
Parallel Computing 85 (2019) 190–203

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

pointerchain: Tracing pointers to their roots – A case study in

molecular dynamics simulations

Millad Ghane

a , Sunita Chandrasekaran

c , ∗, Margaret S. Cheung

a , b , d

a Department of Computer Science, University of Houston, TX, United States
b Department of Physics, University of Houston, TX, United States
c Department of Computer & Information Sciences (CIS), University of Delaware, DE, United States
d Center for Theoretical Biological Physics (CTBP), Rice University, Houston, TX, United States

a r t i c l e i n f o

Article history:

Received 16 September 2018

Revised 12 March 2019

Accepted 20 April 2019

Available online 22 April 2019

Keywords:

Directives

Portability

Scientific computing

Molecular dynamics

Performance

Parallel computing

Heterogeneous system

GPU

Accelerators

a b s t r a c t

As scientific frameworks become sophisticated, so do their data structures. A data structure typically in-

cludes pointers and arrays to other structures in order to preserve application’s state. In order to ensure

data consistency from a scientific application on a modern high performance computing (HPC) architec-

ture, the management of such pointers on the host and the device, has become complicated in terms of

memory allocations because they occupy separate memory spaces. It becomes so severe that one must

go through a chain of pointers to extract the effective address. In this paper, we propose to reduce the

need of excessive data transfer by introducing the idea of pointerchain , a directive that replaces the

pointer chains with their corresponding effective address inside the parallel region of a code. Based on

our analysis, pointerchain leads to a 39% and 38% reduction in the amount of generated codes and

the total executed instructions, respectively.

With pointerchain , we have parallelized CoMD, a Molecular Dynamics (MD) proxy application

on heterogeneous HPC architectures while maintaining a single portable codebase. This portable code-

base utilizes OpenACC, an emerging directive-based programming model, to address the need of memory

allocations from three computational kernels in CoMD. Two of the three embarrassingly parallel kernels

highly benefit from OpenACC and perform better than the hand-written CUDA counterparts. The third

kernel performed 61% of peak performance of its CUDA counterpart. The three kernels are common mod-

ules in any MD simulations. Our findings provides useful insights into parallelizing legacy MD software

across heterogeneous platforms.

© 2019 Elsevier B.V. All rights reserved.

b

V

c

m

s

i

t

t

n

d

p

i

o
1. Introduction

Heterogeneous computing systems comprise multiple and sep-

arate levels of memory spaces; thus, they require a developer to

explicitly issue data transfer from one memory space to another

with software application programming interfaces (APIs). In a sys-

tem composed of a host processor and an accelerator (referred to

as device in this paper), the host processor cannot directly access

the data on the device and vice versa. For such systems, the data

are copied back and forth between the host and the device with an

explicit request from the host. This issue has become particularly

severe for supercomputers as the number of devices connected to

one node increases. For an example, the Titan supercomputer from

ORNL has only one NVIDIA K20 GPU per node, while this num-
∗ Corresponding author.

E-mail addresses: mghane2@uh.edu (M. Ghane), schandra@udel.edu (S. Chan-

drasekaran), mscheung@central.uh.edu (M.S. Cheung).

c

e

fi

t

https://doi.org/10.1016/j.parco.2019.04.007

0167-8191/© 2019 Elsevier B.V. All rights reserved.
er for the latest supercomputer, Summit from ORNL, is six NVIDIA

olta GPUs [1] . Supercomputers with different device families will

ontinue exacerbating this issue [2] .

Heterogeneous computing systems pose a challenge to the com-

unity of scientific computing. As a scientific framework becomes

ophisticated, so does its data structures. A data structure typically

ncludes pointers (or dynamic arrays) that point to primitive data

ypes or to other user-defined data types. As a result, transfer of

he data structure from the host to the other devices mandates

ot only the transfer of the main data structure but also its nested

ata structures, a process known as the deep copy . The tracking of

ointers that represent the main data structure on the host from

ts counterpart on the device further complicates the maintenance

f the data structure. Although this complicated process of deep

opy avoids a major change in the source codes, it imposes unnec-

ssary data transfers. In some cases, a selective deep copy is suf-

cient when only a subset of the fields of the data structure on

he device is of interest [3] ; however, even though the data motion

https://doi.org/10.1016/j.parco.2019.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2019.04.007&domain=pdf
mailto:mghane2@uh.edu
mailto:schandra@udel.edu
mailto:mscheung@central.uh.edu
https://doi.org/10.1016/j.parco.2019.04.007

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 191

d

a

t

a

t

t

a

e

w

i

h

r

d

d

p

m

p

i

u

H

w

t

s

a

m

[

O

c

d

d

v

c

p

O

n

u

b

h

i

r

l

i

a

g

s

p

h

b

t

r

3

t

f

a

f

o

a

a

d

a

r

e

p

S

b

S

t

u

t

s

S

2

t

a

S

s

d

s

C

i

t

T

o

t

t

s

t

m

w

s

f

e

t

c

a

p

c

d

t

V

c

s

I

t

s

n

n
ecreases proportionally, the burden to maintain data consistency

mong the host and other devices still exists.

In this study, we address the shortcoming of data transfer be-

ween the host and a device by extracting the effective address of

 final pointer in a chain of pointers as the source for our data

ransfer. Utilizing the effective address also leads to a reduction of

he generated assembly code by replacing the pointer chain with

 single pointer. This single pointer will suffice for the correct ex-

cution of the kernel on both the host and the device. As a result,

e have improved the performance of parallel regions by reduc-

ng an unnecessary deep copy of the data structure between the

ost and the device. We have developed the pointerchain di-

ective to provide these useful features to a developer to transfer

ata, which eliminates the need for a complete implementation of

eep copy in a compiler and runtime library.

We have demonstrated the merit of pointerchain by im-

roving the efficiency and portability of scientific applications,

olecular dynamics (MD) simulations, on a heterogeneous com-

uting system. MD is an essential tool for investigating the dynam-

cs and properties of small molecules at the nano-scale. It sim-

lates the physical movements of atoms and molecules with a

amiltonian of N-body interactions. Over the past three decades,

e have witnessed the evolution of MD simulations as a computa-

ional microscope that has provided a unique framework for under-

tanding the molecular underpinning of cellular biology [4] , which

pplies to a large number of real-world examples [5–11] . Currently,

ajor MD packages, such as AMBER [12] , LAMMPS [13] , GROMACS

14] , and NAMD [15] , use low-level approaches, like CUDA [16] and

penCL [17] , to utilize GPUs to their benefits for both code exe-

ution and data transfer. They are not, however, equipped for the

ire challenge in next-generation exascale computing in which the

emand of parallelism [18] is achieved by the integration of a wide

ariety of accelerators, such as GPUs [19] and many integrated

ores (MIC) co-processors [20,21] , into the high-performance com-

utational nodes.

Legacy MD codes, which use low-level methods like CUDA and

penCL, require a steep learning curve, which is not an ideal sce-

ario for scientists. Therefore, scientists have been exploring the

tilization of high-level approaches like domain-specific and script-

ased languages [22–25] in MD simulations. Such approaches,

owever, demand significant code change, which is not feasible

n many cases. In such cases, the software has reached a matu-

ity level that the incorporation of other languages with various

evels of complexity is not a trivial task and may present un-

ntended consequences. To overcome this dilemma and address

bove-mentioned concerns, one can utilize directive-based pro-

ramming models [26–28] . These programming models, for in-

tance, OpenMP [29] and OpenACC [30] , provide facilities to ex-

ress parallelism with less code intervention. Scientists have first

ands-on experience in parallelizing their potential code regions

y inserting simple directive constructs into the source codes. To

hat end, there have been many attempts recently to incorpo-

ate directive-based models into MD simulation frameworks [31–

3] and other disciplines in science [28,34–36] . Relying on direc-

ives helps developers deal with a single code base instead of one

or every upcoming architecture [37–40] , and thus increasing the

pplication’s portability opportunities.

In this paper, we have chosen OpenACC as the targeting model

or realizing the pointerchain directive to reduce the burden

f data transfer in proxy code for molecular dynamics simulations

cross HPC in scientific applications. Ratified in 2011, OpenACC is

 standard parallel programming model designed to simplify the

evelopment process of scientific applications for heterogeneous

rchitectures [38,41] . The success of our approach provides far-

eaching impacts on modernizing legacy MD codes ready for the

xascale computing.
Following are the contributions of our research discussed in this

aper:

• We create a directive called pointerchain (Section 3) to

simplify the pointer management in scientific applications

(Section 2) thus reducing the lines of code required.
• We apply our proposed directive on an MD proxy application,

CoMD [42] . We will also discuss the effect of pointerchain
on the source code and code generation process for CoMD in

the results section (Section 6).
• We propose guidelines for parallelization of CoMD that can

also be applied to other legacy MD source codes, discussed in

Section 4 .
• Finally, we investigate the performance of CoMD implemented

with OpenACC in terms of scalability, speedup, and floating-

point operations per second (Section 6).

The remainder of this paper is structured as follows:

ection 2 describes the programmatic gap in current directive-

ased programming models that handle multiple pointers.

ection 3 describes our proposed directive to fill the gap men-

ioned in Section 2 . In Section 4 , we provide a case study that

tilizes our proposed directive to parallelize a scientific applica-

ion. Sections 5 and 6 describe our evaluation system and the re-

ults of our conducted experiments. Related works are discussed in

ection 7 . And finally, we conclude our paper in Section 8 .

. Motivation: The programmatic feature gap

Modern HPC platforms comprise two separate memory spaces:

he host memory space and the device memory space. A memory

llocation in one does not guarantee an allocation in the other.

uch an approach demands a complete replication of any data

tructure in both spaces to guarantee data consistency. However,

ata structures become more complicated as they retain complex

tates of the application. Throughout this paper, we opt for the

/C++ languages as our main programming languages in develop-

ng scientific applications.

Fig. 1 shows a typical case of the design of a data struc-

ure for scientific applications. The arrows represent pointers.

he number next to each structure shows the physical address

f an object in the main memory. Here, the main data struc-

ure is the simulation structure. Each object of this struc-

ure has member pointers to other structures, like the atoms
tructure. The atoms structure also has a pointer to another

raits structure, and so on. As a result, to access the ele-

ents of the positions array from the simulation object

e would have to dereference the following chain of pointers:

imulation- > atoms- > traits- > positions . Every arrow

rom this chain goes through a dereference process to extract the

ffective address of the final pointer. We call this chain of accesses

o reach the final pointer (in this case, positions) a pointer

hain . Since every pointer chain eventually resolves to a memory

ddress, we propose the extraction of the effective address and re-

lace it with the chain in the code.

Currently, there are two primary approaches to address pointer

hains. The first approach is the deep copy that requires excessive

ata transfer between the host and the device, as mentioned in

he Introduction. The second approach is the utilization of Unified

irtual Memory (UVM) on Nvidia devices. UVM provides a single

oherent memory image to all processors (CPUs and GPUs) in the

ystem, which is accessible through a common address space [43] .

t eliminates the necessity of explicit data movement by applica-

ions. Although it is an effortless approach for developers, it has

everal drawbacks: (1) It is supported only by Nvidia devices but

ot by Xeon Phis, AMD GPUs, and FPGAs, among others; (2) It is

ot a performance-friendly approach due to its arbitrary memory

192 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

Fig. 1. An example of a pointer chain: an illustration of a data structure and its children. To reach the position array, the processor must dereference a chain of pointers

to extract the effective address.

Fig. 2. A sample code and its data structures based on Fig. 1 . In the commercial

softwares, due to the code maintainability purposes, the positions arrays are

accessed as shown below. The goal is to improve the software readability for future

references.

o

k

s

A

a

a

p

c

t

w

c

g

t

i

w

e

b

t

i

l

S

transfers that could happen randomly. The consistency protocol in

UVM depends on the underlying device driver that traces memory

page-faults on both host and device memories. Whenever a page

fault occurs on the device, the CUDA driver fetches the most up-

to-date version of the page from the main memory and provides it

to the GPU. Similar steps are taken when a page-fault happens on

the host.

Although deep copy and UVM address the data consistency,

they impose different performance overheads on the application.

In many cases, we are looking for a somewhat intermediate ap-

proach; while we are not interested in making a whole object

and all of its nested children objects accessible on the device (like

UVM), we aim at transferring only a subset of the data structures

to the device without imposing deep copy’s overhead. Our pro-

posed approach, pointerchain , is meant to be a minimal ap-

proach that borrows the beneficial traits of the above-mentioned

approaches. pointerchain is a directive-based approach that

provides selective accesses to data fields of a structure while of-

fering a less error-prone implementation.

3. Proposed directive and clauses

3.1. Proposed directive: pointerchain

As a compiler reaches a pointer chain in the source code, it gen-

erates a set of machine instructions to dereference the pointer and

correctly extract the effective address of the chain for both the

host and the device. Dereferencing each intermediate pointer in

the chain, however, is the equivalent of a memory load operation,

which is a high-cost operation. As the pointer chain lengthens with

a growing number of intermediate pointers, the program performs

excessive memory load operations to extract the effective address.

This extraction process impedes performance, especially when the

process happens within a loop (for instance a for loop). To allevi-

ate the implications of the extraction process, we propose to per-

form the extraction process before the computation region begins,

and then reuse the extracted address within the region afterwards.

We demonstrate the idea of extracting process from

a pointer chain using the configuration in Fig. 1 . Fig. 2

shows an implementation of this configuration in the C++

code. In this configuration, we replace the pointer chain of

simulation- > atoms- > traits- > positions with the

corresponding effective address of positions (in this case

0xB123). This pointer then is used for data transfer operations to

and from the accelerator and also with the computational regions.

It bypasses the transmission of redundant structures (in this case,

simulation , atoms , and traits) to the accelerator that, in

any case, will remain intact on the accelerator. The code executed
n the device will modify none of these objects. Moreover, it

eeps the accelerator busy performing “useful” work rather than

pending time on extracting effective addresses.

The targeted pointers are allocated either dynamically (malloc
PI in C or new in C++) or statically (e.g., ‘ double arr[128]; ’
t compile time). Since pointerchain is utilizing the effective

ddress of a chain, the allocation strategy does not affect how

ointerchain works.

Utilizing the effective addresses as a replacement to a pointer

hain, however, demands code modifications on both the data

ransfer clauses and the kernel codes. To address these concerns,

e propose a set of directives that minimally change the source

ode for announcing the pointer chains and for specifying the re-

ions that benefit from pointer chain replacements. The justifica-

ion for having an end keyword in pointerchain is that our

mplementation does not rely on a sophisticated compiler (as we

ill discuss in Section 3.2) to recognize the beginning and the

nd of complex statements (e.g., the for loops and the compound

lock statements). Our motivation behind utilizing a script rather

han a compiler was to minimize the prototyping process and to

mplement our proof-of-concept approach by avoiding the steep

earning curve of the compiler design. The steps mentioned in the

ection 3.2 can also be supported with a modern compiler.

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 193

t

c

i

w

w

s

w

t

v

a

s

p

p

f

t

a

(

d

d

h

i

O

s

p

r

p

m

O

O

t

i

O

e

m

d

h

t

p

t

a

l

t

f

o

f

p

s

p

p

c

3

P

t

O

r

d

c

w

t

q

A

a

c

f

d

p

a

p

s

l

c

l

W

w

c

t

p

t

r

p

4

p

p

t

p

i

d

t

a

n

w

f

o
Our proposed directive – pointerchain directive – accepts

wo constructs: declare and region . Developers use declare
onstruct to announce the pointer chains in their code. The syntax

n C/C++ is as following:

#pragma pointerchain declare(variable [,variable]...)
here variable is defined as below:

variable : = name { type[: qualifier]} where:

• name : the pointer chain

• type : the data type of the last member of the chain

• qualifier : an optional parameter that is either

restrictconst or restrict . These will make the un-

derlying variable decorated with __restrict const and

__restrict in C/C++, respectively. These qualifiers provide

hints to the compiler to optimize the code with regard to the

effects of pointer aliasing.

The following lines show how to use begin and end clauses

ith region construct after marking the pointer chains in the

ource code with the declare clause. The pointer chains that

ere previous declared in the current scope are the subject for

ransformation in subsequent regions.

#pragma pointerchain region begin
< ... computation or data movement... >

#pragma pointerchain region end

Our two proposed clauses (declare and region) pro-

ide developers with the flexibility of reusing multiple vari-

bles in multiple regions; however, there exists a condensed ver-

ion of pointerchain that performs the declaration and re-

lacement process at the same time. The condensed version of

ointerchain replaces the declared pointer chain with its ef-

ective address in the scope of the targeted region. It is placed on

he region clauses. An example of a simplified version, enclosing

 computation or data movement region, is shown below:

#pragma pointerchain region begin declare
 variable [,variable]...)

< ... computation or data movement... >

#pragma pointerchain region end

When our kernels (regions) have a few variables, the con-

ensed version is a favorable choice in comparison to the

eclare/region pair. It leads to a clean, high-quality code;

owever, utilizing the pair combination helps with code readabil-

ty, reduces code complexity, and expedites porting process to the

penACC programming model. Having utilized modern compilers,

uch compilers are able to incorporate the condensed version of

ointerchain with the OpenACC and OpenMP directives di-

ectly, as shown below for the OpenACC case.

#pragma acc parallel pointerchain (variable [,variable]...)

< ... computations... >

Our proposed directive, pointerchain , is a language- and

rogramming-model-agnostic directive. In this paper, for imple-

entation purposes, pointerchain is developed in C/C++ and

penACC. One can utilize it for Fortran language or target the

penMP programming model. We show a sample code about how

o use our proposed directive in Fig. 2 .

In Fig. 2 , the defined structures follow the illustration described

n Fig. 1 . Lines 1–22 show the defined data structures we used.

ur computational kernel, lines 26–30, initializes the position of

very atom in 3D space in the system. These lines represent a nor-

al, formal for-loop that has the potential to be parallelized by

irective-based programming models. Fig. 3 shows an example of

ow to parallelize a for loop by exploiting pointerchain with

hat for loop on lines 17–21 of Fig. 2 . At first, we declared the
ointer chain (line 2), then utilized the region clause for data

ransfer (Lines 4–6), and finally, utilized the region clause to par-

llelize the for loop (lines 9–16). No modification to the for
oop is required in comparison to Fig. 2 . Fig. 3 also shows how

he pointerchain directives are transformed to a set of con-

ormed C/C++ statements. A local pointer is assigned to the chain

f pointers, then the local pointer is utilized for both data trans-

er and kernel execution. Despite its simplicity as shown in Fig. 3 ,

ointerchain provides certain flexibility to the system. For in-

tance, if we target only a multicore device, we easily ignore the

ointerchain directives in the code. Furthermore, if developers

erform this task manually, it will reduce the readability of the

ode.

.2. Implementation strategy

To simplify the prototyping process, we have developed a

ython script that performs a source-to-source transformation of

he source codes annotated with the pointerchain directives.

ur transformation script searches for all source files in the cur-

ent folder and finds those annotated with the pointerchain
irectives. They are then transformed to their equivalent code.

Here is the overview of the transformation process. Upon en-

ountering a declare clause, for each variable, a local variable

ith the specified type is created and initialized to the effec-

ive address of our targeted pointer chain (variable name). If

ualifiers are set for a chain, they will also be appended.

ny occurrences of pointer chains in between region begin
nd region end clauses are replaced with their counterpart lo-

al pointers announced before by declare clauses in the same

unctional unit.

Scalar variables (i.e. simulation- > atoms- > N) are treated

ifferently in pointerchain . We start by defining a local tem-

orary variable to store the latest value of the scalar variable. Then

ll occurrences of the scalar pointer chain within the region are re-

laced with the local variable. Finally, after exiting the region, the

calar pointer chain variable is updated with the latest value in the

ocal variable.

Introducing new local pointers to the code has some unwel-

ome implications on the memory (stack) usage. They are trans-

ated into a memory space on the call stack of the calling function.

e have alleviated this burden by reusing the local variables that

ere extracted from the pointer chain instead of reusing pointer

hains over and over again. This is especially beneficial when we

arget GPU devices. We have investigated the implications of the

ointerchain from several perspectives including code genera-

ion, performance, and memory (stack) layout, and, compared the

esults with UVM. We will discuss our findings regarding the im-

osed overheads by pointerchain in Section 6 .

. Case study: CoMD

The Co-Design Center for Particle Applications (COPA) [44] , a

art of Exascale Computing Project (ECP), has established a set of

roxy applications for real-world applications [45] that are either

oo complex or too large for code development. The goal of these

roxy applications is for vendors to understand the application and

ts workload characteristics and for application developers to un-

erstand the hardware. The tools and software developers need

hem for expanding libraries, compiler and programming models

s well.

CoMD [42] is a proxy application of classical molecular dy-

amics simulations, which represents a significant fraction of the

orkload that the DOE is facing [46,47] . It computes short-range

orces between each pair of atoms whose distance is within a cut-

ff range. It does not include long-range and electrostatic forces

194 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

Fig. 3. An example on how to use pointerchain directive for data transfer and kernel execution. Required code transformation is also shown in this figure.

s

l

i

t

g

a

t

s

t

s

M

a

m

a

w

4

t

l

e

i

a

C

[

n

t

t

t

o

a

N

t

o

i

4

t

m

i

a

a

n

f

c
inherently. The evaluated forces are used to update atoms charac-

teristics (position, velocity, force, and momenta) via numerical in-

tegration [48] .

Computations in CoMD are divided into three main kernels for

each time step: force computation, advancing position, and ad-

vancing velocity. The latter two kernels are considered as embar-

rassingly parallel (EP) kernels since their associated computations

are performed on each atom independently. The velocity of an

atom is updated according to the exerted force on that atom, and

the position of an atom is updated according to its updated veloc-

ity. The most time-consuming phase, however, is the force compu-

tation phase.

Computing the forces that atoms exert on each other follows

the equations of Newton’s Laws of Motions, which is based on

the distance between every pair of atoms; however, searching for

neighbors of all atoms requires an O (N

2) computation complex-

ity, which is utterly inefficient. To overcome such an issue, CoMD

exploits the link-cell method. It partitions the system space by a

rectangular decomposition method in such a way that size of each

cell exceeds the cutoff range in every dimension. This way, neigh-

bors could be extracted from the cell-containing atom and the 26

neighboring cells around that cell. Through using link-cells, the

computational complexity decreases to O (27 × N), which essentially

is linear.

Algorithm 1 describes the CoMD phases. It follows the Verlet

algorithm [49] in MD simulations. In each time step, velocity is ad-

vanced at an interval of one half time-step, and the position is up-

dated for the full time-step based on the computed velocities. With

the updated velocity and position values, we update the forces for

all atoms. Later, velocities are updated for the remainder of the

time step to reflect the advances for one full time-step.

Algorithm 1 MD timesteps in Verlet algorithm.

Input: sim : simulation object

Input: nSteps : total number of time steps to advance

Input: dt: amount of time to advance simulation

Output: New state of the system after nSteps .

1: function timestep (sim, nSteps, dt)

2: for i ← 1 to nSteps do

3: advanceVelocity (sim, 0.5*dt)

4: advancePosition (sim, dt)

5: redistributeAtoms (sim)

6: computeForce (sim)

7: advanceVelocity (sim, 0.5*dt)

8: end for

9: kineticEnergy (sim)

10: end function

Updating the position of atoms leads to the migration of atoms

among neighbor cells and, in many cases, among neighbor proces-
ors. After position updates, link-cells are required to be updated

ocally (intra node/processor) and globally (inter nodes/processors)

n each time step as well. This process is guaranteed to be done in

he redistributeAtoms function of Algorithm 1 .

Force calculations in the Verlet algorithm are derived from the

radient of the chosen potential function. A well-known inter-

tomic potential function that governs relation of atoms and is ex-

ensively used in MD simulations is Lennard–Jones (LJ) [50] . CoMD

upports an implementation of LJ to represent force interaction be-

ween atoms in a system. The LJ force function will be called in-

ide the ComputeForce kernel in Verlet algorithm (Algorithm 1).

oreover, CoMD also supports another potential function known

s the Embedded Atom Model (EAM), which is widely used in

etallic simulations. In this paper, due to its simplicity in design

nd the fact that it is widely used in protein-folding applications,

e will be focusing on the LJ potential function.

.1. Reference implementations

CoMD was originally implemented in C language and it uses

he OpenMP programming model to exploit the intra-node paral-

elism and MPI [51] to distribute work among nodes [42] . Cicotti

t al. [52] have investigated the effect of exploiting a multithread-

ng library (e.g. pthreads) instead of using the OpenMP and MPI

pproach. In addition to the OpenMP and MPI implementations, a

UDA-based implementation was also developed in C++ language

47] . These reference versions include all of the three main ker-

els: force computation, advancing velocity, and advancing posi-

ion of atoms. Developers used CUDA to be able to fully exploit

he capacity of the GPUs. As a result, the data layout of the applica-

ion was significantly changed in order to tap into the rich capacity

f the GPUs. Naturally, this puts a large burden on the developers

nd, the code cannot be used on any other platforms other than

VIDIA GPUs. Both OpenMP and CUDA implementations were op-

imized to utilize the full capacity of the underlying hardware. In

ur paper we focus on the optimizations beneficial to the OpenACC

mplementation.

.2. Parallelizing CoMD with OpenACC

This subsection is dedicated to the discussion of porting CoMD

o a heterogeneous system using the OpenACC programming

odel. We started with the OpenMP code version for this port-

ng process instead of the serial code. This may not be the best

pproach because in most cases the OpenMP codes are well-tuned

nd optimized for shared memory platform but not for heteroge-

eous systems, especially the codes that have used OpenMP 3.x.

As the first step, we profiled the code and discovered that the

orce computation (line 6 in Algorithm 1) was the most time-

onsuming portion of the code. Consequently, it urges us to port

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 195

f

t

w

t

a

m

f

p

d

t

t

a

t

t

t

c

s

t

w

t

m

A

m

c

n

t

c

p

m

t

F

a

w

A

n

f

n

(

U

a

p

u

d

t

w

O

l

(

t

w

l

p

h

r

S

e

e

m

d

d

e

Fig. 4. Relationship among steps.

F

i

[

C

p

a

m

C

a

a

t

p

t

p

5

T

X

h

R

p

w

W

7

h

e

r

G

t

t

C

H

P

b

m

G

m
orce computations to the device requiring the transfer of both

he computational kernel and its data (the data that the kernel is

orking on) to the device. If we accelerate only the force compu-

ation kernel, however we need to transfer data back and forth to

nd from the device for each time step, which will lead to dra-

atic performance degradation. That is, it imposes two data trans-

ers (between host and device) for each time step. As a result, this

ushes us to parallelize other steps (line 3, 4, and 7) too. Hence,

ata transfers can be performed before (line 2) and after (line 8)

he main loop.

The redistributeAtoms step (line 5) guarantees data consis-

ency among different MPI [51] ranks . Since MPI functions are

llowed to be called only within the host, the data have to be

ransferred back to the host for synchronization purposes among

he ranks. After performing synchronization, the updated data are

ransferred from the host to the device. The synchronization pro-

ess is done on every time step to maintain data consistency. Con-

equently, two data transfers are performed in this step between

he host and the device, and, since no remarkable computations

ere performed in this step, no parallelization was required for

his step.

Based on our analysis, the parallelization of the three above-

entioned kernels (ComputeForce , AdvancePosition , and

dvanceVelocity) contributes the most towards the perfor-

ance of our application because they are the most time-

onsuming computational kernels. Although the latter two ker-

els may seem insignificant due to their smaller execution time,

hey will progressively affect the wall clock time of the appli-

ation in the long run. Thus, the focus of our study is applying

erformance optimization on these three kernels. Our measure-

ents reveal that our OpenACC implementation was able to reach

he same occupancy level as that of the CUDA implementation.

orce computation, however, is more complex and requires more

ttention with respect to its optimization opportunities; however,

e can safely use the OpenACC version of ComputeForce and

dvancePosition kernels with their CUDA counterparts with

o performance loss.

Considering the difficulties in dealing with pointers, we have

our options to parallelize CoMD: (1) UVM, (2) deep copy, (3) sig-

ificant code changes to transfer data structures manually, and

4) pointerchain . Step 1 in our proposed steps represents the

VM approach and, as elaborated in Section 2 , it has several dis-

dvantages. Deep copy is not yet fully implemented in many com-

ilers. The third option, significant code changes performed man-

ally, is not a favorable approach for developers, and it contra-

icts the philosophy of OpenACC. That brings us to our fourth and

he last option, pointerchain . Annotating CoMD’s source codes

ith pointerchain directive helps us to easily port CoMD to

penACC and it also helps us apply the different optimizations

isted in the Table 1 . Please refer to the Supplementary Material

Section A) for detailed description of each step.

Table 1 provides a brief description of the ten steps taken in

his paper to parallelize CoMD. Fig. 4 shows the order in which

e took the steps. These steps also provide a roadmap for paral-

elization of any other scientific applications using OpenACC. The

ointerchain column shows whether our proposed novel directive

as been used for a step or not. Without the pointerchain di-

ective, the source code needs to undergo numerous modifications.

uch modifications are error-prone and cumbersome for develop-

rs.

We would like to add that to the best of our knowledge, point-

rchain is the ideal candidate for applications that heavily utilize

ultiple nested data structures. Particularly, it is the innermost

ata structure that benefits from parallelization the most. Nested

ata structures is a very common approach in MD and other sci-

ntific domains to maintain the simulation state of the application.
or instance, other real-world and proxy applications like min-

MD [53] , miniAMR [53] , miniFE [53] , GROMACS [14] , and LAMMPS

31] have nested data structures in their source code similar to

oMD. We chose CoMD due to its similarity to MD simulation ap-

lications.

Real-world simulation applications, such as GROMACS

nd LAMMPS, are very time-consuming. For instance, a two-

icrosecond simulation will take weeks and months to finish.

onsequently, applying pointerchain to the real-world applications

nd investigating its effects will require quite a long time before

rriving at meaningful results. Hence, we use a proxy code, CoMD,

o demonstrate the applicability of our approach and showcasing

romising results. There is definitely potential to apply our method

o real-world applications in the near future or as part of our next

ublication.

. Evaluation

We used three HPC clusters for our experiments in this paper.

he BigRed II [54] , housed at Indiana University (IU), contains Cray

K7 with 1020 compute nodes, where their GPU-accelerated nodes

ave one AMD Opteron 16-core Interlagos x86-64 CPU, 32 GB of

AM, and an NVIDIA Tesla K20 GPU accelerator. NVIDIA’s K20 has a

eak single-precision FLOP rate of 3.52 TFLOPS and memory band-

idth of 208 GB/s and is equipped with 5 GB of GDDR5 memory.

e used PGI compiler and CUDA toolkit with versions 17.7 and

.5.17, respectively.

The UHPC [55] cluster, located at the University of Houston,

osts compute nodes of type HPE Apollo XL190r Gen9. They are

quipped with a dual Intel Xeon Processor E5-2660 v3 (10 cores)

unning at 2.6 GHz with 128 GB of memory. An NVIDIA Tesla K80

PU with 12 GB of GDDR5 is connected through PCI-Express Gen3

o compute nodes, which is capable of transferring 15.75 GB/s be-

ween main memory and the GPU. PGI compiler version 17.5 and

UDA Toolkit 8.0 was used on this cluster to build our codes.

The NVIDIA [56] cluster hosts nodes with dual socket 16-core

aswell E5-2698 v3 at 2.30GHz and 256 GB of RAM. Four NVIDIA

ascal P100 GPUs are connected to this node through a PCI-Express

us. NVIDIA’s P100 leads to a peak performance of 10.5 TFLOPS and

emory bandwidth of 160 GB/s. P100’s memory system is a 16 GB

DDR5 memory. We used ICC 17.0 to compile the OpenMP opti-

ized code for Intel architectures. To compile CUDA and OpenACC

196 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

Table 1

Overview of all steps that were applied to CoMD. The pc column designates whether pointerchain was applied at that step or not.

S. Title pc Description

1 Kernel parallelization × Relying on the UVM for data transfer. Annotating the potential kernels with

#pragma acc kernels .
2 Efficient data transfer � Disabling UVM and specifying manual data transfer between host and device.

We started using pointerchain from this step forward. #pragma acc
kernels for parallelization.

3 Manual parallelization � Utilizing #pragma acc parallel on kernels instead of #pragma acc
kernels . Designating gang and vector levels on multi-level loops.

4 Loop collapsing � Collapsing tightly nested loops into one and generating one bigger, flat loop.

5a Improving data locality (dummy field) � Adding a dummy field to make data layout cache-friendly.

5b Improving data locality (data reuse) � Improving the locality of the innermost loops by employing local variables in

the outermost loops.

5c Improving data locality (layout modif.) � Modifying layout as described in details in the Supplementary Material.

6 Pinned memory effect � Enabling pinned memory allocations instead of regular pageable allocations.

7 Parameters of parallelism � Setting gang and vector parameters for parallel regions.

8 Control resources at compile time � Manually setting an upper limit on the number of registers assigned to a

vector at compilation time.

9 Unrolling fixed sized loops � Unrolling one of the time consuming loops with fixed iteration count.

10 Rearranging computations � Applying some code modifications to eliminate unnecessary computations.

Fig. 5. Synthetic structures.

Table 2

The effect of pointerchain on code generation for different architectures

(x86-64 and NVIDIA K80) on the UHPC cluster [55] . Numbers in the ptc (�)

columns show the extra lines/instructions imposed by the pointerchain
method with respect to their UVM counterparts. All the results are median

values of 20 runs, and they belong to the synthetic benchmarks.

Source Code Assembly

C Source Code Device (PTX) Host (X86-64)

Level UVM ptc (�) UVM ptc (�) UVM ptc (�)

0 11 + 3 55 0 2510 + 24

1 18 + 3 53 −6 2620 + 42

2 24 + 3 72 −25 2740 −2

3 30 + 3 77 −30 2827 −10

Instructions at the execution time

Device Host (user level) Host (kernel level)

Level UVM ptc (�) UVM ptc (�) UVM ptc (�)

0 6952 0.00 142967 −28 1342851 + 1925

1 11060 −1896 142167 −1 1347762 −2788

2 14852 −5688 148755 + 12 1529134 −3706

3 14457 −5293 148755 + 12 1527692 + 2596

t

l

d

w

r

t

a

C

d

t

6

e

l

a

r

p

i

r

e

t

i

codes, we used CUDA Toolkit 9.0.176 and PGI 17.10, respectively. A

number of PSG nodes are also equipped with NVIDIA Volta V100.

They have 16 GB of memory with bandwidth of 600 GB/s and

the peak theoretical performance of 14 TFLOPS in single-precision

mode.

6. Results

We show results from our experiments in this section. First,

we use a set of synthetic codes to discuss the overhead imposed

by pointerchain . We show that elongating pointer chains ad-

versely affects the performance. Secondly, we present the perfor-

mance results of parallelizing and accelerating CoMD using Ope-

nACC. The performance implications of pointerchain in each

step is included in our measurements.

6.1. pointerchain overhead

We investigated the effect of our proposed directive,

pointerchain , on a set of synthetic codes. These synthetic

codes reveal that elongating pointer chains affects the code gener-

ation on both the host and the device and the stack memory usage

of the application . Fig. 5 depicts the synthetic structures in our

experiments. At Level 0, we start with no chains (i.e., introducing

an extra pointer to hold current pointer) and then increase the

pointer levels one by one. At Level 1, a data structure has a pointer
o the main data array. At Level 2, we add another intermediate

evel to the chain. Such a transformation adds an extra pointer-

ereferencing process to extract the effective address. At Level 3,

e increase the chain size by adding another intermediate layer to

each the final array. At this level, we dereference three pointers

o reach the final address and eventually extract the effective

ddress. Each synthetic structure was implemented in a simple

 program for both UVM and pointerchain . The following

iscussions show the overhead that pointerchain imposes on

he applications in comparison to UVM.

.1.1. Code generation

The pointerchain directive affects the process of code gen-

ration in three aspects: (a) total lines of C source code, (b) total

ines of assembly code generated for both the host and the device,

nd, (c) total number of instructions executed by the application at

un time. Such codes generated by pointerchain positively im-

act the address dereferencing process on the device, as discussed

n Section 3 . The generated codes are free of instructions that are

equired to extract the effective addresses. We show how a few

xtra lines of pointerchain – three lines in our case – leads

o dramatic reductions in the number of generated and executed

nstructions, especially on the device.

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 197

m

f

c

T

t

r

m

(

d

p

t

f

r

f

U

t

t

c

F

fl

t

p

a

L

a

S

p

u

a

a

h

t

(

d

b

r

t

t

p

r

3

d

l

6

i

i

p

u

e

m

c

e

w

t

W

v

t

i

Fig. 6. Stack memory usage with respect to different levels of pointer chains. The

results are average of 20 runs and confidence interval of 95%.

6

a

c

6

m

t

e

c

w

6

t

v

c

p

r

r

p

6

i

s

t

s

i

O

s

O

f

s

w

T

s

r

f

i

T

1 Intel Compiler flags: -Ofast -O3 -xHost -qopenmp .
2 PGI Compiler flags: -mp -fast -O3 -Mipa = fast .
Table 2 shows the values measured for the above-mentioned

etrics. We tabulated results as we stepped through each of the

our levels. Each row represents a level as shown in Fig. 5 , and the

olumns represent different methods, UVM and pointerchain .
he results for pointerchain , shown as ptc (�) , represent addi-

ional lines that pointerchain imposes on the source code with

espect to the one that utilizes UVM.

Let us look into the metrics and our results in detail:

a) Total number of modified C source code: As a classic metric to

easure code complexity quantitatively, we counted lines of code

LOC) using the cloc tool [57] . This shows the effort s t aken by

evelopers to add directives to the code. With UVM, for exam-

le, Level 2 took 24 lines of code for implementation. The addi-

ion of pointerchain increased it by only 3 lines – one line

or declare directive and two lines for region begin and

egion end directives. This metric represents the amount of ef-

ort required to implement the code with a particular approach:

VM or pointerchain . It estimates the productivity and main-

ainability of the approach.

b) Total number of assembly code generated for both the host and

he device: For the host code, we relied upon the output assembly

ode from the PGI compiler to count the LOC of files with cloc .

or the device code, we generated PTX files with the -keepptx
ag at the compile time with the PGI compiler, then counted

heir LOC. They are pseudo-assembly files used in NVIDIA’s CUDA

rogramming environment. The compiler translates these files into

 final binary file for execution on the device. For example, for

evel 2, the LOC of PTX-generated code for UVM was 72; however,

dding pointerchain reduced LOC by 25 (34% reduction).

imilarly, for the host, the LOC of UVM was 2740 and utilizing

ointerchain reduced this by 2 LOC. This metric shows how

tilizing pointerchain affects code generation. These numbers

re interesting for compiler developers who might adapt our

pproach in their compiler.

c) Total number of instructions executed at execution time: We

ave measured the total executed instructions on the device and

he host (at user and kernel levels). The nvprof tool from NVIDIA

with -m inst_executed option) counts instructions on the

evice. For the host, the counting of instructions was performed

y the perf tool from Linux. Table 2 reveals how pointerchain
educes device code as we dropped the required chain of instruc-

ions to extract effective address. For instance, at Level 2, the

otal number of executed instructions for UVM is 14,852, whereas

ointerchain utilization reduces it by 5688 instructions (38%

eduction). On the host, pointerchain led to a reduction of

706 instructions, in comparison to its UVM equivalent. The

evice-side code definitely benefited from pointerchain by a

arge margin.

.1.2. Stack usage

pointerchain affects the stack memory on the host by

ntroducing extra local variables to the source code. Local variables

n C/C++ translate to an address in the stack memory section of a

rogram. As a result, pointerchain directly impacts the stack

sage on the host. Introducing more local variables to the code

ventually increases stack memory usage of a program. We have

easured the peak level of stack usage for the synthetic appli-

ations with Valgrind [58] . It tracks the stack usage through the

xecution time of a program and records a snapshot of them. Then,

e extract the maximum value from those snapshots. Fig. 6 shows

he results for the stack usage in the presence of pointerchain .
e considered any extra stack allocation on top of UVM’s peak

alue as our stack overhead. The overhead for all four levels is less

han 6% (773Bytes). This shows how pointerchain leads to low

mplications on the source code.
.2. Porting CoMD: performance implications

We ported CoMD to heterogeneous systems using OpenACC and

pplied the optimization steps, as mentioned in Table 1 . We dis-

uss the influence of each step on the final outcome.

.2.1. Measurement methodology

We relied on the NVIDIA’s nvprof profiler for device measure-

ent. It provided a minimum, a maximum, and an average execu-

ion time, a driver/runtime API calls, and a memory operation for

ach GPU kernel. It is a handy tool for those who tune an appli-

ation to achieve maximum performance of GPUs. All simulations

ere executed with single precisions.

.2.2. Model preparation

To extract optimal values for gang and vector parameters, we

raversed through a parameter search space for them. We also in-

estigated the effect of manually choosing number of registers at

ompile time over the performance. Through the rest of this pa-

er, we used the extracted optimal values for gang , vector , and

egister count parameters. Please refer to the Supplementary Mate-

ial for detailed discussion on characterizing the above-mentioned

arameters.

.3. Speedup for each parallelization step

To observe the accumulated effect on the final result, our mod-

fications in each step were implemented on top of its preceding

teps unless noted. Please refer to Fig. 4 for the causal effect be-

ween each consecutive step.

Fig. 7 illustrates the impact of each step on our program by

howing changes in the execution time of the three kernels. We

ncluded the results from the CUDA and OpenMP versions. The

penMP version was compiled with both Intel 1 and PGI 2 compiler,

hown as OMP-ICC and OMP-PGI, respectively. Besides targeting

penACC for NVIDIA GPUs, we also retargeted our OpenACC code

or multicore systems (ACC-MC in the figures). We did not modify a

ingle line of code when retargeting our code to multicore systems

ith OpenACC. We changed only the target device from NVIDIA

esla to multicore at compilation time. Results are shown for both

mall (bottom) and large (top) data sizes; they are normalized with

espect to CUDA.

Enabling UVM on the memory-intensive kernels impedes per-

ormance in the first few steps. The reduction in execution time is

n several orders of magnitude while proceeding from Step 1 to 2 .

he same trend was observed from Step 2 to 3 for all three kernels.

198 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

Fig. 7. Normalized execution time after applying all optimization steps and run on NVIDIA P100. After applying all 10 steps on the OpenACC code, we were able to reach

61%, 129%, and 112% of performance of the CUDA kernels for ComputeForce , AdvancePosition , and AdvanceVelocity , respectively. Step 8 ∗ is similar to Step 8 but

it exploits suggested register count by CUDA Occupancy Calculator for full occupancy of warps in NVIDIA GPUs. Results are normalized with respect to CUDA .

o

p

i

c

p

t

e

e

t

f

f

i

P

C

A

w

t

t

t

h

k

fi

t

u

f

n

6

o
Due to developers’ insight on data layout and parallelism opportu-

nities, the impact of proposed changes in these steps is significant

in comparison to the compiler’s insights.

The next significant reduction in execution time happens when

data-locality improves by reusing variables (from Step 5A to Step 5B

and Step 5C). Such an improvement is due to the reduction in the

physical memory accesses by caching such accesses with local vari-

ables. To compute exerted force on Atom A, we looped through

all atoms in the vicinity and computed the force between them.

Therefore, instead of redundantly loading Atom A from memory for

each loop iteration, we have loaded it once before the inner loop

and reused it within the loop as many times as possible.

Step 7 marks the next substantial reduction in the execution

time for our compute-intensive kernel. At Step 7 , we set the gang
and vector parameters to their optimal values from Supplemen-

tal Materials (Section B) and (collected measurements for each ker-

nel. Manually setting these parameters enables the scheduler to is-

sue extra gangs on the device and keep the resources busy at all

time (in comparison to the choices by compiler).

Inefficient utilization of resources leads to performance loss.

When kernels use registers optimally, we see 16% performance

gain from Step 7 to 8 . Increasing the number of utilized reg-

isters for all kernels is not beneficial to the performance. In a

sense, kernels with different traits require different considerations .

As our experiments reveal how memory-intensive kernels do not

benefit from a large number of registers, it is better to limit

the register count for such kernels. On the other hand, compute-

intensive kernels benefit highly from a large number of registers

since they minimize the access of global memory for temporary

variables.

Elimination of redundant reduction operations, as described in

Step 10 , boosted the performance and helped our implementation

to reach performance to that of CUDA’s. Rearrangement of compu-

tations and elimination of unnecessary redundant operations has

definitely led to performance gain.
m
We have discussed ten optimization steps in this paper that for

ur proxy application, CoMD, boosted the ComputeForce kernel’s

erformance by 61–74% in comparison to its counterpart written

n CUDA. Although OpenACC did not reach CUDA’s efficiency, it got

lose to its performance with a very small code modification foot-

rint. Additionally, our OpenACC code is portable to another archi-

ecture without needing to change any portion of the code; how-

ver, a CUDA-based application needs to be updated or revisited

very time when the architecture is upgraded, thus affecting main-

enance of the code base. The memory-intensive kernels are per-

orming better than their counterparts written in CUDA, as noted

rom Step 7 for both small and large data sizes. This improvement

s probably due to scheduler-friendly instruction generation by the

GI compiler.

Further investigation of the generated PTX code in either

UDA or OpenACC version reveals why AdvancePosition and

dvanceVelocity kernels perform better when implemented

ith OpenACC in comparison to CUDA. In the CUDA version, each

hread is only responsible for one single iteration of the loop

argeted for parallelism; however, in the OpenACC version, each

hread is responsible for multiple iterations of a loop. This shows

ow parallelization granularity affects performance for different

ernel types. The memory-intensive kernels do not benefit from a

ne-grained approach since they inherently benefit from the spa-

ial locality of data used in the consequent iterations. Moreover,

nnecessarily oversubscribing the CUDA scheduler adversely af-

ects the performance in case of memory-intensive kernels. This is

ot, however, the case for the compute-intensive kernels.

.4. Floating-point operations per seconds

We measured the floating-point operations per second (FLOPS)

f our kernels under study and compared it with the CUDA imple-

entation for one GPU. FLOPS is one of the most common metrics

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 199

Fig. 8. Giga floating-point operations per second (GFLOP/s). In case of ComputeForce kernel, despite comparable speedups with respect to CUDA, the number of floating-

points operations that OpenACC implementation executes is behind CUDA’s performance; however, other kernels are performing close to CUDA’s performance. OpenACC

implementation of AdvanceVelocity performs better that its CUDA counterpart. Measurements are performed on Nvidia’s P100 from PSG. Higher is better.

i

d

C

k

i

t

e

n

g

W

O

l

s

a

t

o

n

c

6

t

t

a

G

i

N

s

c

O

g

s

O

c

p

C

6

a

c

T

t

t

s

A

a

a

s

o

m

c

K

n

a

t

l

o

C

m

s

6

t

i

t

c

s

s

o

t

O

t

k

i

m

f

t

t

3 From a GDDR5 memory with 240 GB/s in bandwidth in K80 to a HBM2 memory

with 732 GB/s in P100.
4 tera floating-point operations per second.
n scientific domain used to measure the performance of the un-

erlying systems, particularly in MD domain.

There is an increasing gap between the implementations of

omputeForce kernel and a decreasing gap for memory-intensive

ernels in Fig. 8 . For the latter ones, the difference is negligible and

n case of AdvanceVelocity , the OpenACC version is performing bet-

er than CUDA. The case for ComputeForce kernel is different, how-

ver. As it becomes complicated for the OpenACC compiler to apply

ecessary optimization techniques on that kernel, the performance

ap between the OpenACC and CUDA implementations increases.

hen developers take advantage of the interoperability feature of

penACC to run CUDA kernels within OpenACC code, they are al-

owed to manually tune the bottleneck kernels that do not neces-

arily benefit from the compiler-generated code; however, this will

dversely affect the portability of OpenACC codes.

Fig. 8 shows how the OpenACC version maintains the computa-

ion sustainability of the floating-point operations as the number

f atoms increases. Similar to the CUDA implementation, the Ope-

ACC implementation does not lose performance as system size in-

reases exponentially.

.5. Scalability with data size

We investigated the scalability of our OpenACC implementa-

ion with respect to varying system sizes. We changed the sys-

em size from 32,0 0 0 to 2,048,0 0 0 atoms and measured the per-

tom execution time for five implementations; OpenACC-GPU (acc-

PU), OpenACC-Multicore (acc-MC), CUDA, Open MP-ICC (OMP-

cc), OpenMP-PGI (OMP-pgi). The results are depicted in Fig. 9 for

VIDIA’s PSG cluster. Interestingly, our OpenACC implementation

cales with the system size without any performance loss. As dis-

ussed in the last section, we experienced better performance with

penACC than using CUDA for memory-intensive kernels.

Another interesting observation is that there is no significant

ap between OpenACC-Multicore and its OpenMP counterparts. In

ome cases, OpenACC performs better than the Intel optimized

penMP version for Haswell processors on the PSG platform. In

omparison to the generated code for OpenMP by the PGI com-

iler (OMP-PGI), OpenACC code performs better in the case of the

omputeForce kernel.

.6. Scalability measured at different architectures

Upcoming new architectures have a positive impact on the scal-

bility of systems. Fig. 10 shows the scalability of different ar-

hitectures; BigRed’s K20, UHPC’s K80, and PSG’s P100 and V100.
he gap between CUDA and OpenACC implementations narrows as

he underlying architecture evolves positively. Results in this sec-

ion are based on the utilization of one single GPU. Fig. 10 also

hows the speedup of each kernel and each programming model.

s we expected, there is no significant improvement between K20

nd K80 architectures since both of them are based on the same

rchitecture (Kepler); however, as architectures improve, we ob-

erved a boost in performance. The five-fold improvement in mem-

ry performance from K80 to P100 is credited with the speedup in

emory-intensive kernels. 3

With respect to the processing power of modern GPUs, as ar-

hitectures improve progressively, so does their performance. The

epler architecture performs 6 TFLOPS, 4 while performance of the

ew generation of GPU processors, which are based on the Volta

rchitecture, has doubled (14 TFLOPS). One can observe how a

wo-fold improvement in floating-point operations per second has

ed to an increase of one order of magnitude in performance

f a compute-bound kernel, particularly the OpenACC version of

omputeForce . In the 50 0,0 0 0-atom case, one is able to observe

ore than 25X speedup with respect to K20 for the OpenACC ver-

ion.

.7. Scalability with multiple GPUs

We have investigated the scalability of our OpenACC implemen-

ation for more than one GPU. NVIDIA’s Pascal P100 has four GPUs

nside the PCI card. For each GPU, an MPI process is initiated and

hat process takes control of a single GPU. All processes communi-

ate through the MPI library to distribute workload among them-

elves. The original implementation of CoMD (OpenMP and CUDA)

upports MPI. Our contributions in this paper are focused merely

n the parallelization within a node. For inter-node paralleliza-

ion, we rely on the workload distribution provided by the original

penMP version with MPI.

Results, depicted in Fig. 11 , show speedups with respect to 100

imesteps of CoMD with different system sizes. The ComputeForce

ernel shows promising results for both system sizes. The OpenACC

mplementation scales better in comparison to its CUDA imple-

entation; The other two memory-intensive kernels do not benefit

rom multi-GPU scalability of OpenACC code due to the fact that

hey spend most of their time waiting for memory. Consequently,

hey do not benefit from the extra computational resources in

200 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

Fig. 9. Scalability with different data sizes with one GPU of NVIDIA P100. One can observe that performance is not lost when data size is increased. OpenACC-Multicore

performs better in comparison to OpenMP counterparts. Measurements are performed on Nvidia’s P100 from PSG.

Fig. 10. Scalability with different architectures while utilizing one single GPU . With new architectures, performance is improving by shortening time. For time results, a lower

reading is better; for speedup results, a higher reading is better.

Fig. 11. Scalability of implementations on NVIDIA P100. The ComputeForce kernel is performing linearly, and its performance is close to its CUDA counterpart.

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 201

Fig. 12. Scalability of implementations on NVIDIA V100. For 2,048,0 0 0-atom system, OpenACC and CUDA scale linearly with number of GPUs. In case of ComputeForce ,
OpenACC shows more scalable performance in comparison to CUDA. AdvanceVelocity kernel display a super-linear performance for CUDA.

c

h

l

c

t

s

p

k

l

i

c

s

n

s

g

a

t

s

o

a

s

m

k

F

3

l

b

t

o

6

s

s

q

a

(

m

r

t

p

t

s

Table 3

Effect of the OpenACC adaption on the source code – lines of

code (LOC) column shows extra line required to implement

this step with respect to the OpenMP implementation as the

base version. The third column (%) shows the increase with

respect to the base version.

Step LOC % Step LOC %

OpenMP 3025 – Step 5C + 165 5.45

Step 1 + 2 0.07 Step 6 + 163 5.39

Step 2 + 99 3.27 Step 7 + 198 6.55

Step 3 + 103 3.4 Step 8 + 198 6.55

Step 4 + 109 3.6 Step 9 + 187 6.18

Step 5A + 109 3.6 Step 10 + 215 7.11

Step 5B + 125 4.13 CUDA + 4745 1.57X

c

s

t

8

p

n

c

t

7

g

m

s

i

t

p

t

A

D

i

R

t

w

t

f

t

o

e
omparison to our compute-intensive kernel. Such a conclusion,

owever, is not true for their CUDA counterparts, and they show

inear speedup for 2,0480,0 0 0 atoms.

Fig. 12 displays results for V100. Similar to its predecessor Pas-

al P100, Volta V100 also has four GPUs inside the PCI card. All

he algorithms show linear (or super-linear) scalability when our

ystem size is large. The scalability of our implementation is com-

arable to the CUDA’s, and in the case of the ComputeForce
ernel, OpenACC performs better. When our system size is not

arge enough, OpenACC’s scalability of the ComputeForce kernel

s 59% and 70% better for two and four GPUs, respectively. In the

ase of the other two kernels, CUDA and OpenACC’s scalability are

imilar.

Fig. 11 shows the super-linear scalability for the three ker-

els with 2,048,0 0 0 atoms. The OpenACC’s ComputeForce kernel is

uper-linear due to the utilization of a cut-off range within the al-

orithm, which leads to skip atoms in far distance. Skipping such

toms leads to skipping some iterations of the main loop, which in

urn helps the kernels to skip unnecessary computations and reach

uper-linearity. On the other hand, the efficient cache utilization

f CUDA’s AdvancePosition and AdvanceVelocity kernels has led to

 super-linear speedup in performance. Fig. 12 depicts similar re-

ults on V100 architecture. Due to improvements in cache perfor-

ance of V100 architecture in comparison to P100, 5 the two CUDA

ernels that were underutilized on P100 show linear performance.

igs. 11 and 12 show how CoMD shows sub-linear speedups for

2,0 0 0 atoms for all three kernels due to high overhead of work-

oad distribution. When our system size is small, CoMD does not

enefit from the multi-device distribution. However, as we increase

he system size, we notice an explicit improvement in the speedup

f the kernels.

.8. Effects on the source code

OpenACC does not impose a significant impact on source code

ize and maintenance; thus, it retains the integrity of a complex

cientific application. Similar to OpenMP, developers are not re-

uired to write excessive lines of code to maintain the state of the

pplication and accelerators. As a result, we exploited lines of code

LOC) to quantitatively measure the code complexity. The measure-

ent was performed with the cloc [57] tool. Table 3 presents the

esults for the LOC for each step. We used reference implementa-

ion of CoMD (the OpenMP version) as the starting point for our

orting process to OpenACC. The LOC column shows that the to-

al extra lines of code required to implement that step with re-

pect to OpenMP implementation as the base version. The third
5 The L2 cache size has increased from 4 MB in the P100 to 6 MB in V100.

l

c

p
olumn (%) shows the percentage with respect to the base ver-

ion. CUDA implementation doubles the code size in comparison

o the OpenMP version; however, for OpenACC, LOC is less than

%. Results in Table 3 include the LOC from Step 2 to 10 with extra

ointerchain lines. In some transitions from one step to the

ext (e.g., Step 7 to 8), there is no difference in LOC. That is, we

hanged only the compilation flags, which naturally does not count

owards the LOC count.

. Related work

The other directive-based programming model focusing on tar-

eting GPUs is OpenMP [29] . In its early stages, OpenMP 3.1 pri-

arily supported only shared memory processors. With proces-

ors becoming increasingly heterogeneous, OpenMP has extended

ts support for such systems. OpenMP 4.5 has also introduced rou-

ines to associate/disassociate device pointers with their counter-

arts on the host, which is essential for deep copy implementa-

ion. Similarly, OpenACC has also introduced attach/detach to their

PI to assist developers in assigning correct pointers on the host.

espite having such functionalities, deep copy has not been fully

mplemented by the directive-based programming models.

Recent effort s in C++ perf ormance port ability libraries, such as

AJA [59] , Kokkos [60] , StarPU [61] , and SkePU [62] provide facili-

ies that make the applications less susceptible to underlying hard-

are changes. They allow developers to write applications such

hat applications can be recompiled, with minimal code changes,

or different devices. Both libraries rely heavily on the C++ abstrac-

ions to address portability. In Kokkos, switching between Arrays

f structures (AoS) and Structures of Arrays (SoA) data layout is as

asy as changing a template parameter in the source code. Simi-

arly, SkePU ensures the data consistency with the utilization of the

oncept of Smart Pointers in the code, without relying on a com-

lete replication of data between CPUs and GPUs. Nevertheless,

202 M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203

utilizing such libraries requires major modifications and changes

to be applied to the source codes to support then full features that

they provide.

Other effort s f or CPU-specific approaches, like Cilk [63] and TBB

[64] from Intel, employ abstract yet low-level programming inter-

faces to parallelize the code with tasks and threads on multicore

architectures only. Other library-based approaches and APIs have

also been introduced for GPUs that simplify GPU programming for

developers; for instance, Thrust [65] and ArrayFire [66] . Although

the aforementioned library-based approaches are convenient, they

are not flexible for general-purpose development and need, to

some extent, major modifications to current existing codes.

8. Conclusion

This contribution proposes a novel high-level directive, point-

erchain , to reduce the burden of data transfer in a scientific

application that executes on the HPC systems. We have em-

ployed a source-to-source transformation script to translate the

pointerchain directive to conformed statements in C/C++ lan-

guage. We observed that using the pointerchain directive leads

to 36% reduction in both generated and executed instructions on

the GPU devices. We evaluated our directive using CoMD, an MD

proxy application. By exploiting OpenACC directives on the CoMD

code, OpenACC code outperforms CUDA on two out of three ker-

nels while it achieves 61% of the CUDA performance the third ker-

nel. We showed a linear scalability with growing system sizes with

OpenACC. We provided a step-by-step approach readily applicable

to any other application. As part of our near future work we will

extend our implementation to support multi-node execution.

Acknowledgments

This material is based upon work supported by the NSF Grant

Nos. 1531814 , 1412532 and DOE Grant No. DE-SC0016501. This

research was also supported in part by Lilly Endowment, Inc.,

through its support for the Indiana University Pervasive Technol-

ogy Institute, and in part by the Indiana METACyt Initiative. We

are also very grateful to NVIDIA for providing us access to their

PSG cluster and thankful to the OpenACC technical team especially

Mat Colgrove and Pat Brooks.

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.parco.2019.04.007 .

References

[1] ORNL’s Summit, 2018, (https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/summit-faqs/), Accessed: 2018-04-10.

[2] D. Unat , Trends in data locality abstractions for HPC systems, IEEE Trans. Par-
allel Distrib. Syst. 28 (10) (2017) 3007–3020 .

[3] OpenACC Standard Committee, 2016, (Technical Report TR-16-1), Accessed:
2017-12-03.

[4] J.R. Perilla , et al. , Molecular dynamics simulations of large macromolecular

complexes, Curr. Opin. Struct. Biol. 31 (2015) 64–74 .
[5] G. Giupponi , M. Harvey , G.D. Fabritiis , The impact of accelerator processors for

high-throughput molecular modeling and simulation, Drug Discov. Today 13
(23) (2008) 1052–1058 .

[6] H. Zhang , et al. , HIV-1 Capsid function is regulated by dynamics: quanti-
tative atomic-Resolution insights by integrating magic-Angle-Spinning NMR,

QM/MM, and MD, J. Am. Chem. Soc. 138 (42) (2016) 14066–14075 .
[7] J.E. Stone , D.J. Hardy , I.S. Ufimtsev , K. Schulten , GPU-accelerated molecular

modeling coming of age, J. Mol. Graphics Modell. 29 (2) (2010) 116–125 .

[8] R. Friedman , K. Boye , K. Flatmark , Molecular modelling and simulations in can-
cer research, Biochimica et Biophysica Acta (BBA) - Rev.Cancer 1836 (1) (2013)

1–14 .
[9] H. Zhao , A. Caflisch , Molecular dynamics in drug design, Eur. J. Med. Chem. 91

(2015) 4–14 .
[10] M. Feig , I. Yu , P.-h. Wang , G. Nawrocki , Y. Sugita , Crowding in cellular environ-
ments at an atomistic level from computer simulations, J. Phys. Chem. B 121

(34) (2017) 8009–8025 .
[11] A. Singharoy , C. Chipot , Methodology for the simulation of molecular motors

at different scales, J. Phys. Chem. B 121 (15) (2017) 3502–3514 .
[12] D.A. Pearlman , et al. , AMBER, A package of computer programs for apply-

ing molecular mechanics, normal mode analysis, molecular dynamics and
free energy calculations to simulate the structural and energetic properties of

molecules, Comput. Phys. Commun. 91 (1–3) (1995) 1–41 .

[13] S. Plimpton , Fast parallel algorithms for short-range molecular dynamics, J.
Comput. Phys. 117 (1) (1995) 1–19 .

[14] E. Lindahl , B. Hess , D. Van Der Spoel , GROMACS 3.0: a package for molecular
simulation and trajectory analysis, J. Mol. Model. 7 (8) (2001) 306–317 .

[15] J.C. Phillips , et al. , Scalable molecular dynamics with NAMD, J. Comput. Chem.
26 (16) (2005) 1781–1802 .

[16] NVIDIA Corporation, CUDA C Programming Guide, 2018.

[17] The Khronos Group Inc, The OpenCL specification (2008).
[18] S. Páll , et al. , Tackling exascale software challenges in molecular dynamics sim-

ulations with gromacs, in: Solving Software Challenges for Exascale, Springer
International Publishing, Cham, 2015, pp. 3–27 .

[19] S.W. Keckler , W.J. Dally , B. Khailany , M. Garland , D. Glasco , GPUs and the future
of parallel computing, IEEE Micro 31 (5) (2011) 7–17 .

[20] R. Lucas , et al. , DOE Advanced Scientific Computing Advisory Subcommittee

(ASCAC) Report: Top Ten Exascale Research Challenges, Technical Report, US-
DOE Office of Science, United States, 2014 .

[21] J. Vetter , et al. , Advanced Scientific Computing Research Exascale Requirements
Review, Technical Report, Argonne National Lab. (ANL), Argonne, IL, United

States, 2017 .
[22] J. Anderson , A. Keys , C. Phillips , T. Dac Nguyen , S. Glotzer , Hoomd-blue, gener-

al-purpose many-body dynamics on the gpu, APS Meeting Abstracts, 2010 .

[23] A. Gupta , S. Chempath , M.J. Sanborn , L.A. Clark , R.Q. Snurr , Object-oriented
programming paradigms for molecular modeling, Mol. Simul. 29 (1) (2003)

29–46 .
[24] K. Refson , Moldy: a portable molecular dynamics simulation program for se-

rial and parallel computers, Comput. Phys. Commun. 126 (3) (20 0 0) 310–
329 .

[25] W.R. Saunders , J. Grant , E.H. Mller , A domain specific language for performance

portable molecular dynamics algorithms, Comput. Phys. Commun. 224 (2018)
119–135 .

[26] S. Wienke , C. Terboven , J.C. Beyer , M.S. Müller , A pattern-based comparison
of OpenACC and OpenMP for accelerator computing, in: Euro-Par Parallel Pro-

cessing, Springer International Publishing, 2014, pp. 812–823 .
[27] S. Lee , J.S. Vetter , Early evaluation of directive-based gpu programming models

for productive exascale computing, in: High Performance Computing, Network-

ing, Storage and Analysis (SC), 2012 International Conference for, IEEE, 2012,
pp. 1–11 .

[28] M.G. Lopez , et al. , Evaluation of directive-based performance portable pro-
gramming models, Int. J. Signal Imaging Syst. Eng. (2017) .

[29] OpenMP Language Committee, OpenMP Application Programming Interface,
Version 3.1, 2011, (http://www.openmp.org/wp-content/uploads/OpenMP3.1.

pdf).
[30] OpenACC Language Committee, OpenACC Application Programming Inter-

face, Version 2.6, 2017, (https://www.openacc.org/sites/default/files/inline-files/

OpenACC.2.6.final.pdf).
[31] W.M. Brown , J.-M.Y. Carrillo , N. Gavhane , F.M. Thakkar , S.J. Plimpton , Optimiz-

ing legacy molecular dynamics software with directive-based offload, Comput.
Phys. Commun. 195 (2015) 95–101 .

[32] K.B. Tarmyshov , F. Mller-Plathe , Parallelizing a molecular dynamics algorithm
on a multiprocessor workstation using OpenMp, J. Chem. Inf.Model. 45 (6)

(2005) 1943–1952 .

[33] H.M. Aktulga , et al. , Optimizing the performance of reactive molecular dynam-
ics simulations for many-core architectures, Int. J. High Perform. Comput. Appl.

(IJHPCA) (2018) .
[34] B.P. Pickering , C.W. Jackson , T.R. Scogland , W.-C. Feng , C.J. Roy , Directive-based

GPU programming for computational fluid dynamics, Comput. Fluids 114
(2015) 242–253 .

[35] O. Hernandez , W. Ding , B. Chapman , C. Kartsaklis , R. Sankaran , R. Graham , Ex-

periences with High-level Programming Directives for Porting Applications to
Gpus, in: Facing the Multicore-Challenge II, Springer, 2012, pp. 96–107 .

[36] K. Puri , V. Singh , S. Frankel , Evaluation of a directive-based GPU programming
approach for high-order unstructured mesh computational fluid dynamics, in:

Proceedings of the Platform for Advanced Scientific Computing Conference, in:
PASC ’17, ACM, New York, NY, USA, 2017, pp. 4:1–4:9 .

[37] L.G. Szafaryn , et al. , Trellis: portability across architectures with a high-level

framework, J. Parallel Distrib. Comput. 73 (10) (2013) 1400–1413 .
[38] J.A. Herdman , et al. , Achieving portability and performance through ope-

nacc, in: First Workshop on Accelerator Programming using Directives, 2014,
pp. 19–26 .

[39] M. Ghane , S. Chandrasekaran , M.S. Cheung , Gecko: Hierarchical Distributed
View of Heterogeneous Shared Memory Architectures, in: Proceedings of

the 10th International Workshop on Programming Models and Applica-

tions for Multicores and Manycores, ACM, Washington, DC, USA, 2019, pp.
21–30 .

[40] M. Ghane , S. Chandrasekaran , R. Searles , M.S. Cheung , O. Hernandez , Path for-
ward for softwarization to tackle evolving hardware, in: Proceedings of SPIE -

The International Society for Optical Engineering, 10652, 2018 .

https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.parco.2019.04.007
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0024
http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0032
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0032
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0032
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0033b

M. Ghane, S. Chandrasekaran and M.S. Cheung / Parallel Computing 85 (2019) 190–203 203

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

F

L

[41] S. Wienke , P. Springer , C. Terboven , D. an Mey , OpenACC – First experiences
with real-world applications, in: Euro-Par Parallel Processing, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012, pp. 859–870 .
42] CoMD Proxy Application, 2018, (https://github.com/ECP-copa/CoMD), Ac-

cessed: 2018-04-02.
43] R. Landaverde , T. Zhang , A.K. Coskun , M. Herbordt , An investigation of uni-

fied memory access performance in cuda, in: IEEE High Performance Extreme
Computing Conference (HPEC), 2014, pp. 1–6 .

44] COPA: Codesign Center for Particle Applications, 2018, (Exascale Computing

Project (ECP)).
45] I. Karlin , A. Bhatele , J. Keasler , B.L. Chamberlain , J. Cohen , Z. Devito , R. Haque ,

D. Laney , E. Luke , F. Wang , et al. , Exploring traditional and emerging parallel
programming models using a proxy application, in: IPDPS, 2013, pp. 919–932 .

46] O. Villa , D.R. Johnson , M. Oconnor , E. Bolotin , D. Nellans , J. Luitjens ,
N. Sakharnykh , P. Wang , P. Micikevicius , A. Scudiero , et al. , Scaling the power

wall: a path to exascale, in: High Performance Computing, Networking, Storage

and Analysis, SC14: International Conference for, IEEE, 2014, pp. 830–841 .
[47] J. Mohd-Yusof , N. Sakharnykh , Optimizing CoMD: a molecular dynamics proxy

application study, in: GPU Technology Conference (GTC), 2014 .
48] O. Pearce , et al. , Enabling work migration in CoMD to study dynamic load

imbalance solutions, in: Proceedings of the 7th International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance

Computing Systems, in: PMBS ’16, IEEE Press, Piscataway, NJ, USA, 2016,

pp. 98–107 .
49] L. Verlet , Computer ”experiments” on classical fluids. I. Thermodynamical

properties of Lennard–Jones molecules, Phys. Rev. 159 (1967) 98–103 .
50] J.E. Jones , On the determination of molecular fields. II. From the equation of

state of a gas, in: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 106, The Royal Society, 1924, pp. 463–477 .

[51] MPI Forum, MPI : A Message-Passing Interface Standard. Version 2.2, 2009,

Available at: http://www.mpi-forum.org (Dec. 2009).
52] P. Cicotti , S.M. Mniszewski , L. Carrington , An evaluation of threaded models for

a classical md proxy application, in: Hardware-Software Co-Design for High
Performance Computing (Co-HPC), 2014, IEEE, 2014, pp. 41–48 .

53] M.A. Heroux , D.W. Doerfler , P.S. Crozier , J.M. Willenbring , H.C. Edwards ,
A. Williams , M. Rajan , E.R. Keiter , H.K. Thornquist , R.W. Numrich , Improving

Performance via Mini-applications, Technical Report SAND2009-5574, Sandia

National Laboratories, 2009 .
54] Big Red II at Indiana University, 2017, (https://kb.iu.edu/d/bcqt), Accessed:

2017-12-03.
55] UHPC, 2017, (https://uhpc-mri.uh.edu/), Accessed: 2017-12-03.
56] NVIDIA PSG, 2017, (http://psgcluster.nvidia.com/trac), Accessed: 2017-12-03.

[57] cloc, (https://github.com/AlDanial/cloc), Accessed: 2018-04-10.
58] N. Nethercote , J. Seward , Valgrind: a framework for heavyweight dynamic bi-

nary instrumentation, in: Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, in: PLDI ’07, ACM, New

York, NY, USA, 2007, pp. 89–100 .
59] R.D. Hornung , J.A. Keasler , The RAJA Poratability Layer: Overview and Status,

Technical Report, Lawrence Livermore National Laboratory (LLNL-TR-661403),

2014 .
60] H. Carter Edwards and Christian R. Trott and Daniel Sunderland , Kokkos: en-

abling manycore performance portability through polymorphic memory access
patterns, J. Parallel Distrib. Comput. 74 (12) (2014) 3202–3216 . Domain-Specific

Languages and High-Level Frameworks for High-Performance Computing
[61] C. Augonnet , S. Thibault , R. Namyst , P.-A. Wacrenier , StarPU: aunified platform

for task scheduling on heterogeneous multicore architectures, in: Concurrency

and Computation: Practice and Experience, 23, 2011, pp. 187–198 . Special Is-
sue: Euro-Par 2009

62] J. Enmyren , C.W. Kessler , Skepu: a multi-backend skeleton programming li-
brary for multi-gpu systems, in: Proceedings of the Fourth International Work-

shop on High-level Parallel Programming and Applications, in: HLPP ’10, ACM,
New York, NY, USA, 2010, pp. 5–14 .

63] R.D. Blumofe , et al. , Cilk: an efficient multithreaded runtime system, in: Pro-

ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, in: PPOPP ’95, ACM, New York, NY, USA, 1995,

pp. 207–216 .
64] ReindersJames , Intel Threading Building Blocks, 1st, O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 2007 .
65] NVidia, Thrust, 2018, (https://developer.nvidia.com/thrust).

66] P. Yalamanchili, et al., ArrayFire - a high performance software library for par-

allel computing with an easy-to-use API, 2015.

urther reading

.G. Szafaryn , T. Gamblin , B.R. de Supinski , K. Skadron , Experiences with achieving

portability across heterogeneous architectures, in: Proceedings of WOLFHPC, in
Conjunction with ICS, Tucson, 2011 .

http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0034
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0034
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0034
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0034
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0034
https://github.com/ECP-copa/CoMD
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0035
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0035
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0035
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0035
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0035
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0036
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0037
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0038
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0038
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0038
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0039
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0039
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0039
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0040
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0040
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0041
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0041
http://www.mpi-forum.org
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0042
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0042
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0042
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0042
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0043
https://kb.iu.edu/d/bcqt
https://uhpc-mri.uh.edu/
http://psgcluster.nvidia.com/trac
https://github.com/AlDanial/cloc
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0044
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0044
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0044
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0045
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0045
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0045
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0046
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0046
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0046
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0047
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0048
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0048
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0048
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0049
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0049
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0049
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0050
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0050
https://developer.nvidia.com/thrust
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0031a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0031a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0031a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0031a
http://refhub.elsevier.com/S0167-8191(18)30261-8/sbref0031a

	pointerchain: Tracing pointers to their roots - A case study in molecular dynamics simulations
	1 Introduction
	2 Motivation: The programmatic feature gap
	3 Proposed directive and clauses
	3.1 Proposed directive: pointerchain
	3.2 Implementation strategy

	4 Case study: CoMD
	4.1 Reference implementations
	4.2 Parallelizing CoMD with OpenACC

	5 Evaluation
	6 Results
	6.1 pointerchain overhead
	6.1.1 Code generation
	6.1.2 Stack usage

	6.2 Porting CoMD: performance implications
	6.2.1 Measurement methodology
	6.2.2 Model preparation

	6.3 Speedup for each parallelization step
	6.4 Floating-point operations per seconds
	6.5 Scalability with data size
	6.6 Scalability measured at different architectures
	6.7 Scalability with multiple GPUs
	6.8 Effects on the source code

	7 Related work
	8 Conclusion
	Acknowledgments
	Supplementary material
	References
	Further reading

