
pointerchain: Supplementary Materials

Millad Ghanea, Sunita Chandrasekaranc, Margaret S. Cheunga,b,d

aDepartment of Computer Science, University of Houston, TX
bDepartment of Physics, University of Houston, TX

cDepartment of Computer & Information Sciences (CIS), University of Delaware, DE
dCenter for Theoretical Biological Physics (CTBP), Rice University, Houston, TX

1. Supplementary Material A

Guidelines to applying optimizations: Below, we provide a
detailed explanation of the ten optimization steps that we con-
sidered in our approach. Our proposed steps apply not only
to CoMD but also serve as a guideline to accelerate other sci-
entific applications. The following ten steps provide a roadmap
for parallelization of scientific applications using the OpenACC
programming model. We used pointerchain in all of the fol-
lowing steps except the first one (Step 1) since it is based on
UVM from NVIDIA.

Step 1 - Kernel parallelization: After identifying the por-
tions of the code as potential candidates for parallelization, we
started to incrementally apply the OpenACC’s kernel direc-
tive to parallelize the code. At this step, we are relying on the
compiler’s insight to parallelize the code and on UVM for on-
demand data transfer between the host and the device. This
is the rudimentary approach towards parallelizing fresh source
code with OpenACC. UVM for NVIDIA GPUs is enabled by
PGI compiler at the compile time with -ta=tesla:managed

flag.
Annotating the computational kernels with #pragma acc

kernels authorizes compilers to make decisions about paral-
lelizing source code on behalf of the developers. In the case
of force computation, however, the kernels construct was not
able to parallelize the loop due to complex dependencies among
variables inside the kernel. Thus, we used the parallel clause
to express parallelism. This informs the compiler to parallelize
only the outermost loop.

Step 2 - Efficient data transfer: Utilizing UVM leads to
an arbitrary and untimely data transfer between the host and
the device. Developers often prevent such on-demand trans-
fers by explicitly specifying them in the code. That being said,
we transferred the characteristics of atoms (position, velocity,
force, momenta, and their potential energy) to the device only
at the beginning of the program. The main copy of the data re-
mains on the device and the data is only updated whenever the
MPI framework transmits such data to and from other nodes.

From this step to the last one, we have applied the pointer-
chain directive to the code. If we disable UVM, we have to

Email addresses: mghane2@uh.edu (Millad Ghane),
schandra@udel.edu (Sunita Chandrasekaran),
mscheung@central.uh.edu (Margaret S. Cheung)

use our proposed directive; otherwise, the code does not work.
Step 3 - Manual parallelization: Relying on #pragma acc

kernels does not necessarily guarantee a full utilization of
computational resources on the device. Scientific developers,
in most cases, are more knowledgeable about the problem, the
code, and the data layout than the compilers. They are able to
manually specify the parallelization opportunities by exploiting
#pragma acc loop construct within the code. After decorat-
ing the kernel with the #pragma acc parallel clause, loops
that benefit from parallelization are further decorated with the
loop clause. In OpenACC, each loop is assigned to a different
level of parallelism: gang and vector. For nested loops, the
general approach is to parallelize the outermost loop with gang

while the vector is applied to any loop under the gang level.
This scheme is applicable to any n-level nested loop.

Unlike two-level nested loops in AdvancePosition and
AdvanceVelocity kernels, the force computation in CoMD
has four-level nested loops, which makes its parallelization a
challenge. Due to dependency issues between the first and the
second loop, instead of the second loop, the third loop was par-
allelized with vector parallelism in OpenACC. Exposing par-
allelism on the second loop caused a race condition leading to
incorrect results. Despite having the opportunity to address this
issue with atomic operations, we did not use them since exper-
iments showed that atomic operations led to a two-fold perfor-
mance loss.

Step 4 - Loop collapsing: When working with the nested
loops within computational kernels, which in some cases ex-
ceeds four loops or more, we have the opportunity to collapse
the tightly nested loops into one and to generate a flat loop with
a wide iteration space using the collapse clause in OpenACC.
The compiler has to know the effective loop size beforehand as
the OpenACC specifications demands the loop size to be “com-
putable and invariant in all the loops [1].” As a result, we made
the higher bound of the inner loop independent of the outermost
one. As shown in lines 2-6 of Listing 1, we took care of out-
of-bound cases with an if statement. Listing 1 demonstrates
how we performed a rectangular transformation of our nested
loop. The index for the outermost loop determines the upper
bound of the innermost loop. Based on our domain knowledge,
however, the s->boxes->nAtoms[iBox] term will not exceed
MAXATOMS. Thus, we replaced the upper bound of inner loop
with MAXATOMS and governed ii with an if statement, as pre-

Preprint submitted to Parallel Computing April 22, 2019



sented in lines 9-15 of Listing 1. The code demonstrated in
listing 1 was borrowed from CoMD.

Listing 1: Required loop transformation to make the search space
from triangular (top) to rectangular (bottom)

1 // Original two for -loops

2 for (int iBox =0; iBox <nBoxes; iBox ++)

3 for (int ii=0; ii<s->boxes ->nAtoms[iBox]; ii

++)

4 {

5 //<some computations >

6 }

7
8 // Making the search space rectangular

9 for (int iBox =0; iBox <nBoxes; iBox ++)

10 for (int ii=0; ii<MAXATOMS; ii++)

11 {

12 if(ii >= s->boxes ->nAtoms[iBox])

13 continue;

14 //<some computations >

15 }

Step 5 - Improving data locality: Since most data accesses
start from the global memory, maximizing the bandwidth of the
global memory is the key to improving overall performance of
applications running on GPUs. We have achieved this by min-
imizing the total number of memory transactions from global
memory in GPU-based applications. Generally, the two major
layouts for data representation are the Array of Structure (AoS)
and the Structure of Array (SoA). Typically, the SoA layout
exploits a full memory bandwidth since it causes coalesced ac-
cesses to the global memory on the device; however, the AoS
layout approach results mostly in an interleaving access to the
memory, which unequivocally degrades performance due to cac-
he thrashing and unnecessary memory access.

In many cases, it is preferable to utilize the SoA layout in
contrast to AoS ([2, 3]); however, Giles et al. [4] and Mudalige
et al. [5] provided the opposite viewpoint. They argued that, in
their case, the AoS data layout provided better performance for
their library.

Our CoMD implementation, up to this point, follows a data
layout similar to the AoS layout. In the current design, the
components of force, location, and momenta in the 3D space
are placed in consecutive locations of the global memory. Fig-
ure 1a shows this layout. Such a configuration is not perfor-
mance friendly, especially in terms of NVIDIA GPU’s archi-
tecture as a SIMT architecture.

A naı̈ve way to improve this design is to make the memory
layout cache-friendly. In order to do so, we added a dummy
field and increased the size of structure from three elements to
four to treat their misalignment. This is similar to the idea of
padding a structure. This approach leads to an increase in data
size by 33%. This optimization is designated with an “a” in
figures.

Additionally, we improved the data locality of our imple-
mentation by temporarily storing the array elements in current
working set to local variables. Local variables to a thread are
usually reduced to registers on the device, which helps us drop

global memory accesses. This optimization is designated with
a “b” in figures.

And finally, we modified the layout of our data structures
to improve its data locality and to make it more cache-friendly.
Figure 1b depicts the modified data structure and its effect on
the layout of data in memory. Each of the atom’s characteris-
tics (force, position, and momenta) are represented with three
different arrays for each dimension in 3D space (x, y, z). Please
note that the data size of simulation does not change with this
layout in comparison to the 33% increase from the first method.
This optimization is designated with a “c” in figures.

Step 6 - Pinned memory effect: Regular memory alloca-
tions on the host returns pageable memory blocks from the main
memory. The OS has the permission to swap the pageable
memory blocks to disk if it runs out the physical memory. This
should not be the case for memory blocks that are used for ac-
tual data transfers between the host and the device. They have
to remain in main memory throughout the data transfer opera-
tion. In such cases, the CUDA driver employs Direct Memory
Access (DMA) to transfer data between host and devices. It
starts by acquiring a temporary page-locked host memory (also
referred to as the ”staging” area) to initiate the copy operation.
For a host-to-device copy operation, at first, the data is copied
from the pageable area to the staging area. Then the copy op-
eration is performed between the staging area on the host and
the destination address on the device. Developers are able to
utilize the staging area to their benefit and perform any alloca-
tion requests within the staging area. Such memories are called
“pinned” memories in Nvidia terminology. By enabling a flag
at compile time (-ta=tesla:managed), the PGI compiler re-
places all regular memory allocation requests with the pinned
memory ones. This way, we eliminate the internal copy op-
eration to the staging area within the host (the copy operation
from pageable to pinned memory). This step is dedicated to
investigating the effect of enabling pinned memory on the per-
formance our kernels.

Step 7 - Parameters of parallelism: After manually expre-
ssing parallelism opportunities for our code, we investigated
how effective the compiler is in choosing the parallelization pa-
rameters for each kernel: gang and vector. These parameters
accept a value, which developers are able to set at the runtime.
They are directly mapped to their CUDA counter-parts, known
as grid size and thread-block size, respectively. In most case
when we do not manually specify values for these parameters,
the runtime library promptly selects these values at the run time.

In some cases, the values chosen for these parameters by
the compiler do not necessarily lead to optimal utilization of
resources on the device. In such cases, computational resources
are wasted since chosen values makes some of the resources
inevitably idle. For instance, for a loop decorated with vector

level, the total iteration count for the loop was 24 while the
compiler specifies 128 threads for such a loop. This means that
81% of resources have to be idle! In addition, a reduction in
the vector size leads to a higher cache hit ratio since the smaller
number of threads compete for a limited resource; therefore, in
such cases, more vectors lead to more cache thrashing.

Step 8 - Controlling resources at compilation time: Com-

2



struct Atoms {
// ...
double *r[3];
double *f[3];
double *p[3];
// ...

};

struct Atoms {
// ...
double *rx, *ry, *rz;
double *fx, *fy, *fz;
double *px, *py, *pz;
// ...

};

a b

Figure 1: Data structures in CoMD and their corresponding data layout in memory. In the lower layout, numbers (0, 1, ...) refer to the atom ID
(as shown in the upper layout).

pilers assign as many local variables as they can to GPU regis-
ters at compile time. Utilizing registers mitigates the latency of
accessing global memory. The more our data resides in regis-
ters, the less we visit the global memory to fetch data. How-
ever, the total number of registers per gang is limited. The
latest Pascal-based chip from NVIDIA has 65,536 registers per
gang. We limited register usage per gang to simultaneously
utilize most gangs on the device. In the PGI compiler, we lim-
ited the number of required registers for all kernels. Placing a
cap on the number of registers per gang enables us to control
the total number of gangs issued on the device simultaneously.

Step 9 - Unrolling fixed size loops: Loop unrolling is a loop
transformation technique that helps application avoid pollution
of the instruction pipeline on processors. It has its own advan-
tages and disadvantages in parallel computing. The obvious
drawback of unrolling is an increase in compilation time and
application size. Because of the trade-off between this step and
Step 8, We ended up using more registers per kernel. We to-
tally unrolled one of the inner loops in force computation step
(possessing 27 iterations). This transformation led to a ten-fold
increase in compilation time.

Step 10 - Rearranging computations: As the final step,
we rewrote some of the computations with efficiency in mind.
For instance, we reduced the multiplication of constant values
to each other to one value. We also converted some division
operations into multiplications. And we also omitted one of the
redundant reduction operations.

The above-mentioned steps provide us a roadmap for paral-
lelization of a scientific program using the OpenACC program-
ming model. Table 1 summarizes all the steps that we discussed
here. Each step is specified in a row with title of step, whether
pointerchain was used or not, and a brief description of the
steps. Each step was applied on top of another one. However,
when some steps adversely affected performance (for instance
Steps 5a and 5b), we stopped applying them on our code. Fig-
ure 4 shows how these steps build off one another and which
ones were dead ends. Directed edges in the figure shows the di-
rection of how one step is applied on top of the other one; e.g.,
Step 4 is applied to the code after Step 3.

2. Supplementary Material B

We identified the optimal values of the number of gang and
vector parameters for parallelization by traversing through a
parameter space. We also searched for an optimal number of
registers at the compilation time. These values contribute di-
rectly to the performance of our code at the final step (Step 10).
Therefore, we used them for comparing the performance of
OpenACC to that of its CUDA version.

a) Optimal configuration for parallelization: To find the op-
timal values of parameters in Step 7, we ran the simulation for
100 time steps and measured the execution time of each kernel.
When the execution time of a kernel reaches its minimum, we
choose the corresponding configuration as optimal. Figure 2
shows a heat map of execution time per kernel with respect
to different values for gang and vector parameters on small
(32,000) and large (2,048,000) datasets1 The top and the bottom
rows show the results for a large and a small dataset, respec-
tively. The ellipsis shows the default configuration chosen by
the runtime of the PGI compiler. The dashed rectangles show
the optimal value within our search space. Our search space per
kernel for the small dataset has 132 data points (22 gangs and
6 vectors) while the large dataset has 96 data points (16 gangs
and 6 vectors). Figure 2 shows how the default configura-
tion does not necessarily lead to better performance in all cases.
Memory-bound kernels benefit from large number of vectors
per gang in order to amortize memory access latency. So, the
default vector count is close to the optimal value in our search
space for such kernels, as the heat map demonstrates. How-
ever, compute-bound kernels do not benefit from large vector
counts as their memory operations are as low as possible. The
heat map confirms our findings, as we see a big difference be-
tween the optimal configuration and the configuration chosen
by the compiler (as a fixed value). The PGI compiler chose
128 vectors, by default, for any configuration.

b) Optimal number of registers for each kernel: We fol-
lowed the same approach as above and identified the required
number of registers for each kernel in order to improve their

1We clamped the results to 50% of peak value of execution time. Gray color
means 50% of the peak execution time or higher.

3



16 32 64 12
8

25
6

51
2

20000

40000

60000

80000

100000

Ga
ng

 S
ize

Optimal Size Default Size
ComputeForce

16 32 64 12
8

25
6

51
2

20000

40000

60000

80000

100000

AdvancePosition

16 32 64 12
8

25
6

51
2

20000

40000

60000

80000

100000

AdvanceVelocity

2,048,000 atom
s

16 32 64 12
8

25
6

51
2

Vector Length

200
600

1000
1400
1800
2200

Ga
ng

 S
ize

16 32 64 12
8

25
6

51
2

Vector Length

200
600

1000
1400
1800
2200

16 32 64 12
8

25
6

51
2

Vector Length

200
600

1000
1400
1800
2200 32,000 atom

s

600
800
1000
1200
1400
1600
1800
2000
2200

40000
60000
80000
100000
120000

5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

260
270
280
290
300
310

5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5

200
210
220
230
240
250

Figure 2: Heatmap of the gang (Y-Axis) and vector (X-Axis) parameters. Colors show execution time (µs) of the kernels with specific
configuration. The top row presents results for 2,048,000 atoms and the bottom row for 32,000 atoms. Default size (rectangle) is the configuration
that compiler has chosen and Optimal size (ellipsis) is the configuration that performs the best in our search space (dark blue represents the
best execution time while the gray color represents the worst execution time). They differ in all three kernels; the difference is significant in the
ComputeForce case.

50 100 150 200 250
0

100000

200000

300000

Ti
m

e 
(u

s)

Min. Reg: 64
Def. Reg: 86

COC Reg: 32

50 100 150 200 250
0

100

200

300

400

500

Min. Reg: 20

Def. Reg: 21
COC Reg: 32

50 100 150 200 250
0

100

200

300

400

500

Min. Reg: 106

Def. Reg: 19

COC Reg: 32

50 100 150 200 250
Register Count

0

1000

2000

3000

4000

Ti
m

e 
(u

s)

Min. Reg: 63

Def. Reg: 86

COC Reg: 32

50 100 150 200 250
Register Count

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Min. Reg: 109

Def. Reg: 21
COC Reg: 32

50 100 150 200 250
Register Count

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Min. Reg: 107

Def. Reg: 19

COC Reg: 32

ComputeForce AdvancePosition AdvanceVelocity

2,048,000 atom
s

32,000 atom
s

Figure 3: Effect of choosing an optimal register count. Embarrassingly parallel kernels (AdvancePosition and AdvanceVelocity) seem to not
be affected. Def. Reg. and COC Reg. represent default register count selected by PGI compiler and proposed register count by COC, respectively.
Min. Reg. represents the minimum register count and also the optimal value of register count, which determines the minimum execution time.

4



performance at Step 8. We set the gang and vector parameters
to their best values from our last step and changed the register
count. The maximum number of registers allocated to a kernel
is determined only at the compilation time by the PGI compiler.
Consequently, we changed the register count and then recom-
piled the program to collect the measurements for each kernel.
The register count analysis was done per kernel per data size.

Figure 3 demonstrates the effect of register utilization on
kernel performance. We changed the number of registers (X
axis) from 16 to 256 and measured the execution time (Y axis)
per kernel per data size. The optimal configuration is the one
that achieves the minimum execution time with the smallest
register count (Min. Reg). This implies that any data points
close to the origin are optimal configuration points. The com-
piler has done a good job in choosing the correct number of
registers except for only one case (ComputeForce for 32,000
atoms). Figure 3 also shows the default register count chosen
by the PGI compiler (Def. Reg) and the CUDA Occupancy Cal-
culator2(COC Reg).

In the case of memory-intensive kernels, the PGI compiler
was able to do a better job at allocating the right amount of reg-
ister for each kernel; however, for the compute-intensive kernel
from our application (ComputeForce), the compiler’s choice
lead to a waste of hardware resources on the device despite
achieving equivalent performance. With the lesser number of
registers per kernel, the scheduler will be able to dispatch more
gangs to the system in hope of a better device utilization.

Occupancy in CUDA devices is defined as the number of
active warps3 on a Streaming Multiprocessor (SM) to the max-
imum number of active warps by an SM. That is, the COC re-
veals the achievement of maximum occupancy with our current
configuration. For the compute-intensive kernel, ComputeForce,
the register count selected by COC performs similarly to that
of the optimal register count choice. For the two memory-
intensive kernels, performance loss is negligible. Nevertheless,
the register count selected by the compiler leads to a 30% per-
formance loss in some cases (AdvancePosition for 32,000
atoms). With this step, we intend to show values chosen by
the compilers affect the final performance of an application,
and compiler developers must be discriminating in the choice
of values for the parameters.

References

[1] OpenACC Language Committee, OpenACC Application Programming
Interface, Version 2.6, https://www.openacc.org/sites/default/
files/inline-files/OpenACC.2.6.final.pdf (November 2017).

[2] R. Farber, CUDA Application Design and Development, Applications of
GPU computing series CUDA application design and development, Else-
vier Science, 2011.

[3] G. Mei, H. Tian, Impact of data layouts on the efficiency of gpu-accelerated
idw interpolation, SpringerPlus 5 (1) (2016) 104.

2The CUDA Occupancy Calculator (COC) helps developers to find the oc-
cupancy of multiprocessors of a GPU for a given CUDA kernel. The occupancy
of a multiprocessor is the ratio of active warps to the maximum number of sup-
ported warps for that multiprocessor.

3A group of 32 adjacent threads within a gang

[4] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, I. Reguly, Designing
op2 for gpu architectures, Journal of Parallel and Distributed Computing
73 (11) (2013) 1451–1460.

[5] G. R. Mudalige, M. B. Giles, J. Thiyagalingam, I. Z. Reguly, C. Bertolli,
P. H. Kelly, A. E. Trefethen, Design and initial performance of a high-level
unstructured mesh framework on heterogeneous parallel systems, Parallel
Computing 39 (11) (2013) 669–692.

5


