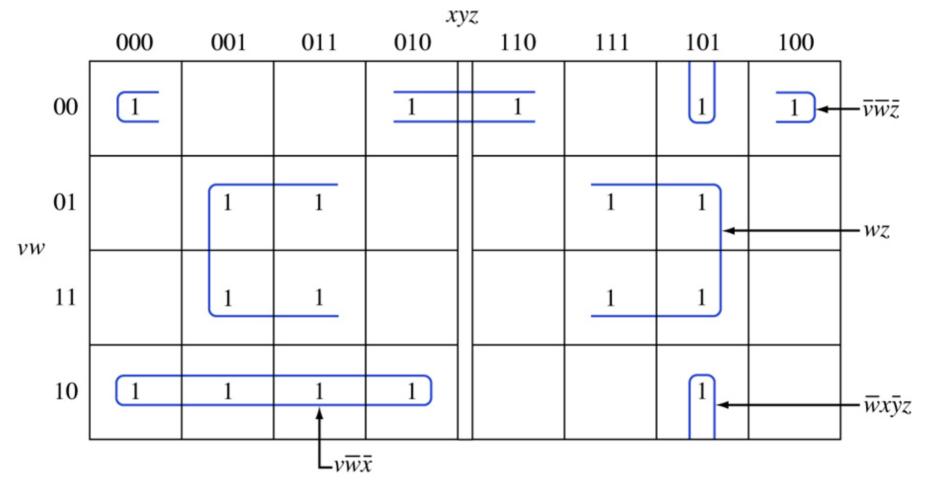
Figure 4.26



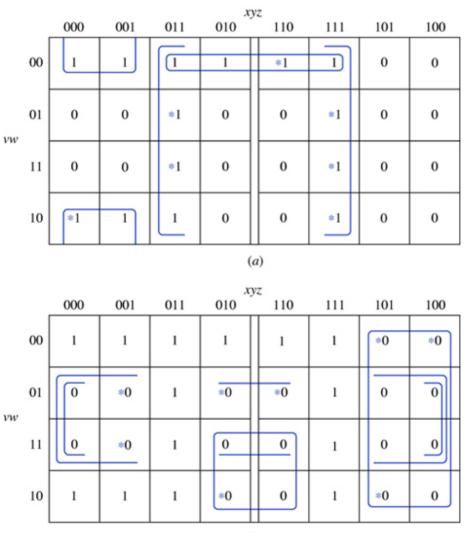


Typical subcubes on a five-variable map.

Figure 4.27

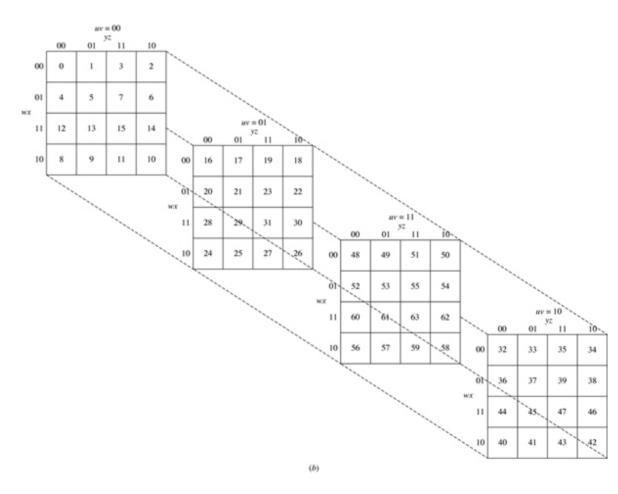


Maps for $f(v,w,x,y,z) = \sum m(0,1,2,3,6,7,11,15,16,17,19,23,27,31)$. (a) Subcubes for the minimal sum. (b) Subcubes for the minimal product.

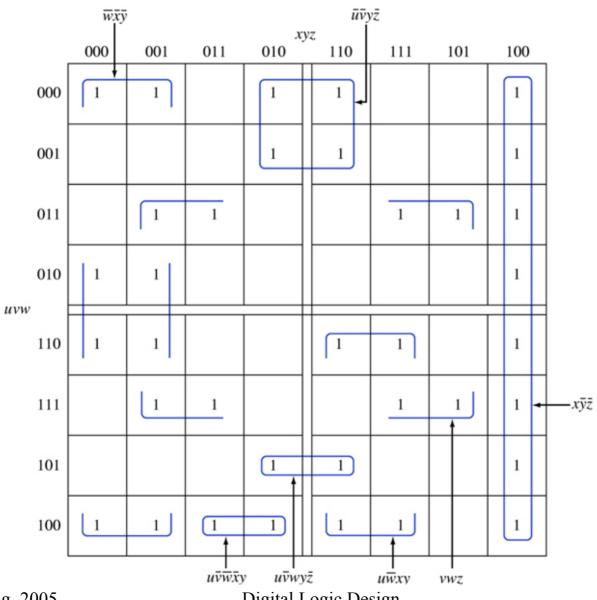


Six-variable Karnaugh maps. (a) Reflective structure. (b) Layer structure.

		000	001	011	010	y	110	111	101	100		
00	00	0	1	3	2		6	7	5	4		
00	01	8	9	11	10		14	15	13	12		
01	1	24	25	27	26		30	31	29	28		
01	10	16	17	19	18		22	23	21	20		
uvw 11	0	48	49	51	50		54	55	53	52		
11	1	56	57	59	58		62	63	61	60		
10)1	40	41	43	42		46	47	45	44		
10	00	32	33	35	34		38	39	37	36		
	(a)											



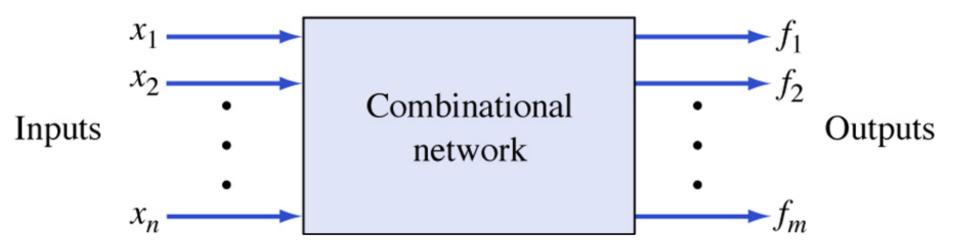
Typical subcubes on a six-variable map



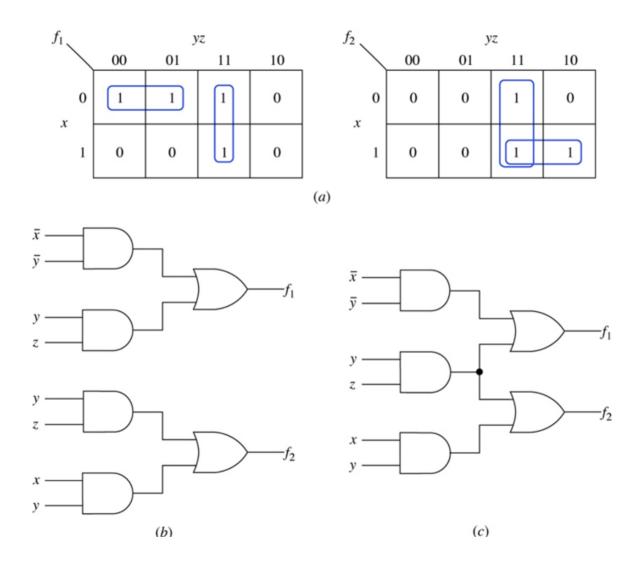
J. C. Huang, 2005

Digital Logic Design

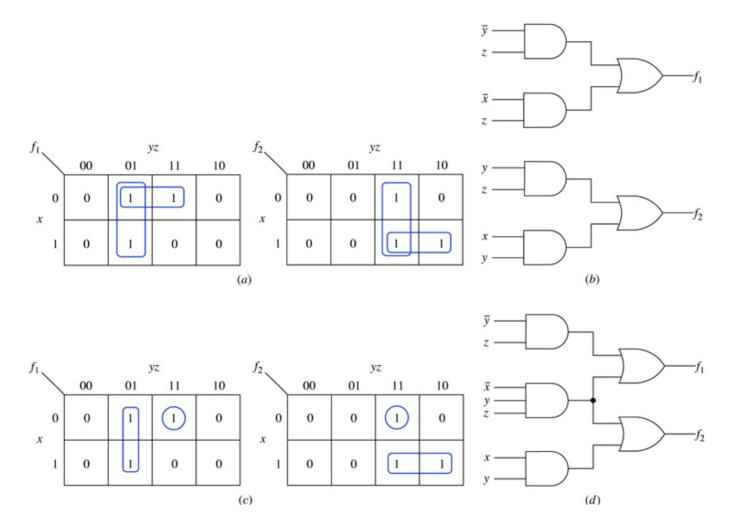
General form of a combinational network



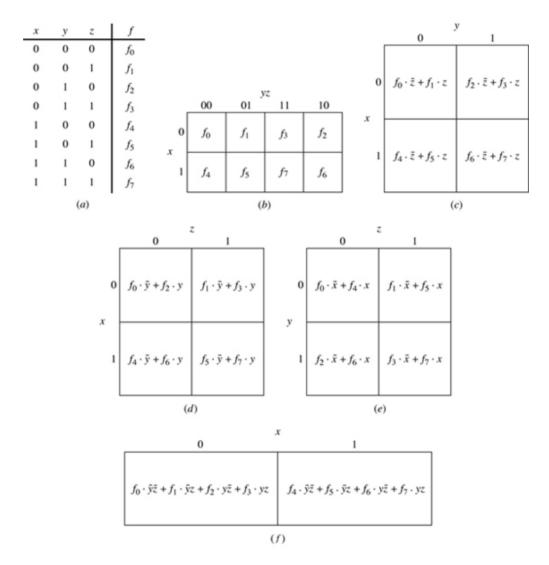
Minimization through sharing in a multiple output network



Minimization through sharing: optimization of individual output does not necessarily lead to overall optimization



Map compression of a three-variable function



Example of a variable-entered map.

X	у	z	f			
0	0	0	1			
0	0	1	1			
0	1	0	1		_	
0	1	1	0		0	1
1	0	0	0	0	1	=
1	0	1	1		1	Ī
1	1	0	0	<i>x</i>	_	0
1	1	1	0	1	Z	0
		(a)			(1	b)

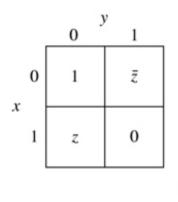
Example of a variable-entered map with infrequently appearing variables.

		yz										
		00	01	11	10							
r	0	\boldsymbol{A}	1	1	0							
X	1	0	0	1	В							

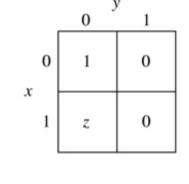
Variable-entered maps grouping techniques

Z

		0)	,	1	
	0	z			0	
х	1	z			0	
			(a	!)		_

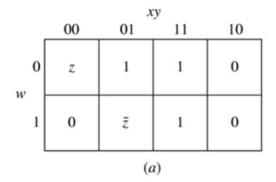


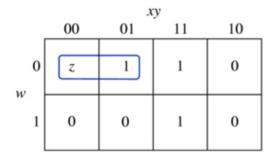
		0	y 1
()	z+(z	- Z
<i>x</i>	ı	z	0
(b)	ı		

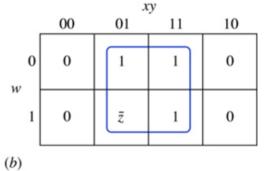


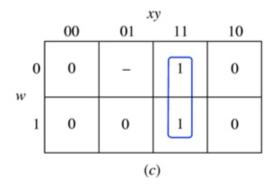
	_ 0)	1
0	$z + \bar{z}$	0
<i>x</i> 1	z	0
(c)		

Minimization through a map with single-variable entries

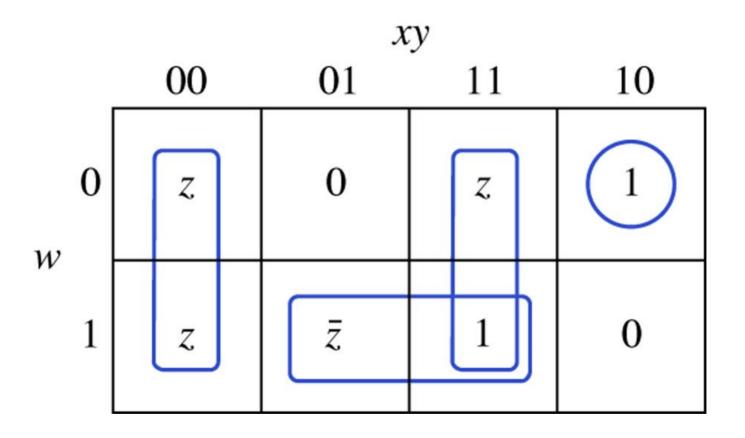




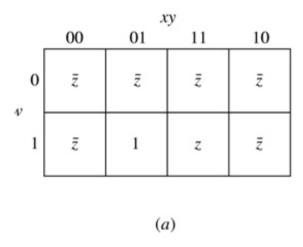


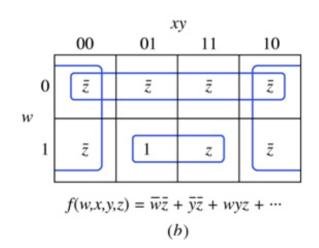


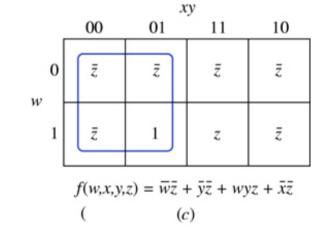
Optimal groupings on a variable-entered map



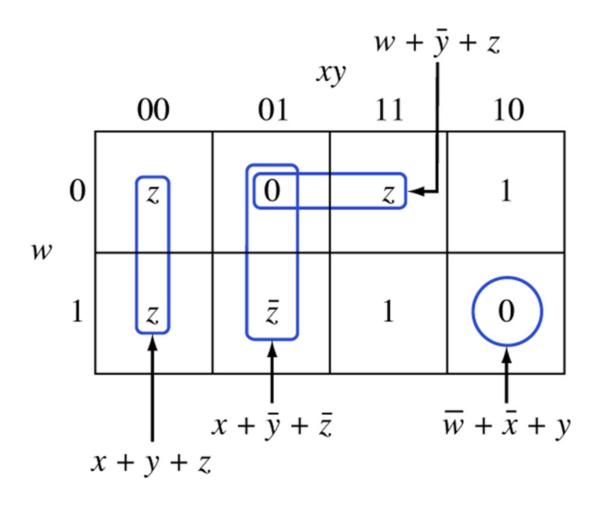
Minimization through a map with single-variable entries







Minimization through a map with single-variable entries



Obtaining a minimal sum for the incompletely specified Boolean function $f(w,x,y,z) = \sum m(3,5,6,7,8,9,10) + dc(4,11,12,14,15)$ using a variable-entered map. (a) Truth table. (b) Variable-entered map. (c) Step 1 map and subcubes. (d) Step 2 map and subcubes.

Figure 4.42

								00 01 11 10					
							0	0	z	1	z,1		
w	х	y	z	f	$f_i \cdot \bar{z} + f_j \cdot z$	Map entry	w	,	-,		- 0		
0	0	-	_	Ť	Ji 2 · Jj 2	map entry	1	1	ī,1	_	z ,0		
		0	0	0	0+0	0							
0	0	0	1	0			(b)						
0	0	1	0	0				00	x.	у	10		
0	0	1	1	1	0 + z	z	Г	00	01	11	10		
0	1	0	0				0	0	z	1	z,1		
0	1	0	1	1	$-\cdot\bar{z}+z$	z,1	w						
	 1	1	0				1	1	z̄,1		₹,0		
					$\overline{z} + z$	1	1	1	2,1		2,0		
0	1	1	1	1			TO L		t				
1	0	0	0	1			This co	ell is bein	^{ng} _				
1	0	0	1	1	₹ + z	1	used as a 1-cell. \Box						
1	0	1	0	1									
1	0	1	1	_	$\bar{z} + - \cdot z$	₹,1		00	01	ry 11	10		
			0										
1	1			-	$-\cdot\bar{z}+0$	z,0	0	0	0	1	1		
1	1	0	1	0			w						
1	1	1	0	-	_		1	1	1	_	0		
1	1	1	1	-	$-\cdot\bar{z}+-\cdot z$	_							
				(a)					(d	()			

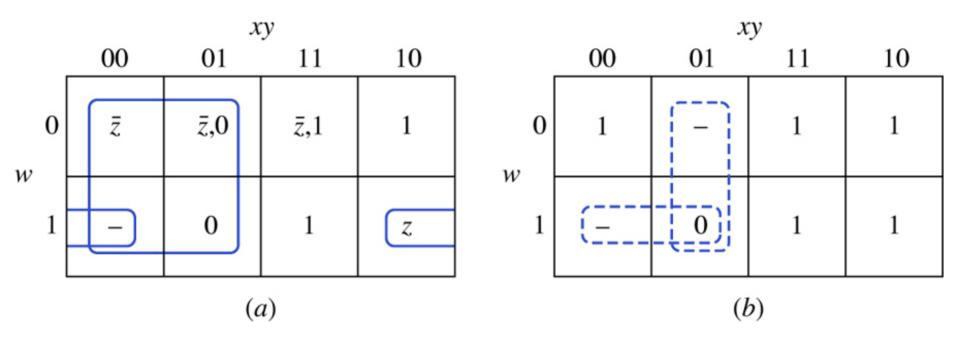
Obtaining a minimal sum for the incompletely specified Boolean function $f(w,x,y,z) = \sum m(0,4,5,6,13,14,15) + dc(2,7,8,9)$ using a variable-entered map. (a) Truth table.

(b) Step 1 map and subcubes. (c) Step 2 map and subcubes.

Figure 4.43	w	x	у	z	f	$f_i \cdot \bar{z} + f_j \cdot z$	Map entry						
	0	0	0	0	1	0	_						
	0	0	0	1	0	$\bar{z} + 0$	Ī		Tł	nis cell is	Th	This cell is	
	0	0	1	0	-	- ^				sed in a		double covered.	
	0	0	1	1	0	$-\cdot \bar{z} + 0$	₹,0		z -	subcube.	xy c		
	0	1	0	0	1	₹+z			00	01	11	10	
	0	1	0	1	1		1	0	\bar{z}	<i>z</i> ,0	<u>z</u> ,1		
	0	1	1	0	1		= 1	w					
	0	1	1	1	-	$\bar{z} + -\cdot z$	₹,1	1	_	0	1	z	
	1	0	0	0	-	_							
	1	0	0	1		$-\cdot\bar{z}+-\cdot z$	_			(b)		
	1	0	1	0	0	0 . 0				,	xy		
	1	0	1	1	0	0+0	0		00	01	11	10	
	1	1	0	0	0			0	0	0		_	
	1	1	0	1	1	0 + z	z	w					
	1	1	1	0	1	₹+z		1	_	0	1	0	
I C II.	1	1	1	1	1		1				Ú		
J. C. Hı	1				(0	1)				(c)		

Obtaining a minimal product for the incompletely specified Boolean function $f(w,x,y,z) = \sum m(0,4,5,6,13,14,15) + dc(2,7,8,9)$ using a variable-entered map. (a) Step 1 map and subcubes. (b) Step 2 map and subcubes.

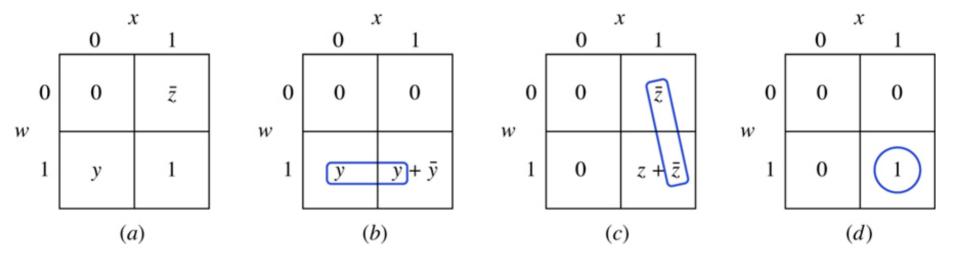
Figure 4.44



Maps having entries involving more than one variable. (a) Variable-entered map. (b) Grouping the y literal.

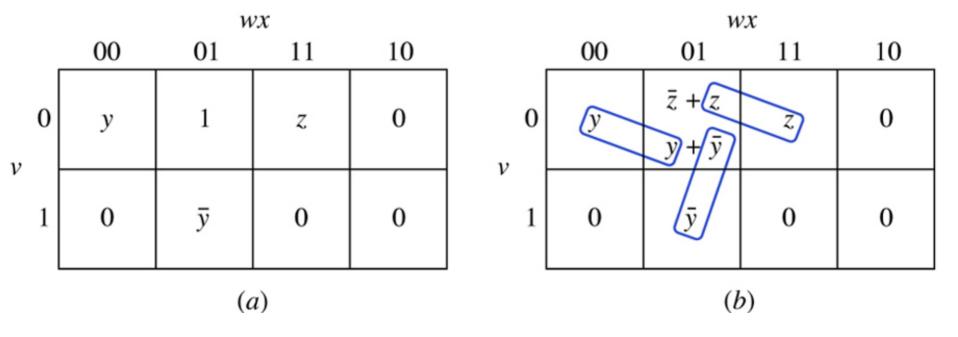
(c) Grouping the \overline{z} literal. (d) Grouping the not completely covered 1-cell.

Figure 4.45



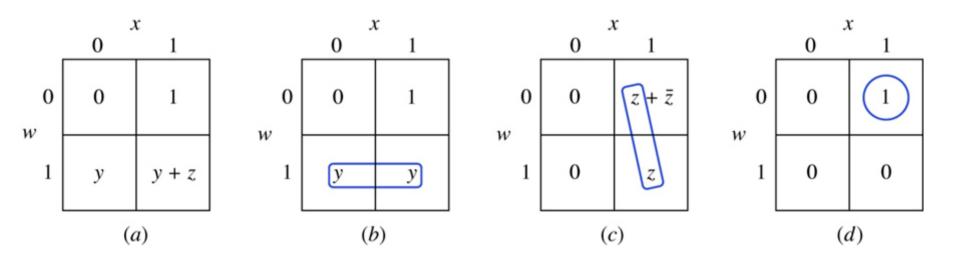
Obtaining a minimal sum from a variable-entered map having several single-literal map entries. (a) Variable-entered map. (b) Optimal collection of subcubes.

Figure 4.46



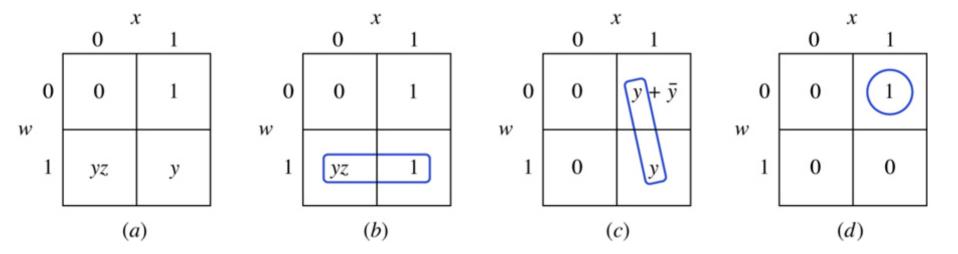
Maps having sum terms as entries. (a) Variable-entered map. (b) Grouping the y literal. (c) Grouping the z literal. (d) Grouping the not completely covered 1-cell.

Figure 4.47



Maps having product terms as entries. (a) Variable-entered map. (b) Grouping the yz term. (c) Grouping the y literal. (d) Grouping the not completely covered 1-cell.

Figure 4.48



Maps having product and sum terms as entries.

- (a) Variable-entered map. (b) Grouping the yz term.
- (c) Grouping the liveral.

Figure 4.49

