
Gecko: Hierarchical Distributed View
of Heterogeneous Shared Memory Architectures

Millad Ghane

Department of Computer Science

University of Houston

TX, USA

mghane2@uh.edu

Sunita Chandrasekaran

Department of Computer and

Information Sciences

University of Delaware

DE, USA

schandra@udel.edu

Margaret S. Cheung

Physics Department

University of Houston

Center for Theoretical Biological

Physics, Rice University

TX, USA

mscheung@central.uh.edu

Abstract
The November 2018 TOP500 report shows that 86 systems

in the list are heterogeneous systems configured with accel-

erators and co-processors, of which 60 use NVIDIA GPUs,

21 use Intel Xeon Phi cards, one uses AMD FirePro GPUs,

one uses PEZY technology, and three systems use a combi-

nation of NVIDIA GPUs and Intel Xeon Phi co-processors.

From a software standpoint, managing data locality on such

heterogeneous systems is as important as exploiting paral-

lelism in order to achieve the best performance. With the

advent of novel memory technologies, such as non-volatile

memory (NVM) and 3D-stacked memory, there is an urgent

need for effective mechanisms within programming models

to create an easy-to-use interface that addresses such mem-

ory hierarchies. It is also equally crucial for applications to

evolve with data locality for the expression of information.

In this paper, we propose Gecko, a novel programming model

that addresses the underlying memory hierarchy topology

within computing elements in current and future platforms.

Gecko’s directives distribute data and computation among

devices of different types in a system. We develop a source-

to-source transformation and a runtime library to efficiently

manage devices of different types to run asynchronously.

Although our current implementation of Gecko targets In-
tel Xeon CPUs and NVIDIA GPUs, it is not restricted to

such architectures. We used SHOC and Rodinia benchmark

suites to evaluate Gecko. Our experiments used a single node

consisting of four NVIDIA Volta V100 GPUs. Results demon-

strated scalability through the multi-GPU environment. We

observed 3.3 times speedup when using multiple GPUs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PMAM’19 , February 17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6290-0/19/02. . . $15.00

https://doi.org/10.1145/3303084.3309489

vir.vir.

LocA

LocCLocB

LocG1 LocG2 LocG3 LocG4LocN1 LocN2
x

y

z

y y

z z

z z z z z z

Figure 1. An overview of our proposed model, Gecko, with
9 locations. The solid boxes represent variables in our pro-

gram. The dotted boxes show locations with access to those

variables. The “vir." tags show virtual locations in Gecko.

CCS Concepts • Computer systems organization →

Heterogeneous (hybrid) systems;High-level language
architectures;

Keywords Hierarchy, Heterogeneous, Portable, SharedMem-

ory, Programming Model, Abstraction.

ACM Reference Format:
Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung.

2019.Gecko:Hierarchical Distributed View ofHeterogeneous Shared

Memory Architectures. In The 10th International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores
(PMAM’19), February 17, 2019, Washington, DC, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3303084.3309489

1 Introduction
Heterogeneity has been the primary source of computational

performance in modern high performance systems [3, 15, 16]

since the loss of conventional improvements (Dennard scal-

ing) [6, 26]. Due to the advances in semiconductor manufac-

turing, GPUs [13] and MICs (Many Integrated Cores) have

been widely adopted in the design of high performance com-

puting (HPC) systems. The trend of such design prevails

in the latest ORNL’s supercomputer, Summit, that contains

six NVIDIA Volta V100 GPUs and only two IBM POWER9

processors per node. Future exascale computing nodes are

expected to embrace such heterogeneity that grow with the

number of computational devices [3], which makes utiliza-

tion of all available resources a challenging task.

https://doi.org/10.1145/3303084.3309489
https://doi.org/10.1145/3303084.3309489

PMAM’19 , February 17, 2019, Washington, DC, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

The aforementioned heterogeneity has become compli-

cated as we face challenges imposed by the memory wall [3].

Recent advances in memory technologies have led to dra-

matic changes in their hierarchy. The inclusion of novel mem-

ory technologies, such as non-volatile memory (NVM) [19]

and 3D-stacked memory [18, 27], has complicated the mem-

ory hierarchy (registers, caches, DRAM). As the design fac-

tors grow, the complexity in both the hardware and the soft-

ware requires a performance-friendly approach. The com-

plexity is exacerbated when multiple devices with different

hardware types are utilized to parallelize the code. It is par-

ticularly problematic when a diverse memory technology

is implemented on GPUs through Processing-In-Memory

(PIM) [1, 25]. Consequently, we are in dire need of a simple

and robust model to efficiently express the implicit mem-

ory hierarchy along with the parallelization opportunities

available in the scientific application [26].

In this paper, we present Gecko1, a novel programming

model and runtime system that represents the hierarchical

structure of memory and computational resources in current

and future systems. Gecko addresses multi-device heteroge-

neous platforms and provides opportunities for applications

to add and remove memory and computational resources at

the execution time.

Gecko provides a distributed view of the heterogeneous
shared memory system to the applicationswith one exception:

a variable defined in a particular location is accessi-
ble by that location and all of its children, while the
same variable remains private with respect to its par-
ent. This exception helps applications to improve their data

locality by bringing data closer to where it is supposed to

be processed, and prevent side-effects of data sharing (i.e.,

false sharing). Developed as a directive-based programming

model on top of OpenACC [22], Gecko consists of a set of
directives that helps applications to declare devices, allocate

memories, and launch kernels on different devices. We build

on the work of Ghane et al. [12], which was a simpler ap-

proach towards supporting heterogeneity in future systems.

Here are the contributions of this work:

• We propose Gecko, a novel programming model that

addresses the underlying memory hierarchy topology

within computing elements.

• We present a prototype ofGecko and integrate it with a
directive-based programming model, OpenACC. This

approach does not impact the directive-based model

itself (Section 4).

• We present the work distribution and runtime policies

that Gecko currently supports (Section 4).

• We evaluate Gecko by using the case studies from

SHOC and Rodinia benchmark suites and demonstrate

the impact on performance (Sections 5 and 6).

1
Accessible from: https://github.com/milladgit/gecko

2 Methodology: the Gecko model
The principal constructs of the Gecko model are locations.
Locations are an abstraction of storage and computational

resources available in the system and are represented as a

node in Gecko’s tree-based hierarchy model. Similar to the

Parallel Memory Hierarchy (PMH) model [2], Gecko is a tree
of memory modules with workers at the leaves. Workers

will perform computations, and they attach to the memory

modules. Figure 1 illustrates an example of our Gecko model.

This model represents a regular cluster/supercomputer node

with two non-uniform memory access (NUMA) multicore

processors, LocNi, and four GPUs, LocGi, similar to NVIDIA’s

PSG cluster [21] and ORNL’s Titan supercomputer [24].

The location hierarchy in Gecko designates how one lo-

cation shares its allocated memories with another. When a

memory is allocated in a location, the allocated memory is

accessible by its children. They will have access to the same

address as their parent. However, the allocated memory is

not shared with their parent and is considered to be a pri-

vate memory with respect to their parent. Figure 1 shows

how hierarchy will affect memory accesses among locations.

The allocated memory y is allocated in Location LocB and

consequently, it can be accessed by LocB, LocN1, and LocN2.
However, LocA has no knowledge of the variable y. With

the same logic, allocated memory z can be accessed by all

locations, while accesses to x are only limited to LocG1.
In Gecko, locations are categorized by one of the follow-

ings: (1)memorymodules, (2) memorymoduleswith aworker,

and (3) virtual locations. Memory modules are annotated

with their attributes (like type and size); LocA in Figure 1 is

a memory module. If a location is a memory module with

a worker attached to it, the location will be used to launch

computational kernels by the runtime library; LocNi and
LocGi are examples of memory modules with workers. Fi-

nally, the virtual locations, LocB and LocC in Figure 1, are

neither memory modules nor computational ones. They are

an abstract representation of their children in the hierarchy.

Grouping a set of locations under a virtual location provides

a powerful feature for the application to address the location

set as a whole. Similar approaches have been observed in

related work [28, 29]. Like other location categories, virtual

locations can also be the target of memory allocation and

kernel launch requests. Depending on the type of requests

and hints from scientific developers, the runtime library acts

upon the requests and performs them at the execution time.

Locations are abstractions of available resources in the

system. Any location in Gecko, internal or leaf locations, is
possibly the target of a kernel launch by application. Virtual

locations, however, provide flexibility to the applications.

With virtual locations, applications aptly fix the target of

their kernel to that location while changing the underlying

structure of the tree for the same location. As a result, the

application targeted for a multicore architecture dynamically

https://github.com/milladgit/gecko

Gecko PMAM’19 , February 17, 2019, Washington, DC, USA

UVM

IBM
POWER9

P1 P2

NVIDIA
V100

G1 G6...

Processor
GPU

a
UVM

IBM
POWER9

P1 P2

NVIDIA
V100

Ga Gb

G1 G2 G3 G4 G5 G6

b c
UVM

Intel
Xeon

P1 P2

MIC

X1 X2 X3

Xeon Phi

Figure 2. Gecko’s model representing various system. ORNL’s Summit (a and b) with two IBM POWER9 processors and six

NVIDIA Volta V100 GPUs – Tianhe-2 (c) with two Intel Xeon processors and three Intel Xeon Phi co-processors

or statically morphs into a program targeting different types

of accelerators (e.g., NVIDIA GPUs, AMD GPUs, or FPGAs).

Similar to Hierarchical Place Trees (HPT) [29], Gecko pro-
vides facilities to represent a physical machine with different

abstractions [28, 29]. The best configuration depends on the

characteristics of the application, its locality requirements,

and its workload balance. The developer or auto-tuning li-

braries can assist Gecko in choosing the effective abstraction.

Figure 2 shows how Gecko represent nodes in Summit [23]

and Tianhe-2 [17]. Model a is the most generic approach to

represent Summit. The two IBM POWER9 processors in two

different sockets form a NUMA domain, and all six NVIDIA

Volta V100 GPUs are represented under a virtual location.

Detailed information on Summit reveals that the first three

GPUs form a spatial locality with respect to each other while

the last three ones show the same spatial locality to each

other. They are connected to the main processors and each

other with an NVLink [11] connection with a bandwidth of

100 GB/s (bidirectionally). As shown in b , applications are

able to utilize this locality by declaring two virtual locations,

Ga and Gb. Such an arrangement minimizes the interference

between the two GPU sets. With this model, applications

run Kernel Ka on Ga and Kernel Kb on Gb to fully utilize all

resources and perform simultaneous execution of kernels

while minimizing data bus interferences.

Gecko is a platform- and architecture-independent model.

The hierarchy in c represents a system targeting Intel Xeon

Phis (e.g., Tianhe-2) with Gecko. Xeon Phis are grouped to-

gether and declared under their parent location, MIC. In cases
where an application faces a diverse set of accelerators (for

instance, a node equipped with NVIDIA GPUs and another

node with Intel Xeon Phis) and they are unknown to the

application at compile time, Gecko adapts to the accelerator

in the system without any code alterations. Gecko also is

able to adapt to changes in the workload and employ more

resources, in case they are needed to expedite the processing,

by modifying the hierarchy.

3 Key Features of Gecko
This section is dedicated to key features that make Gecko
superior to other flat models.

3.1 Dynamic Hierarchy Tree
Gecko’s hierarchy tree is dynamically composed at the exe-

cution time. Unlike Sequoia [9] and HPT, the Gecko’s hier-
archy is not fixed at compile time. An application defines

the whole tree at the execution time and adds or removes

other branches to or from the hierarchy as the application

progresses. Gecko reacts to the changes in the workload size

with this dynamic behavior by inserting more resources and

removing them accordingly. This feature also enables ap-

plications to adapt themselves to the workload type. For

applications that benefit from multicore architectures, like

traversing a linked list, the hierarchy only utilizes multicore

processors instead of accelerators.

3.2 Memory Allocation Algorithm
Uncertainty in location typemakesmemory allocation a chal-

lenging problem. The allocation process has to be postponed

to execution time since only then the location is recognized.

Algorithm 1 lists the allocation algorithm that Gecko uses to
allocate memory. Depending on the location, as discussed

before, a memory can be private or shared among a set of

locations. This introduces a scoping mechanism on the vari-

ables in the system.

Algorithm 1 begins by recognizing if the location chosen

is a leaf node in the tree or not. A leaf node is the most

private location in the hierarchy. The memory allocated by a

leaf node is only accessible by itself. Based on the type of the

location, whether a processor or a GPU, the corresponding

API function, malloc or cudaMalloc, is called.
On the other hand, if the location targeted is not a leaf

location, Gecko traverses the subtree beneath the chosen

location and determines whether all children locations are

multicore or not (children.areAllMC()). If all children lo-

cations are multicore, like Location LocB in Figure 1, we will

use a memory allocation API [8, 10] for the host (like malloc,
numa_alloc [14], and so on). However, if only one of them is

from a different architecture, like Location LocG in Figure 1,

Gecko will allocate memory on the unified memory domain.

Unfortunately, the unified memory allocations are univer-

sally visible, and their visibility cannot be limited to a subset

of devices. Consequently, the memory allocation requests in

PMAM’19 , February 17, 2019, Washington, DC, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

Algorithm 1Memory Allocation Algorithm

Input: дTree: Gecko’s hierarchical tree structure.
Input: loc: the target Location.
Output: Memory Allocation API.

1: function memAlloc(gTree, loc)

2: allocFunc← null ▷ Chosen Allocation API

3: if gTree.isLea f (loc) then
4: if gTree.дetType(loc) == host then
5: allocFunc←malloc
6: else if gTree.дetType(loc) == gpu then
7: allocFunc← cudaMalloc
8: end if
9: else
10: children← gTree.дetChildren()
11: if children.areAllMC() then
12: allocFunc←malloc
13: else
14: allocFunc← cudaMallocManaдed
15: end if
16: end if
17: end function

LocG and LocA of Figure 1 will eventually result in calling the

same API function despite their inherent difference in our

proposed model. A potential limitation mechanism by the

CUDA library that would shrink the visibility scope of the

unified memory allocations would address this shortcoming

in Gecko.
In real applications, the hierarchy tree is not necessarily

hard-coded in the source code allowing the application to

transform and adapt to changes in the environment. Thus,

Gecko provides interfaces to dynamically add new subtrees

(and locations) within the hierarchy or remove them from the

tree in an arbitrary manner. As a result, neither the location

types nor the locations nor the hierarchy may be known

prior to execution. Consequently, the memory allocation

process is not straightforward and becomes challenging.

3.3 Minimum Code Changes
Gecko’s hierarchical tree leads to minimum source code al-

terations. Applications are able to introduce an arbitrary

number of virtual locations to the hierarchy at the execu-

tion time and reform themselves based on the availability

of the resources. This provides a great opportunity for the

single-code base approach. Figure 3a is another representa-

tion of the model in Figure 1: the same configuration with

an extra virtual location, LocV. The dotted lines represent

potential relationships between locations. Such relationships

have not been finalized by the application yet. The new

virtual location, LocV, acts like a handle for applications. Ap-
plications launch their parallel regions in the code on this

location while knowing nothing about the hierarchy struc-

ture beneath LocV. At the execution time, an application is

able to switch between the potential subtrees deliberately.

Multicore

GPUs

(b)

(c)

(d)

Introducing extra
virtual locations

LocV

LocP

LocV

LocP

LocX

(e)

LocV

(a)

Bringing Xeon PHIs
into the hierarchy

Figure 3. Polymorphic capabilities of Gecko leads to less

source code modifications. We can change the location hier-

archy at run time. Our computational target can be chosen

at runtime: processors (b) or GPUs (c). Gecko also supports

deep hierarchies in order to provide more flexibility to appli-

cations (d). We are able to extend the hierarchy as workload

size changes (e).

By announcing LocB or LocC as LocV ’s child, kernels that
are launched on LocV will be executed on a multicore or

multi-GPU architecture, respectively. This shows how Gecko
adapts to different architectures by a simple change in the

association among the locations in the hierarchy.

The structure of hierarchy can be extended arbitrarily in

Gecko. Figure 3d shows an equivalent model for the configu-

ration in Figure 3a. We have introduced three new virtual

locations to the model on the right branch of LocV. Such
changes to the model do not affect the workload distribution

in any way since virtual locations do not possess any compu-

tational resources. The workload submitted to LocV is simply

passed down to its children according to the execution policy

(discussed in Section 4). Virtual locations are also effective in

helping an application adapt to changes in the environment

or workload. Suppose an application has already allocated

four GPUs and wants to incorporate two new Intel Xeon Phis

to the hierarchy tree due to a sudden increase in workload.

The application defines a virtual location, LocX, and declares
the Xeon Phis as its children. Then, by declaring LocX as

the child of LocP, Gecko is able to incorporate the Xeon Phis

into the workload distribution. Hereafter, the computational

workloads that were previously distributed on four GPUs

under LocP will be distributed among the four GPUs and

the two newly added Xeon Phis. Figure 3e shows the new

model with two Xeon Phis included in the hierarchy. Later,

Gecko PMAM’19 , February 17, 2019, Washington, DC, USA

one can remove the LocX location from the tree and return

to Figure 3d.

Gecko offers a location coverage feature that helps extend
the adaptation capabilities of virtual locations. Location cov-

erage makes a virtual location represent all resources with

the same location type. In many cases, the number of lo-

cations of a specific type are unknown until the execution

time. Although the application is not aware of the number of

available resources of such type, it is looking for all available

ones. The location coverage feature brings relief to develop-

ers and makes the code more portable and robust to new

environments.

4 Design and Implementation
This section discusses the prototype of Gecko. We developed

a Python script that takes a Gecko-annotated source code as

an input and creates an output source that fully conforms

to the C++ standard and the OpenACC specifications. Since

our model is developed as a language feature, it can also be

extended to the other languages, like C and Fortran. Figure 4a

shows the compilation framework that is used to compile

a Gecko-annotated source code. After transforming code to

OpenACC, wewill set the compiler’s flag to generate code for

both multicore and GPU. During the execution time, Gecko

will choose the device (multicore or GPUs) accordingly.

4.1 Directive-based Extensions
Gecko provides facilities for memory operations and kernel

execution. With Gecko’s directives, applications are able to
declare locations, perform memory operations (allocation,

free), run kernels on different locations, and wait on kernels

to finish. Directives provide a level of flexibility that library-

based approaches do not necessarily provide. Directives also

requires users to most of the times add fewer additional lines

to the code thus not increasing the Lines of Code (LOC) by

a large number.

Figure 4b displays a Gecko-annotated source code that

implements the model in Figure 4d and runs a simple ker-

nel on it. Each numbered part in the code shows how the

Gecko’s directive and its clauses are utilized. The following

paragraphs discuss each of the numbered parts in the code

in details.

Part 1 declares the type of locations that our application

will target, which will be used within the location defini-

tion clauses later. These clauses are annotated with loctype
and specify the resources required by our application. Ev-

ery location type is named uniquely so that it can be easily

accessed throughout the application’s lifetime. Their names

are user-defined arbitrary names. For instance, the first line

declares the uProc location type, which is an Intel Skylake

64-bit architecture with 16 cores and 4 MB L2 cache. Such

details provide more insight about the resources available

to Gecko, leading to better decision-making strategies at the

execution time. We have reserved the “virtual” name to

represent the virtual locations in Gecko.
Part 2 shows how to define the locationswith the location

clause. Each location is defined by a unique name and a lo-

cation type. Their location types should be from the list of

the previously declared types by loctype. The first location
definition corresponds to the LocA with SysMem as its loca-
tion type. This leads to declaring LocA as our main memory

(DRAM). LocB, LocN, and LocG are virtual locations. Loca-
tions LocN1 and LocN2 are defined as host processors for

a system with two separate processors. And, all GPUs at-
tached to the current node are named as LocGs[i]. In cases

that we are not aware of available resources from the same

location type, we can ask Gecko to allocate all of them with

all keyword as used in the last line of Part 2 .

Part 3 defines the hierarchical relationship among loca-

tions in Figure 4d. Every hierarchy clause accepts a parent
and children keyword to represent the relationship among

locations. The relationship between the parent and its chil-

dren is established with a ‘+’ sign, or it is broken with a ‘-’

sign. The first line declares that LocA is the parent of LocB.
The second line shows how LocN1 and LocN2 have LocN
as their parent. In case of uncertainty regarding available

locations, one can use the all keyword, similar to defining

location, as shown in the third line. Finally, the last line es-

tablishes the relationship between LocG and LocB, which
results in defining LocG as the only child of LocB. LocN and

its subtree structure are reserved for future involvement in

load-balancing strategies. Such a design, defining LocB as

the virtual location, allows us to keep the source code intact

and it lets the hierarchy beneath LocB to be a complex one.

Statements in Parts 1 2 3 can be declared within an ex-

ternal configuration file despite the hard-coded approach in

our example code. This brings a degree of freedom and flexi-

bility toGecko, similar to the Sequoia model. However, unlike

Sequoia, Gecko’s configuration file represent the available

resources and not the mapping strategy of tasks to resources.

The application does not need any recompilation, and any

changes in the configuration file will affect the load distri-

bution in the application. Figure 4c shows a configuration

file for Gecko that replicates the same configuration in the

sample code. Corresponding parts are numbered accordingly

for the configuration file. One can ask Gecko to load the con-

figuration from a file at execution time with the #pragma
gecko config file statement.

Part 4 shows how the hierarchy could be adjusted at

the execution time. If targeting GPUs do not benefit the

application in terms of speedup, we can drop the GPU subtree

from the hierarchy and attach the local processors (CPUs)

to it, as shown in the code within the if-statement. LocG is

no more LocB’s child as it is removed and LocN becomes the

new child of LocB.
Until now, we have only described the system and the

resources that our application are targeting. Lines in Part 5

PMAM’19 , February 17, 2019, Washington, DC, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

1

2

3

4

5

6

7

1

2

3

Configuration file: gecko.conf

8

(a) (b)

(c)

(d)

Figure 4. a) Diagram of Gecko’s runtime and source-to-source translator. b) A sample source code annotated with the Gecko’s
directives. c) A sample of configuration file that resembles the first three sections of the source code (a). d) An overview of

defined hierarchy in the source code (b) and configuration file (c).

show how the memory is allocated in Gecko. For every mem-

ory allocation request, application specifies the data type,

size, and location. As an example, lines in this part allocate

memories with N elements in locations LocA and LocB. Every
allocation request follows the memory allocation algorithm,

as described in Algorithm 1.

Launching a computational kernel in Gecko is realized

by guarding the OpenACC parallel regions. With the at
keyword, the application specifies the destination location

that the parallel region will be launched on. Based on the

execution policy, Gecko splits the loop and distributes the

load among locations within the hierarchy. With exec_pol,
application chooses the distribution policy (as discussed in

Section 4.2) to distribute the iteration space among computa-

tional resources. The chosen policy governs the strategy to

split the loop into slices and then assign each loop slice to a

computational resource under the chosen location. Similar to

the present keyword in OpenACC, the application should

determine the list of used variables inside the region with

the variable_list keyword. Part 6 shows an example of

how to use Gecko to launch a kernel.

Synchronization in Gecko is supported with a pause key-

word as shown in the only line of Part 7 . To provide finer

granularity, the application should specify the location on

which Gecko should wait. This line will put a barrier inside

the application until all the locations under the chosen lo-

cation, LocA in this case, are finished with their assigned

task. Finally, previously allocated memories are freed with

the free keyword on memory clause as shown in Part 8 .

Gecko follows similar algorithm as the memory allocation

algorithm to find the proper API call to free already allocated

memory space.

4.2 Distribution Policies
Gecko distributes workload based on the inputs from the ap-

plication. Workloads with different characteristics demand

different distribution approaches. Within locations, Gecko
follows the OpenACC’s decision to assign number of gangs
and vectors. Currently, Gecko supports five distribution

policies: static, flatten, percentage, range, and any2.
The static policy traverses the tree in a top-down fash-

ion and splits iterations evenly among children, however,

flatten splits iterations by the number of leaf locations.

The percentage policy splits the iteration space based on

the percentages that are given as input to the policy. Similar

to percentage, range splits iterations based on the arbitrary
input numbers by the application. Finally, the any policy as-

signs all the iterations to a single idle location that is chosen

randomly at the execution time.

5 Experimental Setup
Our experimental setup is the NVIDIA Professional Services

Group (PSG) cluster [21]. PSG is a dual socket 16-core Intel

Haswell E5-2698 v3 at 2.30GHz with 256 GB of RAM. Four

NVIDIA Volta V100 GPUs are connected to this node through

PCI-Express bus. Each GPU has 16GB of GDDR5 memory.

2
Please refer to https://github.com/milladgit/gecko for a detailed explana-

tion and an example for each policy.

https://github.com/milladgit/gecko

Gecko PMAM’19 , February 17, 2019, Washington, DC, USA

Table 1. List of benchmarks ported to Gecko - A: Number of

kernels in the code. B: Total kernel launches. SP: Single Pre-

cision - DP: Double Precision - int: Integer - Mixed: DP+int

Application Source Input Data Type A B
vector add - 200,000,000

elements

DP 1 20

stencil SHOC 2048 x 2048 ma-

trix

DP 2 40

bfs Rodinia One million-edge

graph

Mixed 5 39

cfd Rodinia missile.domn.0.2M Mixed 5 9

gaussian Rodinia 2048 x 2048 ma-

trix

SP 3 6141

hotspot Rodinia 1024 data points DP 2 20

lavaMD Rodinia 10x10x10 boxes Mixed 1 1

lud Rodinia 2048 data points SP 2 4095

nn Rodinia 42764 elements SP 1 1

nw Rodinia 2048 x 2048 data

points

int 4 4095

particle filter Rodinia 1024 x 1024 x 40

particles

Mixed 9 391

pathfinder Rodinia width: 500,000 int 1 99

srad Rodinia 2048 x 2048 ma-

trix

Mixed 7 12

We used CUDA Toolkit 9.2 and PGI 18.4 (community edition)

to compile the OpenACC and CUDA codes, respectively.

Please note that we tried multiple avenues to run experi-

ments on a system that connects GPUs via NVLink. Getting

access to the Amazon and Google cloud instances that uses

V100 and NVLink was not straightforward, let alone the

costs involved. We were able to use Summit at ORNL only

very briefly as the system is undergoing testing and mainte-

nance. Preliminary Summit results were inconclusive, thus

we could not draw a summary.

We successfully port benchmarks from the Rodinia suite

and SHOC to Gecko by annotating their source codes with

Gecko’s proposed directives
3
. Table 1 shows a list of bench-

marks used in this paper. The table also shows their input,

data type, the total number of kernels, and the total kernel

launches at the execution time. The annotation process is as

follows: (1) Application asks Gecko to load the configuration

file; (2) Every malloc’ed memory is replaced with a memory
allocate clause in the code; (3) All OpenACC parallel re-

gions are guarded with a region clause; (4) All OpenACC’s

update, copy, copyin, and copyout clauses in the code

are removed; (5) A pause clause is placed at arbitrary loca-

tions in the code to ensure the consistency of algorithm; and

finally, (6) All free functions for memory deallocations are

replaced with memory free clauses. These are the necessary
modifications required for any code to use Gecko.
We create a configuration file for Figure 4d for a node

in PSG. Location LocN, however, is defined to have only a

single child, instead of two. In all the benchmarks, all compu-

tational regions were set to be executed on LocB by default.

3
We were unable to compile backprop, hearwall, kmeans, leukocyte, my-

ocyte, streamcluster of Rodinia suite using OpenACC 2.6 and PGI 18.4

despite many attempts to resolve their issues. Hence we skipped them and

did not port them to Gecko.

This gives us the flexibility to change the final locations

without any changes made to the source code. By chang-

ing the configuration file, we specify where our code has to

be executed (on the host or GPUs or both). We chose the

static execution policy for all the regions of all benchmarks

by default. In our experiments, we did not customize the

execution location and policy for any specific region.

6 Results
We assess the performance of Gecko and evaluate its impact

on multiple GPUs by measuring the speedup achieved and

the rate of page faults. In the process, we also change the

workload distribution between a host processor and a set of

GPUs.

6.1 Speedup
Figure 5 shows the speedup results for the benchmarks. We

measure the execution time of computation for each bench-

mark. We did not measure the memory allocation and its

release. The Gecko results use one to four GPUs. Gecko also
uses UVM to allocate memory for different level of hierar-

chy. The OpenACC results use one GPU by default, with

Unified Virtual Memory (UVM) (acc-managed in the figure)

and without UVM (acc in the figure). The speedup results

are with respect to the acc-managed version of the code.

Currently the compilers supporting OpenACC do not pro-

vide an implementation that will support the automatic dis-

tribution of the workload to multiple devices nor is there an

explicit clause within OpenACC that can be used for work-

load distribution. As a result, the OpenACC speedup results

use only a single GPU. The results of Gecko for 1-GPU com-

pared with that of the OpenACC versions (acc-managed,
acc) reveal promising performance improvements. One of

the key factors that contribute to such an improvement is

the asynchronous execution of kernels, which is enabled by

default in Gecko. The asynchronous execution is not enabled

by default in OpenACC and programmers are required to

explicitly request for such behavior.

Although Gecko is imposing performance overhead due to

the extra technicalities to support multiple devices, the main

source of performance loss is due to the UVM technology.

Figure 6 shows the total page faults occurred on all GPU

devices. In all cases, except for vector add and cfd, utilization
of more GPU devices by Gecko has led to an exponential

increase in total page faults on the devices.

Excessive page faults are due to two reasons: (1) CUDA

performs the memory allocation on the current active de-

vice (usually device 0). Consequently, any accesses to the

allocated memories from other devices are serviced via the

communication medium, in our case, the PCI-E bus. How-

ever, utilizing PCI-E to fulfill remote memory accesses slows

down the execution time of the kernel that leads to severe

performance loss. To address this issue, NVIDIA introduced

PMAM’19 , February 17, 2019, Washington, DC, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

ste
nci

l

ve
cto

r_a
dd bfs cfd

ga
uss

ian

ho
tsp

ot

lav
aM

D lud nn nw

pa
rtic

lef
ilte

r

pa
thf

ind
er

sra
d_v

2
0

1

2

3

4

5

Sp
ee

du
p

acc-managed
Gecko-1GPU

Gecko-2GPU
Gecko-3GPU

Gecko-4GPU
acc

Figure 5. Speedup of benchmark applications with Gecko.
acc-managed is OpenACC with UVM and acc is OpenACC
without UVM.

ste
nci

l

ve
cto

r_a
ddbfs cfd

ga
uss

ian

ho
tsp

ot

lav
aM

D lud nn nw

pa
rtic

lef
ilte

r

pa
thf

ind
er

sra
d_v

2
100

101

102

103

104

105

106

107

GP
U

Pa
ge

 F
au

lts

acc-managed Gecko-1GPU Gecko-2GPU Gecko-3GPU Gecko-4GPU

Figure 6. Total GPU page faults of benchmark applications

with Gecko. acc-managed is OpenACC with UVM and acc
is OpenACC without UVM.

NVLink [11] and NVSwitch [20] technologies that reduce

access times to the remote data among GPU devices thus

addressing the disadvantages of PCI-E. We expect the per-

formance of Gecko to significantly improve if the aforemen-

tioned technologies are employed instead of PCI-E as the

main communication medium; (2) Memory access patterns

also play a significant role in obtaining the best performance.

Gecko distributes the loop iterations among multiple devices

with the idea of distributing workload. However, the memory

accesses for some applications, like hotspot, is very similar to

a stencil code – false sharing effects. Thus, they suffer from

multi-device utilization. Therefore, it is most likely that a

GPU is accessing memory belonging to another GPU. With

the current allocation mechanism for UVM by CUDA, the

chance of inter-GPU accesses are high.

The cfd and vector_add benchmarks benefit from Gecko
when compared to the other ones. Further investigation of

their source codes reveals that they have very little remote

accesses and they access the global memory in a coalesced

pattern: global memory loads and stores are packed into a

few transactions to minimize the device memory accesses.

The coalescing accesses minimize the turnaround time in

retrieving data from the global memory.

6.2 Heterogeneous Execution
Gecko targets multiple different platforms with zero code

modification. In this subsection, we will discuss targeting

multiple GPU devices while the host is also participating

in the workload distribution. By adding a line of code to

the configuration file and declaring LocN as a child of LocB,
Gecko recognizes the host as an execution resource.

Figure 7 shows the speedup results (wall-clock time) for

the heterogeneous execution.With the help of the percentage
execution policy,Gecko splits the iteration space between the
host and the GPU devices. We have changed the host’s itera-

tion share from 0% to 100% and then split the rest of iterations

among the GPU devices with the static execution policy. The

X-axis in Figure 7 shows the host’s share in execution. For

instance, 20 on X-axis determines that host executes 20%

iterations of a loop while the rest (80%) is partitioned among

GPUs equally. The Y-axis shows the speedup achieved with

respect to the 100% case (only on the host). Results reveal

how benchmarks like bfs, hostspot, lavaMD, pathfinder, and
srad_v2 benefit from utilizing only a single GPU. In such

cases, applications can use the any execution policy of Gecko
to target only one single GPU. As we engage the host CPU

in workload distribution, speedup drops, except for bfs.
Some benchmarks like nn and particlefilter are platform-

neutral: utilizing either host or any number of GPUs to per-

form their computations will not affect their performance in

any ways. The lud and nw benchmarks, on the other hand,

are sensitive to the platform chosen. Heterogeneity kills the

performance for such workloads. As long as all iterations are

performed with a specific platform (either host or GPU de-

vices), they do not lose performance. In such cases, the host

participation in the execution adversely affects the speedup.

Moreover, those benchmarks are not multi-GPU friendly too.

As we increase the number of GPUs, the performance of lud
is lost and nw shows no performance improvement.

The gaussian benchmark shows how an application bene-

fits from assigning a big chunk of its iteration space to the

GPUs. As we increase the share of the host CPU, the speedup

decreases to its minimum value. Moreover, similar to lud and

nw, gaussian is suffering from multi-GPU utilization too.

When we target only GPUs (CPU share is 0), the speedup

drops as the total number of GPUs utilized increases.

The stencil application suffers from both heterogeneity

and multi-GPU execution. As we increase CPU’s share in

workload distribution, the performance drops gradually. Uti-

lizing more GPUs does not improve performance. The main

factor that contributes to the performance degradation in

multi-device utilization is the excessive remote accesses.

Stencil codes are not locality-friendly codes: computing an

element of a matrix depends on the computation of neighbor

points, which are not necessary close in their memory lay-

out. As a result, a subset of accesses will cross distribution

Gecko PMAM’19 , February 17, 2019, Washington, DC, USA

0 50 100
0
5

10
15

Sp
ee

du
p

stencil

0 50 100
0
5

10
15

vector_add

0 50 100
0
5

10
15

bfs

0 50 100
0
5

10
15

cfd

0 50 100
0
5

10
15

Sp
ee

du
p

gaussian

0 50 100
0
5

10
15

hotspot

0 50 100
0
5

10
15

lavaMD

0 50 100
0
5

10
15

lud

0 50 100
0
5

10
15

Sp
ee

du
p

nn

0 50 100
CPU share

0
5

10
15

nw

0 50 100
CPU share

0
5

10
15

particlefilter

0 50 100
CPU share

0
5

10
15

pathfinder

Host+1GPU
Host+2GPU
Host+3GPU
Host+4GPU0 50 100

CPU share

0
5

10
15

Sp
ee

du
p

srad_v2

Figure 7. Simultaneous execution of benchmark applica-

tions on a single core of Intel Xeon (host) and four NVidia

GPUs. The X-axis determines the percentage of iterations ex-

ecuted on the host (for all kernels) and the rest is distributed

among GPUs. The Y-axis shows the achieved speedup with

respect to 100% execution on the host.

boundaries, which, in turn, leads to remote access to other

devices. Since memory consistency is guaranteed at page-

size units, every remote access result in the transfer of a

page between devices. Thus, the peak performance of stencil
codes is realized when only one GPU is utilized for the whole

dataset. Applications like hotspot, lavaMD, and pathfinder
follow the same pattern as stencil does. Investigating their
source code reveals that their memory accesses are similar

to the accesses by stencil.
The cfd benchmark shows interesting results. As we de-

crease host’s share and offload more computations to GPUs,

the performance increases and single-GPU configuration

performs better with comparison to the others. However, as

we decrease the host’s share to 40%, 1-GPU configuration

stops improving. Decreasing host’s share and utilizing more

GPU devices lead to performance improvements. Offloading

all iterations to GPUs, in the cfd’s case, results in better per-

formance in comparison to other configurations. Similarly,

the performance of vector add also improves as the host’s

share decreases. As the host’s share decreases from 100%

to 20%, speedup gradually increases up to 4.1x. vector add
reaches its peak performance (9.26x) when we utilize all GPU

devices.

7 Related Work
Shared memory systems have been the target of HPC appli-

cations for the past decade. Chores [7] proposed a program-

ming model to enable applications to run on uniform mem-

ory access (UMA) shared-memory multiprocessors. OpenMP

has also been a great advocate for parallel programming

models for shared-memory architecture in a homogeneous

platform, and since 4.0, they support heterogeneous systems

as well. Similarly, OpenACC has provided support for hetero-

geneous systems and rapidly gained wide momentum. How-

ever, the above-mentioned approaches support just a single

accelerator, while the prevalent trend is adding multiple ac-

celerators to a single node. VirtCL [30] discusses an OpenCL

programming model utilizing multiple homogeneous GPUs.

It replicates an array on host and other devices, and ensures

the consistency by locking the whole object (arrays) on any

devices that are using it. However, locking objects prevents

applications from declaring finer granularity of parallelism.

Gecko allows finer granularity while relying on the consis-

tency control provided by hardware.

Targeting multi-platforms have been addressed in the past.

Seqouia [9] is a cluster-wide approach that is based on the

Parallel Memory Hierarchy (PMH) model [2]. It represents a

hierarchy among available memory spaces in the system, and

workload is distributed through task definition. Similar to

Gecko, computations in Seqouia occur within the leaf nodes,

and the hierarchy is be defined through a configuration file.

However, Gecko does not finalize the hierarchy, and appli-

cations are able to modify their structure according to their

requirements. Hierarchical Place Trees (HPT) [29] model

bears similarity to Seqouia and Gecko in the exploitation

of the “location” concept. However, HPT lacks the dynamic

features of Gecko, such as dynamic memory allocation and

dynamic hierarchy. Gecko provides static and dynamic dec-

laration of locations and their relationship, and, with help

of the memory allocation algorithm introduced in Section 2,

applications allocate memories dynamically based on the

chosen location at run time. Many modern languages have

also been introduced (e.g., Chapel [4] and X10 [5]) that pro-

vide facilities to describe data distribution and parallelism

through an abstract model for both data and computation.

8 Conclusion
In this paper, we designed and developed a novel hierarchi-

cal portable abstraction raised at the language level in order

to target heterogeneous shared memory architectures com-

monly found in modern platforms. Following are some of

the unique features of our novel model Gecko: (1) The model

allows the scientific developers to choose locations arbitrar-

ily and switch between locations depending on application

requirements with minimum code alteration. (2) Once the

location is chosen, the decision gets relegated to the run-

time that will assist with using appropriate computational

resources. The runtime also acts as a smart tool dynamically

choosing between the resources available for the execution

of the code. (3) The model is highly user-friendly thus min-

imizing the amount of code to be changed whenever the

architecture and the program requirements vary.

Our experiments with Gecko demonstrate that the model

is well suited for a multi-GPU environment as it delivers

PMAM’19 , February 17, 2019, Washington, DC, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

a portable and scalable solution primarily for benchmark

where remote memory accesses between devices are mini-

mum. In the near future, we will explore support for Gecko to
enable the rich functionalities of Processing-In-Memory (PIM)

architectures. Moreover, Gecko will support NVM and persis-

tent memories that will be available in modern architectures.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1531814 and Depart-

ment of Energy under Grant No. DE-SC0016501.

References
[1] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. 2015. PIM-enabled instructions:

A low-overhead, locality-aware processing-in-memory architecture.

In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). 336–348.

[2] B. Alpern, L. Carter, and J. Ferrante. 1993. Modeling parallel computers

as memory hierarchies. In Proceedings of Workshop on Programming
Models for Massively Parallel Computers. 116–123.

[3] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D.

Donofrio, S. D. Hammond, K. S. Hemmert, S. M. Kelly, H. Le, V. J.

Leung, D. R. Resnick, A. F. Rodrigues, J. Shalf, D. Stark, D. Unat, and

N. J. Wright. 2014. Abstract Machine Models and Proxy Architectures

for Exascale Computing. In 2014 Hardware-Software Co-Design for High
Performance Computing. 25–32.

[4] B.L. Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Pro-

grammability and the Chapel Language. Int. J. High Perform. Comput.
Appl. 21, 3 (Aug. 2007), 291–312.

[5] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-oriented Approach to Non-uniform

Cluster Computing. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05). ACM, New York, NY, USA, 519–538.

[6] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. 1974. Design of ion-implanted MOSFET’s with very small

physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (Oct 1974),
256–268.

[7] Derek L. Eager and John Jahorjan. 1993. Chores: Enhanced Run-time

Support for Shared-memory Parallel Computing. ACM Trans. Comput.
Syst. 11, 1 (Feb. 1993), 1–32.

[8] Diego Elias, Rivalino Matias, Marcia Fernandes, and Lucio Borges.

2014. Experimental and Theoretical Analyses of Memory Allocation

Algorithms. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC ’14). ACM, New York, NY, USA, 1545–1546.

[9] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon

Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex

Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-

ming the Memory Hierarchy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC ’06). ACM, New York, NY, USA,

Article 83.

[10] T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo. 2011. An Experi-

mental Study on Memory Allocators in Multicore and Multithreaded

Applications. In 2011 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies. 92–98.

[11] D. Foley and J. Danskin. 2017. Ultra-Performance Pascal GPU and

NVLink Interconnect. IEEE Micro 37, 2 (Mar 2017), 7–17.

[12] M. Ghane, S. Chandrasekaran, R. Searles, M.S. Cheung, and O. Hernan-

dez. 2018. Path forward for softwarization to tackle evolving hardware.

In Proceedings of SPIE - The International Society for Optical Engineering,

Vol. 10652.

[13] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. 2011.

GPUs and the Future of Parallel Computing. IEEE Micro 31, 5 (Sept
2011), 7–17.

[14] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access): An

Overview. Queue 11, 7, Article 40 (July 2013), 12 pages.

[15] Alexey Lastovetsky. 2013. Heterogeneity in parallel and distributed

computing. J. Parallel and Distrib. Comput. 73, 12 (2013), 1523 – 1524.

[16] Alexey L Lastovetsky and Jack Dongarra. 2009. High performance
heterogeneous computing. Vol. 78. John Wiley & Sons.

[17] Xiangke Liao, Liquan Xiao, Canqun Yang, and Yutong Lu. 2014.

MilkyWay-2 supercomputer: system and application. Frontiers of
Computer Science 8, 3 (01 Jun 2014), 345–356.

[18] G. H. Loh. 2008. 3D-Stacked Memory Architectures for Multi-core

Processors. In 2008 International Symposium on Computer Architecture.
453–464.

[19] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R.

Das. 2011. Architecting on-chip interconnects for stacked 3D STT-

RAM caches in CMPs. In 2011 38th Annual International Symposium
on Computer Architecture (ISCA). 69–80.

[20] NVidia NVSwitch Whitepaper. 2018. http://images.nvidia.com/
content/pdf/nvswitch-technical-overview.pdf. (2018). Accessed: 2018-
08-08.

[21] NVIDIA PSG. 2017. http://psgcluster.nvidia.com/trac. (2017). Accessed:
2017-12-03.

[22] OpenACC Language Committee. 2017. OpenACC Application Pro-

gramming Interface, Version 2.6. https://www.openacc.org/sites/
default/files/inline-files/OpenACC.2.6.final.pdf. (November 2017).

[23] ORNL’s Summit. 2018. https://www.olcf.ornl.gov/for-users/
system-user-guides/summit/. (2018). Accessed: 2018-08-08.

[24] ORNL’s Titan. 2018. https://www.olcf.ornl.gov/for-users/
system-user-guides/titan/. (2018). Accessed: 2018-08-08.

[25] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,

O. Mutlu, and C. R. Das. 2016. Scheduling techniques for GPU archi-

tectures with processing-in-memory capabilities. In 2016 International
Conference on Parallel Architecture and Compilation Techniques (PACT).
31–44.

[26] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.

Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F.

Hannig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H.

Ltaief, N. Maruyama, C. J. Newburn, and M. PericÃąs. 2017. Trends

in Data Locality Abstractions for HPC Systems. IEEE Transactions on
Parallel and Distributed Systems 28, 10 (Oct 2017), 3007–3020.

[27] D. H. Woo, N. H. Seong, D. L. Lewis, and H. S. Lee. 2010. An optimized

3D-stacked memory architecture by exploiting excessive, high-density

TSV bandwidth. In HPCA - 16 2010 The Sixteenth International Sympo-
sium on High-Performance Computer Architecture. 1–12.

[28] Yonghong Yan, Ron Brightwell, and Xian-He Sun. 2017. Principles of

Memory-Centric Programming for High Performance Computing. In

Proceedings of the Workshop on Memory Centric Programming for HPC
(MCHPC’17). ACM, New York, NY, USA, 2–6.

[29] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2010. Hier-

archical Place Trees: A Portable Abstraction for Task Parallelism and

Data Movement. In Languages and Compilers for Parallel Computing,
Guang R. Gao, Lori L. Pollock, John Cavazos, and Xiaoming Li (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 172–187.

[30] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. 2015.

VirtCL: A Framework for OpenCL Device Abstraction and Manage-

ment. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2015). ACM, New York,

NY, USA, 161–172.

http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://psgcluster.nvidia.com/trac
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/
https://www.olcf.ornl.gov/for-users/system-user-guides/titan/

	Abstract
	1 Introduction
	2 Methodology: the Gecko model
	3 Key Features of Gecko
	3.1 Dynamic Hierarchy Tree
	3.2 Memory Allocation Algorithm
	3.3 Minimum Code Changes

	4 Design and Implementation
	4.1 Directive-based Extensions
	4.2 Distribution Policies

	5 Experimental Setup
	6 Results
	6.1 Speedup
	6.2 Heterogeneous Execution

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

