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1. INTRODUCTION

Compute nodes are evolving and becoming increasingly complex but at the same time offering several folds of
parallelism. These nodes are heterogeneous at all levels including core, memory demanding smart and sophis-
ticated programming approaches for exploiting various types of parallelism within algorithms. Going forward
we will see KNL-type manycore design with vectorization along with conventional cores on a chip, GPU archi-
tectures will have more cores with improved shared memory technology between CPU and GPUs. GPUs with
half-precision floats are also being introduced especially for deep learning.

Innovation at the node level diversifies High Performance Computing (HPC) systems. The HPC systems tend
to differ from each other for a reason, not the least of which being not all scientific applications would benefit
from one type of architecture. While the pre-exascale systems such as Summit at the Oak Ridge National
Laboratory (ORNL) and Sierra at the Lawrence Livermore National Laboratory (LLNL) are built with IBM
processors and NVIDIA’s Volta graphic cards. The much-awaited exascale system, Aurora, at Argonne National
Lab is expected to comprise of a Knights family massively parallel processor with some Xeon cores on the die
as per recent discussions in.1 Not to forget the world’s fastest supercomputer, Sunway Taihulight in China uses
Shenwei SW26010 processors while the K computer in Japan uses SPARC64 processors.

Disrupting technologies like neuromorphic and quantum computing add newer opportunities offer computing
capabilities beyond today’s classical systems. It is quite likely that these novel computing and learning paradigms
will not replace HPC (at least not for the next several years) but they could complement HPC by acting as
coprocessors thus allowing us to imagine newer applications and newer science that would be impossible with
today’s systems.

We need better software toolchains to achieve two goals. (a) To meet concurrency demands and massive
on-node parallelism (b) To expose maximum parallelism in applications to software toolchains. To address
these goals, we need to understand the intricacies of hardware architectures and maximally utilize their rich
hardware capabilities. An application developer using legacy codes typically of hundreds to thousands of lines of
code cannot be expected to have such in-depth knowledge of the architecture. This begs for high-level software
abstractions. Such prescriptive directives can not only expose parallelism in the application but also provide
smart hints to the compiler. By using such high-level directives, the application developers can incrementally
improve existing code bases without needing to learn low-level languages or architectural details.

The impact of a software toolchain is measured with a combination of performance, portability and produc-
tivity. Performance indicates how much of the hardware architectures’ peak performance can be achieved using
the toolchain. Portability indicates the possibility of reusability of the solutions. Productivity is a measure of the
effort of development denoting the time taken from designing to developing solutions for application. These three
factors are strongly interconnected in a way that a proposed solution cannot compromise on the performance
but still facilitate a portable and productive solution.
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2. STATE-OF-THE-ART

Programming these advanced HPC architectures has becoming increasingly important and posing a challenge
to define ’X’ in the MPI + X programming framework where ’X’ is typically what the application developers
demand. State-of-the-art shows several programming approaches defined for ’X’. Categorizing them into low-level
and high-level programming approaches, some of them include Legion language (Regent),2 where the programmer
is expected to write Legion programs with some awareness of both logical and physical levels, this would require
steep learning curve of the programming language that can be quite time consuming for application developers.
Similarly, using Concurrent Collections (CnC)3 will require an application domain expert to identify data and
control dependencies in the application and captures them as related collections of computation steps, data items
and control tags. Kokkos4 and RAJA5 rely on C++11 requiring applications to be rewritten thus not reducing
the barrier to entry for scientific developers desiring to target large scale heterogeneous computing systems.
Literature survey shows adoption of Kokkos for Molecular Dynamics, 3D unstructured mesh codes, and Tensor
Math Library Kernels.

Some of the higher-level approaches include OpenMP,6,7 a directive-based programming model that comes
close to creating a portable software stack expressing parallelism in applications. Similar to OpenMP is Ope-
nACC,8 another directive-based programming model that offers high-level software abstractions to be used by
application developers to port their applications to current HPC systems. Literature survey shows MPI+X-based
model (X= OpenMP or OpenACC) has been adopted by legacy codes such as electromagnetics code NekCEM,9

Community Atmosphere Model - Spectral Element (CAM-SE),10 Combustion code, S3D11 and second-order
Mazller-Plesset perturbation theory (MP2).12

Although there are quite a number of programming frameworks to choose from, in most to all cases, there
seems to be a systematic challenge, insofar as it is difficult for compiler teams to develop mature and performant
compiler toolchains for processor hardware that is changing so frequently. As a result, application developers
often resolve to using multiple programming models within a code. Ideally, they would prefer a single highly
performant programming model with a high level abstraction that can target more than just one platform.

3. BACKGROUND

Given advancements in hardware, we need appropriate software abstractions to

• Reduce programmers’ burden and improve productivity

• Propose language features at the right level of abstraction

• Achieve performance without compromising on portability

• Improve portability of scientific applications across platforms

We highlight two of our on-going work that focus on the above needs for software abstraction to achieve per-
formance portable solutions. The two major applications are nuclear reactor modeling and molecular dynamics.

3.1 Porting a nuclear modeling miniapplication to extreme scale systems

This work explores parallelization and acceleration of Sn radiation transport13 algorithms often found in nuclear
reactor modeling. The large number of problem dimensions available in this type of transport algorithm provides
opportunities to exploit parallelism on multicore and manycore parallel system. This particular algorithm exposes
wavefront-based parallel patterns often found in other computational motifs such as dense and spare linear
algebra, structured grids as well. To model the physical problem, requires modeling particle flux in all directions.
To accomplish this, an execution instance of the algorithm performs a total of eight sweeps, one starting at each
corner of the domain. These directions are referred to as octants. The results of all eight octant sweeps are
added together to form the final result.

We used OpenACC to parallelize and accelerate this application on heterogeneous systems. We observed
that this high-level directive-based programming model could not expose all the five levels of parallelism that
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this type of algorithm offers. As a result, we were only able to exploit two levels of parallelism. Nevertheless,
we achieved a speedup of 85.06x over the serial version of the code running on an NVIDIA state-of-the-art
Volta GPU. This speedup is larger than a low-level programming language CUDA’s speedup of 83.72x over
the same serial implementation. The porting process of this application on the heterogeneous platform helped
us determine that although OpenACC helped achieve comparable speedup to CUDA, the development effort
required the programmer to refactor and retune the code to represent the wavefront parallel pattern exhibited
by the application. This begs for the creation of software abstractions for such parallel patterns, that is found
in other computational motifs as mentioned above.

3.2 Porting proxy application of molecular dynamics to extreme scale systems

This work explores Codesign Molecular Dynamics (CoMD), a proxy application of Molecular Dynamics to further
identify programmatic gaps in current programming model. CoMD requires careful partition of data across
the host CPU and the device that could be an accelerator such as the GPU. This will also introduce data
inconsistency issues that needs to be tackled. Complexity of data transfers increases with the increasing levels
of pointer indirections in programs.

This programmatic challenge led us to create a high-level language feature that would only allow copying
portions of required data structures to and from the devices. Such a feature is currently identified as a gap
within the popular on-node programming models of OpenMP and OpenACC. While there are strategies in place
to make the whole data structure available on the device (like Unified Virtual Memory (UVM)), we needed to
only make a subset of the structure reachable on the device. The requirement of such a feature is not MD
application specific but such a scenario has been observed in other applications too. By applying or proposed
OpenACC directives on the CoMD code, we were able to achieve 61% of that of the CUDA performance for one
of the compute intensive kernels of CoMD.

4. PROPOSED METHODOLOGY

The porting process with both the applications discussed in the previous section indicated that the performance
suffered from the lack of adequate expressibility of parallelism hidden in the applications by the programming
model. In this section, we discuss our proposed abstract machine model and a programmatic representation of
the model.

4.1 Abstract Machine Model

To facilitate the creation of such software abstractions, we need a better understanding of the hardware archi-
tecture. To that end, we need to create an abstract machine model (we will focus on the compute node than the
full distributed system) that represents the hierarchies at the computation and memory level. Modern compute
nodes have an execution hierarchy. They may be equipped with a single GPU or with multiple GPUs. They
may consist of co-located memories that include GPU’s local memory and its shared memory or high bandwidth
memory. Threads also have characteristics based on location, e.g., thread synchronization across different cores of
a node may be impossible or much slower compared to on-core synchronization. Likewise, memories at different
levels have different speeds, and accesses to such memory may be affected, depending on the level, by NUMA
phenomenon. It should be noted that these concepts are readily applied to the heterogeneous nodes as well as
homogeneous ones.

Figure 1 demonstrates an example of our abstract machine model for a system equipped with two NUMA
nodes and four connected GPUs. The root node (in this case “System” node) is the parent of its children
(“NUMA” and “GPUs” nodes), and in turn, they are parents for their descendants (“CPUx” and “GPUx” nodes).
Aside from representing the whole system, the system node contains our unified memory. The relationship chain
among nodes helps us to determine that GPU nodes on the leaves of the tree can access memories of their parent
(and their grandparents), while it is not true vice versa.
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Figure 1. A sample of our model of a heterogeneous system with two NUMA nodes and four connected GPUs.

4.2 Proposed high-level software abstraction

We have developed Chameleon: a software abstraction based on directives to represent the hierarchies in our
representative machine model. Listing 1 shows the manifestation of our sample model in Figure 1 within a
programming language with the help of Chameleon directives. The following three steps are required to represent
any models in Chameleon.

4.2.1 Representation of our abstract machine model

The first step is dedicated to the definition of location types with dtype clause in Chameleon. Developers have
to define types of locations in their systems. Considering a modern supercomputer system, like Titan or Summit
from ORNL, the three major (both memory and computation) components of any supercomputing machine are
main processor (CPU), accelerators (like GPUs), and main memory. These components are defined in Lines 5-7
of Listing 1. The host is an Intel Skylake with x64 architecture and 4 MB of L3 cache, defined as host. The
accelerator in our system is that of NVIDIA Volta GPU (with 4 GB of memory) type, defined as accelerator.
Finally, our main memory is a 16GB unified memory, defined as node memory. These location types will be used
when we define our locations in the next step.

The second step is location definition. After defining location types, developers have to determine composition
of available resources in their system. Lines 10-13 in Listing 1 refer to location definition with the help of
location clause. Our underlying system has two CPUs of type host (Line 12), four GPUs of type accelerator

(Line 13), and a big main memory for the entire system (Line 10). Developers can also group a subset of resources
(mostly similar resources) into one. This ability will allow developers to address the whole subset as one instead
of visiting them one by one. For instance, we may run a kernel on all resources of a group or any available
resource that is idle. Such cases are prevalent in load-aware runtime libraries. In Chameleon, resource grouping
is addressed with ABSTRACTION type, which is an internal location type to Chameleon. Abstract location types
have no physical manifestation in the underlying system, and their purpose is to group many locations into one
for organizational purposes. Line 11 denotes two of the abstract locations in our definitions, NUMA and GPUs.

The last step is devoted to describing the relationship among all locations in our system, description of
hierarchy. The hierarchy clause in Chameleon provides such facilities to developers for laying out the relation-
ship among locations. Figure 1 demonstrates such relationship among locations with arrows. Each location, as
implied by arrows, is allowed to have only one parent while the number of children is not limited. Lines 16-18
demonstrates how the hierarchy clause in Chameleon is being used.

4.2.2 Memory allocation and kernel execution

Programs should be able to allocate memory and execute instructions on available resources. Memory allocation
on Chameleon is performed with the help of variable clause. Line 2 in Listing 2 demonstrates how an array
of N double-precision elements is allocated on location System. The allocate keyword specifies the allocation
operation for the array. Based on the concept of hierarchy in Chameleon, such an allocation on location System
leads to memory space available on all children in the system, and consequently, all of their grandchildren.
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Listing 1. Manifestation of our abstract model in Figure 1 within C/C++ language

1 // Defining the location types

2 // name: the user -defined name of the location type

3 // kind: the architecture of the location type

4 // mem: the available memory on the location

5 #pragma chameleon dtype name(host) kind(x64 , Skylake) num_cores (4) mem(4MB)

6 #pragma chameleon dtype name(accelerator) kind(CC3.0, Volta) mem(4GB)

7 #pragma chameleon dtype name(node_memory) kind(Unified_Memory) mem(16GB)

8
9 // Defining location definitions

10 #pragma chameleon location name(System) type(node_memory)

11 #pragma chameleon location name(NUMA , GPUs) type(ABSTRACTION)

12 #pragma chameleon location name(CPU0 , CPU1) type(host)

13 #pragma chameleon location name(GPU0 , GPU1 , GPU2 , GPU3) type(accelerator)

14
15 // Defining relationship among parent and children

16 #pragma chameleon hierarchy children(NUMA , GPUs) parent(System)

17 #pragma chameleon hierarchy children(CPU0 , CPU1) parent(NUMA)

18 #pragma chameleon hierarchy children(GPU0 , GPU1 , GPU2 , GPU3) parent(GPUs)

A kernel execution in Chameleon has two aspects to it: code generation and work distribution. The former
one refers to the process of generating code for the available computational resources in the system. Currently,
Chameleon relies on the compiler to generate codes. With the help of OpenACC directives and the PGI compiler
that supports such directives, code generation will be done for both the host and the NVIDIA GPUs simultane-
ously at the compile time∗. Afterwards, with OpenACC APIs, our library can switch to the desired device at the
execution time. The latter aspect of kernel execution refers to the distribution of workload among locations. We
plan to support many different execution policies in Chameleon, however, at this moment, our runtime library
supports kernel execution at a specific location with at keyword in region clause. Line 5 in Listing 2 shows an
example on how to run a kernel on location GPU0. In order to introduce all of the utilized pointers to Chameleon,
one can use the variables keyword. With the help of this keyword, Chameleon can provide correct pointer
to the kernel based on the selected device at the run time. The kernel described at Line 5 of Listing 2 will be
offloaded to the first GPU in the system as specified by the developer. If we intend to run this kernel on one
of the CPUs in the NUMA domain (e.g., CPU0), the only modification that this code requires is to replace GPU0

with CPU0.

As we discussed before, the execution policy in Chameleon is not confined to the at policy (a unique physical
location). We are planning to extend available policies and support other ones like atany, ateach, and so on.
The atany policy accepts a subtree within our hierarchical abstract model and tries to issue the kernel on the
first available/idle children. On the contrary, the ateach policy issues the kernel on all of the resources under
the specified subtree. Every physical location has to run the kernel whether they are idle or not.

5. RESULTS AND ANALYSIS

5.1 Experimental setup

All experiments use UHPC cluster.14 Located at the University of Houston, the UHPC cluster is hosting HPE
Apollo XL190r Gen9 compute nodes. They are equipped with a dual Intel Xeon Processor E5-2660 v3 (10 cores)
running at 2.6 GHz with 128 GB of memory. An NVIDIA Tesla K80 GPU with 12 GB of GDDR5 is connected
through PCI-Express Gen3 to the compute nodes, which is capable of transferring 15.75 GB/sec between main
memory and the GPU. We used PGI compiler version 17.5 and CUDA Toolkit 8.0 to build our codes.

∗Invoking the PGI compiler with following flags: -acc -ta=host, tesla
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Listing 2. Memory allocation and kernel execution within Chameleon

1 // Defining array X in Location ’System ’

2 #pragma chameleon variable allocate(X[0:N]) type(double) location(System)

3
4 // Launching following kernel at the selected location

5 #pragma chameleon region at(GPU0) variables(X)

6 #pragma acc parallel loop collapse (2) independent

7 for( unsigned int i = 1; i < (nRows -1); i++ )

8 {

9 for( unsigned int j = 1; j < (nCols -1); j++ )

10 {

11 // Something to compute on ’X’ array

12 }

13 }

14 #pragma chameleon region end

5.2 Preliminary Results and Analysis

We conducted a set of experiments to show the performance of our underlying hardware. The experiments we
performed on UHPC are based on the following three kernels: stencil, matrix multiplication, and dot product
(inner product). We decorated the source code of each application with Chameleon directives. By flipping the
target device in Chameleon (at keyword in region clause), we are able to launch our kernels on any devices we
targeted.

Each kernel is represented from the perspective of an application, and they are compiled with PGI compiler
and -acc -ta=tesla,multicore flags. Such flags, in the OpenACC programming model, guarantee code gen-
eration for both NVIDIA GPUs and multicore architectures, respectively. In case we target to run our kernel on
the host, the multicore mode will execute our code on all available cores of the host. We wrote two versions of
the code: serial and Chameleon-based. The serial version, in each case, is the algorithm without parallelism dec-
oration, like OpenMP, OpenACC, PThreads, and so on. The Chameleon-based version is based on our proposed
directives in this paper.

We measured the speedup of each application with respect to the serial version. We use Linux timing
functions (gettimeofday()) to perform the timing measurements and we measured wall clock time of the whole
application. We chose to measure the whole lifetime of an application since one of the aspects of Chameleon
is memory allocation; this includes the timing of such allocations too. For the serial applications, it includes
allocating memory and running the kernel. For Chameleon-based applications, it includes required time for
allocate clause to finish and then kernel execution by region clause.

The stencil benchmark is from the SHOC benchmark15 suite. We included relevant Chameleon clauses in the
source code. The matrix multiplication implementation is based on the naive ijk-strategy. In order to make the
code cache-friendly to both architectures, the partial sum for the innermost loop is recorded in the local variable
and then added to the output matrix. Finally, the dot product kernel is a loop that traverses all elements in
both vectors and multiplies corresponding elements of the vector with each other. The final value is the result
of the reduction clause of OpenACC on those multiplications.

Figure 2 shows the speedup results for our three benchmarks. We tested our applications with big input sizes
to utilize all of the available memory resources on our devices. All the experiments are done with double-precision
floating-point numbers. The matrix input size for stencil application is a 10, 000×10, 000. The multicore and tesla
versions of the code (based on the Chameleon) have an advantage over the serial version as one can observe from
the Figure 2. The measured speedup for both architectures is 4.7X and 4.5X, respectively. The reason why the
GPU version is behind the multicore one is due to the complex access patterns of the stencil kernel. The access
pattern is not cache-friendly, and naive cache structure in GPU architecture suffer more from such accesses.
On the other hand, since matrix multiplication kernel is more cache-friendly on the GPU, we can observe a
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Figure 2. Speedup results

35.6X performance improvement. Every three matrices in our matrix multiplication kernels are a 2, 000 × 2, 000
matrix. And lastly, the dot product application is based on the two vectors with 80, 000, 000 elements. Similar
to the stencil kernel, the dot product kernel does not benefit from utilizing GPUs, in comparison to the multicore
architecture, due to the overhead of data transfer over PCI-Express bus. If the floating-point computation on
our data is fairly simple, we will not gain any performance and will suffer from the overhead of communications.
Having said that, state-of-the-art architectures, like Volta architecture,16 have improved significantly and most
of the performance inefficiencies have been addressed.

6. CONCLUSION AND FUTURE WORK

This work highlights that the hardware is changing very rapidly and the software is still catching up. Although
there are effective programming models and compiler tools for the application developers to use, there are still
gaps in these models. These gaps are usually identified by application developers looking for particular software
abstraction or features to port their code to target platforms. In the event, they do not find a relevant feature,
the developers tend to refactor and retune their application manually in order to achieve the best performance
on the hardware system. Such an approach gets hardware to adopt for larger applications that demand major
refactoring. To that end, this work proposes a set of software abstractions, Chameleon, to address programmatic
challenges in both the computation and at the memory level hierarchies of the systems. We evaluate this newly
proposed abstraction using simple test cases. As on-going and near future work, we plan to gather more feedback
on our abstractions from the programming model community and refine these abstractions to better cater to
the needs of the application developers. We will also be evaluating our abstractions against real-world scientific
applications to determine further gaps in the abstraction and relevant solutions to these gaps.
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