
Towards A Portable Hierarchical View of Distributed Shared
Memory Systems: Challenges and Solutions

Millad Ghane
Department of Computer Science

University of Houston
TX, USA

mghane2@uh.edu,mghane@cs.uh.edu

Sunita Chandrasekaran
Department of Computer and Information

Sciences
University of Delaware

DE, USA
schandra@udel.edu

Margaret S. Cheung
Physics Department
University of Houston

Center for Theoretical Biological Physics,
Rice University

TX, USA
mscheung@central.uh.edu

Abstract
An ever-growing diversity in the architecture of modern super-
computers has led to challenges in developing scientific software.
Utilizing heterogeneous and disruptive architectures (e.g., off-chip
and, in the near future, on-chip accelerators) has increased the soft-
ware complexity and worsened its maintainability. To that end, we
need a productive software ecosystem that improves the usability
and portability of applications for such systems while allowing
every parallelism opportunity to be exploited.

In this paper, we outline several challenges that we encountered
in the implementation of Gecko, a hierarchical model for distributed
shared memory architectures, using a directive-based program-
ming model, and discuss our solutions. Such challenges include:
1) inferred kernel execution with respect to the data placement,
2) workload distribution, 3) hierarchy maintenance, and 4) memory
management.

We performed the experimental evaluation of our implementa-
tion by using the Stream and Rodinia benchmarks. These bench-
marks represent several major scientific software applications com-
monly used by the domain scientists. Our results reveal how the
Stream benchmark reaches a sustainable bandwidth of 80 GB/s and
1.8 TB/s for single Intel Xeon Processor and four NVIDIA V100
GPUs, respectively. Additionally, the srad_v2 in the Rodinia bench-
mark reaches the 88% speedup efficiency while using four GPUs.

CCS Concepts • Computer systems organization→Hetero-
geneous (hybrid) systems;

Keywords Hierarchy, Heterogeneous, Portable, Shared Memory,
Programming Model, Abstraction

ACM Reference Format:
Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung. 2020. To-
wards A Portable Hierarchical View of Distributed Shared Memory Systems:
Challenges and Solutions. In The 11th International Workshop on Program-
ming Models and Applications for Multicores and Manycores (PMAM’20),
February 22, 2020, San Diego, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3380536.3380542

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
PMAM’20 , February 22, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7522-1/20/02. . . $15.00
https://doi.org/10.1145/3380536.3380542

1 Introduction
Heterogeneity has become increasingly prevalent in the recent
years given its promising role in tackling energy and power con-
sumption crisis of high-performance computing (HPC) systems [15,
20]. Dennard scaling [14] has instigated the adaptation of heteroge-
neous architectures in the design of supercomputers and clusters
by the HPC community. The July 2019 TOP500 [36] report shows
how 126 systems in the list are heterogeneous systems configured
with one or many GPUs. This is the prevailing trend in current gen-
eration of supercomputers. As an example, Summit [31], the fastest
supercomputer according to the Top500 list (June 2019) [36], has
two IBM POWER9 processors and six NVIDIA Volta V100 GPUs.

Computer architects have also started to integrate accelerators
and conventional processors on one single chip; hence, moving
from node-level parallelism, e.g., modern supercomputers, to chip-
level parallelism, e.g., System-on-chips (SoC). Most likely, in the
near future, computing nodes will possess chips with diverse type
of computational cores and memory units on them [23]. Figure 1a
displays potential and envisioned schematic architecture of a fu-
ture SoC. Fat cores in the figure are characterized by their sophis-
ticated branch prediction units, deep pipelines, instruction-level
parallelism, and other architectural features that optimize the serial
execution to its full extent. They are similar to the conventional
processors in current systems. Thin cores, however, are the alterna-
tive class of cores, which have a less complex design, consume less
energy, and have higher memory bandwidth and throughput. Such
cores are designed to boost the performance of the data parallelism
algorithms [4].

The increasing discrepancy between memory bandwidth and
computation speed [39] has led computer architects seek disrup-
tive methods like Processing-In-Memory (PIM) [22, 24] to solve
this problem. PIM-enabled methods bring memory modules closer
to the processing elements and place them on the same chip to
minimize the data transfer with off-chip components. Such adapta-
tion is manifesting itself in the form of die-stacked memories (e.g.,
3D Stacked Memories [27, 38]) and scratchpad memories [6]. Fig-
ure 1a shows such on-chip memory organization. The memory
modules on the chip form a network among themselves to ensure
the data consistency among themselves [30], and the data trans-
fer among computational cores on the chip is enabled with the
network-on-the-chip (NoC) component [8, 17].

To that end, we are in dire need of a simple yet robust model to
efficiently express the implicit memory hierarchy and utilize the
parallelization opportunity in potential up and coming exascale
systems [37] while improving the programmability, usability, and
portability of the scientific applications for the exascale era.

https://doi.org/10.1145/3380536.3380542
https://doi.org/10.1145/3380536.3380542

PMAM’20 , February 22, 2020, San Diego, CA, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

(a)

System-on-a-Chip

Scratchpad
Memories /
L3 Cache

Off-chip

D
R
A
M

N
VR

AM

H
igh C

apacity, Low
 Bandw

idth

3D-Stacked
Memory

Low Capacity, High Bandwidth

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

3D-Stacked
Memory

Fat
Core

Fat
Core

Fat
Core

Fat
CoreThin Cores /

Accelerators

NoC

Shared Memory
Among Thin Cores

Network-on-Chip

Non-Volatile
RAM

Memory NoC

(b)

Off-chip Memory

Fat
Core

Fat
Core

Thin
Cores

Thin
Cores

Thin
Cores

Thin
Cores

FPGAApplication
Specific

Application
Specific

On-chip Memory

DRAM NVM

(c)

DRAM

3D Stacked

NVRAM

Fat Cores

FC1 FC3FC2 FC4

Accelerators

SMT1 SMT3SMT2 SMT4

Shared
Memory of
Thin Cores

Local Memory
per Fat Core

Figure 1. (a) A system-on-a-chip (SOC) processor, (b) an abstraction machine model (AMM), adopted from [4], for an exascale-class
compute node, and (c) its corresponding Gecko model. Every component on the model in (b) has a corresponding location in the Gecko
model (c). Virtual locations are colored in gray.

With simplicity and portability as their main goal, Ghane et
al. [18] proposed a hierarchical model, Gecko, that helps the soft-
ware developers to abstract the underlying hardware of the com-
puting systems and create portable solutions. To demonstrate the
feasibility of Gecko, they also implemented Gecko as directive-
based programming model with the same name. Now that Gecko
is in place, this paper discusses the model’s feature sets while ad-
dressing challenges along the way. Our main contributions in this
paper are to declare those challenges and provide our solutions for
them. Those challenges are:

1. Given a set of variables scattered in various locations on the
hierarchy tree, in which of these locations Gecko would exe-
cute a kernel? We propose a novel algorithm, Most Common
Descendent (MCD), to address this challenge. Discussed in
Section 3.

2. Having chosen a location, how does Gecko distribute exe-
cution among the children of a location? We propose five
distribution policies to address this scenario. Discussed in
Section 4.

3. How does Gecko’s runtime library maintain the tree hier-
archy and the workload distribution internally? We use a
Reverse Hash Table to propose our solutions. Discussed in
Section 5.

4. Considering the dynamism that we introduce, how is mem-
ory allocated since the targeted location is only known at the
execution time? We use Gecko’s multiCoreAlloc to address
this challenge. Discussed in Section 6.

The rest of the paper is organized as follows. Section 2 provides
a brief overview of Gecko and its components. Section 7 discusses
how we ported the Stream benchmark [13] to Gecko as an exam-
ple. Section 8 discusses the performance results of the Stream and
Rodinia benchmarks ported to Gecko. Finally, Sections 9 and 10
discuss the related work and conclude our work, respectively.

2 Gecko: The Hierarchical Model
2.1 Background
Although hardware offers a promising potential to provide the
exascale requirements, utilizing such hardware has been a real
challenge from the software standpoint. There has been a dire need
for a simpler software solution at the programming level to increase
developer’s productivity. Bair et al. [4] proposed a set of abstract

machine models (AMMs) to describe the computer architectures.
AMMs are intended as communication aids between computer
architects and software developers to study the performance trade-
offs of a model. Figure 1b shows a promising AMM for potential
heterogeneous exascale systems [4]. This model has the potential
to represents both node- and chip-level systems.

Figure 1c shows the equivalent Gecko model for the abstract
model of Figure 1b. The fat cores, depicted with FCx, have the po-
tential to represent both the conventional processors in current
systems (e.g., IBM POWER9 in Summit) and modern on-chip pro-
cessors in the SOC processor (e.g., “fat cores” in Figure 1a). Other
components in Figure 1c — locations in Gecko’s terminology — have
similar physical manifestations in real scenarios.

2.2 Brief Overview of Gecko
The principal components of a Gecko model are its locations. They
are an abstraction of availablememory and computational resources
in a system and are connected to each other, similar to a hierarchi-
cal tree structure. Each location represents a particular memory
subsystem; e.g., the host memory, the device memory on the ac-
celerators, and so on. Potential memory locations can be grouped
together and form a virtual location. The virtual locations in our
model have no physical manifestation in the real world. Their role
is to simplify the management of similar locations and to minimize
code modifications. Figure 1c is an example of a Gecko model for
the SOC shown in Figure 1a.

Gecko’s memory model is very similar to the cache organization
in modern processors. Based on the exascale report by Bair et al. [4],
memory components are projected to be multi-level cached mem-
ories, in contrary to one-level, flat, non-cached memories. Gecko
follows the former approach by exploiting multi-level memories,
where data in a particular level is cached by another level. While
following this approach, it has one exception: memory allocated
in a particular location is accessible by that location and all of its
children, while it remains private with respect to its parent.

Computations are performed by the leaf locations at the bottom
of the tree. Such locations are conventional processors, GPU devices,
Processing-In-Memory (PIM) [22], and other non-conventional pro-
cessors like FPGAs and DSPs. Gecko’s hierarchical tree structure is
a dynamic structure that is described and defined at the execution
time. To begin with, applications describe the type of locations

Gecko: Challenges and Solutions PMAM’20 , February 22, 2020, San Diego, CA, USA

they are targeting through their lifetime. Then, the locations are
defined based on the predefined types. By declaring the relation-
ships between locations, the hierarchical structure is complete and
functional. Applications are able to modify the structure on-the-fly
as they encounter different architectures. Such a flexibility is amust
for the future HPC systems due to the diversity in their design.
Developing many stand-alone frameworks/applications to target
various architectures is not a feasible approach anymore. Thus, soft-
ware should be able to adapt itself to the different configurations
in a portable manner.

Gecko, since it targets single node parallelization, is a viable
model for the ‘X’ in the MPI+X. After workload distribution among
nodes with MPI, Gecko enables an application to adapt itself to the
available resources in each node with the same executable file. By
changing the hierarchical tree at the execution time, we are able
to execute our application with the configuration of the current
MPI rank. In contrast, for the current approaches like OpenMP
and OpenACC, the applications do not have such flexibility as they
require all MPI ranks to have the same configuration. In those cases,
the nodes should be homogeneous in their configuration. However
Gecko does not have this requirement.

3 Inferred Execution
Data placement is not a trivial job. Agarwal et al. [2] andArunkumar
et al. [5] narrate how the onus is on an “expert programmer” or
on an extensive proffer that can determine the efficient placement
of data. Either of the two approaches has its own advantages and
drawbacks. Our model, Gecko, relies on the programmer to place
the data in their proper location. The programmer, using Gecko’s
directives, allocates a block of memory on any location. This allows
Gecko to have an up-to-date knowledge of where each allocated
memory is placed.

As an application progresses over time, it allocates memories in
different locations. The location that is chosen depends on various
criteria (e.g., bandwidth- or capacity-optimized memories). This, in
turn, causes the memories allocated to be scattered around different
locations within the hierarchy. Therefore, if a computational kernel
utilizes multiple memories that are not in the same location, a
location that is the most suitable has to be chosen, which has to be
accessible by all the allocated memories throughout the hierarchy.
We handle this technique by proposing a novel algorithm elaborated
in the following section.

Our current work significantly differs from our previous work
Ghane et al. [18, 19] in a way that our previous work does not use
this novel algorithm and required the developers to choose the
location manually using the at keyword.

3.1 Data Locality
Moving data around is quite a costly operation. Hence, reducing
the number of the data transfers improves the performance signif-
icantly. Such improvement is due to the reduction of the waiting
time for the completion of the data transfer operation. Our motiva-
tion is to achieve this improvement by helping developers to move
their executable code closer to where the data is instead of moving
the data. To that end, Gecko enables the migration of the compu-
tations to the targeted location instead of moving data. When a
kernel is initiated on previously-allocated memories, Gecko locates
the location of each memory in the hierarchy, and then it finds the

Algorithm 1 Most Common Descendent (MCD) Algorithm
Input: T : Gecko’s hierarchical tree structure.
Input: L: List of locations.
Input: pathToRoot (t , n): returns the locations on the path from node n to root of the Tree t
Output: The most common descendent or null
1: function mcdAlgorithm(T, L)
2: commonChild← L0
3: commonPath← pathToRoot (T, L0)
4: for each Li ∈ L do
5: if Li < commonPath then
6: newPath← pathToRoot (T, Li)
7: if commonChild < newPath then
8: return null
9: end if
10: commonChild← Li
11: commonPath← commonPath
12: end if
13: end for
14: return commonChild
15: end function

(a) (b)

(c) (d)

Figure 2. (a) The starting point and (b), (c), and (d) Three different
scenarios of the MCD algorithm

proper location to execute the computational kernel based on those
locations. Choosing an appropriate location depends on where the
memories are scattered within the hierarchy. To find the appropri-
ate location within the hierarchy efficiently, we propose a novel
algorithm Most Common Descendent (MCD) algorithm. The next
Section 3.2 discusses our algorithm and its adaptability in detail.

3.2 Most Common Descendent (MCD) Algorithm
Given a hierarchy tree and a set of locations within the tree, the
MCD algorithm finds a location in the set that is the child and/or
grandchild of all other locations in the input set. Such a location is
also the deepest location in the hierarchy among the locations in
the input set. This is shown in details in Algorithm 1.

The MCD algorithm is the exact opposite of the Lowest Common
Ancestor (LCA) algorithm [3]. While LCA traverses upwards in the
tree to find the most common parent among a given set of loca-
tions, MCD traverses the tree downwards in order to find the most
common child. Unlike LCA, MCD may not have a final answer for a
given input set. In such cases, we have to use the move construct in
Gecko to transfer a previously allocated memory from its location
to another location that satisfies the criteria of the MCD algorithm.

Figure 2 demonstrates three scenarios that will happen when we
run the MCD algorithm as shown in Algorithm 1. First, we set the
first location as the final answer and record its path to the root as
the final path (shown as a). Then, we loop over other locations. For
each location, there are three possible scenarios, which are shown
in Figure 2 (b), (c), and (d). If a location is found on the final path (as
shownwith b), we already have the final answer, so we will skip this
location. If a location has a path to the root that does not overlap
with the current final path (as shownwith c), there is no final answer

PMAM’20 , February 22, 2020, San Diego, CA, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

0 1,000,000

(a) static (c) percentage or range

5% 5%

0 1,000,000

22.5% each

(b) flatten

0 1,000,000 0 1,000,000

(d) any

Free Location
Busy Location

Iteration
Space

Figure 3. Four different workload distribution policies that are supported by Gecko.

that satisfies the provided input, and consequently, the program
halts. Finally, if a location has a path to the root that includes the
current final answer (as shown in d), the final answer and the final
path are changed to this new location and path. To summarize, the
MCD algorithm finds a common path among all input locations.
If one is found, the deepest location in the hierarchy is returned.
Otherwise, there is no result for the input under consideration.

Theorem: The complexity of the MCD algorithm, in the worst
case scenario, is O(n loд(n)). Proof: The for-loop on Line 4 of
Algorithm 1 has to check every node in the list. Additionally, the
complexity of Line 6 (pathToRoot(T, Li)) of Algorithm 1 is related
to the height of the tree. Accordingly, for a complete tree where
each location hasm children, extracting path from any arbitrary
location to root has a complexity of O(loдm (n)). Thus, in the worst
case scenario (wherem = 2), the complexity becomes O(n loд(n)).

4 Workload Distribution Policy
The next step after determining where to execute the kernel is to
find out how to distribute the workload among children associated
to that location. Gecko provides a set of distribution policies that
a programmer is able to select. The distribution policy is applied
to all the iterations of the for-loop. Similar to directive-based pro-
gramming models, Gecko partitions iterations of a loop and assigns
each partition to a location that will be executed. The partitioning
process is governed by distribution policies. Figure 3 demonstrates
how these policies partition a for-loop with 1,000,000 iterations.
Supporting policies by Gecko are static, flatten, percentage, range,
and any, which are discussed below.

Static: In the static distribution, the iteration space is divided
evenly among children of that location. Figure 3 shows how the
iteration space, shown as a box, is partitioned among location. Since
the destination location has two children, the space is partitioned
into two parts. The partition assigned to each child is further divided
among its children. The leaf nodes that are closer to the root will
have bigger shares in comparison to the others.

Flatten: In flatten, all of the leaf nodes at the bottom of the
tree take an equal share of the iteration space. Figure 3b shows
an example of the flatten policy. In this case, the iteration space is
partitioned into eight equally-sized partitions since we have eight
leaf nodes in total. Each partition is assigned to a single location.

Percentage and Range: Gecko also provides customized work-
load distribution among locations. A developer is able to partition
the iteration space among children of a location. The range pol-
icy accepts an array of integers that specifies the partition size
for each child. The percentage policy accepts an array of percent-
ages that specifies the partition in percentages with respect to the

whole iteration space. Figure 3c shows an example of how the range
and percentage policies partition the iteration space. The example
shows the percentage:[5,5,22.5,22.5,22.5,22.5] case. The
locations on the left are assigned only 5% of the iteration space,
while each location on the right is assigned 22.5% of the whole
iteration space.

Any: In some cases, we are interested in engaging only one of
the children in the execution process. In such cases, Gecko finds an
idle location among children of the chosen location. Alternatively,
based on the recorded history, Gecko can choose the best architec-
ture for this kernel if we are targeting a multi-architecture virtual
location. Figure 3d shows an example of the any policy. One can
observe how Gecko chooses the yellow location since the first four
gray ones are busy with other jobs, and the yellow location is the
first available child of the light-gray location.

5 Gecko Runtime Library
5.1 Hierarchical Architecture Maintenance
Gecko Runtime Library (GRL) utilizes an internal tree data structure
to maintain the hierarchy that Gecko proposes. Each location in the
tree has another location as its parent and multiple (or no) locations
as its children. The root location of the tree has no parent. Locations
are accessed by their unique name.

Traversing Gecko’s tree each time to find a location is not a
performance-friendly approach. Hence, Gecko uses a Reversed
Hash Table (RHT) to find and access a location. RHT is a key-value-
based container that maps the name of a location to its correspond-
ing location in the tree. Figure 4 shows RHT for a sample tree in

double *X, *Y, *Z;
#pragma gecko memory allocate(X[0:N1]) type(double) location("LocN")
#pragma gecko memory allocate(Y[0:N2]) type(int) location("LocG")
#pragma gecko memory allocate(Z[0:N3]) type(char) location("LocP")

printf("X = %p\n", X); // X = 0x123;
printf("Y = %p\n", Y); // Y = 0x789;
printf("Z = %p\n", Z); // Z = 0x159;

LocG

LocG

LocP

LocN

Key Value

0x123 location("LocN"), datasize(8), count(N1)

0x789 location("LocG"), datasize(4), count(N2)

0x159 location("LocP"), datasize(1), count(N3)

0x789

LocN

0x123

Gecko Memory Table (GMT)

LocP

0x159

LocP
LocN

Reversed
Hash Table

.

.

.

LocG

Key Value

.

.

.

Figure 4. A visualization of Reversed Hash Table (RHT) and Gecko
Memory Table (GMT) with a code snippet that shows how memory
allocate clause in Gecko works and affects GMT.

Gecko: Challenges and Solutions PMAM’20 , February 22, 2020, San Diego, CA, USA

Algorithm 2 The Region Pseudocode
Input: T : Gecko’s hierarchical tree structure.
Input: varList : List of variables
Input: policy : The chosen distribution policy
Input: kernel : The computational kernel
1: function region(T, varList, policy)
2: threadList← bindThreadsToLeaf Locations(T)
3: locList← extractLoc(varList)
4: loc←mcdAlдor ithm(T, locList)

▷ splitIterSpace as shown in Figure 3
5: leafList, configs← split I terSpace(loc, policy)
6: for each th ∈ threadList do
7: if th.loc ∈ leafList then
8: S← configs[th.loc]
9: kernel .execute(th.loc, S.begin, S.end)
10: end if
11: end for
12: threadList.waitAll ()
13: end function

Gecko. Every location has an entry in RHT. When we add or re-
move a location to or from the hierarchy, RHT is updated with the
changes. Such a design allows Gecko to access a location in O(1)
complexity.

5.2 Thread Assignment
After finalizing the structure of the hierarchical tree, Gecko assigns
a thread to each leaf location at the bottom of the tree. One can
change the hierarchy at the execution time. If the hierarchy changes,
Gecko reevaluates the tree structure and reassigns the threads to
new leaves. Line 2 in Algorithm 2 shows where this binding process
happens.

5.3 Workload Maintenance
GRL is also responsible for workload distribution among locations.
As a program encounters for-loop that is decorated with Gecko’s di-
rective to distribute the workload, the iteration space is partitioned
among children based on the execution policy that is chosen.

Algorithm 2 shows the steps that are followed by Gecko. First,
as shown in Line 2, all leaf locations in the hierarchy are extracted,
and a thread is assigned to them as we will discuss in Section 5.2.
Each thread is responsible for initiating a job on the location and
waiting for the location to finish its job. This is the synchronization
mechanism that Gecko follows to coordinate devices in the system.

Second, we use MCD to find the appropriate location to execute
the kernel. We extract the list of locations from the variables used in
the region (Line 3). Then, Line 4 in Algorithm 2 shows how to call
the MCD algorithm to choose our target location. Thirdly, on Line 5,
the iteration space is partitioned among the children of a location
based on the execution policy chosen as discussed in Section 4.
Fourthly, Line 6 of Algorithm 2 specifies how threads dispatched
on Line 2 take control of their corresponding location and execute
their share of the iteration space. Finally, on Line 12, Gecko waits
for all threads to finish their assigned job. After Line 12, the devices
are free for the next round of execution. In case MCD does not find a
common children among nodes, it returns NULL. Currently, in such
cases, the runtime library shuts down the application gracefully
with an appropriate message to the terminal output.

6 Memory Management
This section discusses challenges that Gecko faces in the memory
allocations of the heterogeneous systems.

Algorithm 3 Memory Allocation Algorithm (we only support
multicore and NVIDIA GPUs in current implementation)
Input: дT ree : Gecko’s hierarchical tree structure.
Input: loc : the target Location.
Output: allocFunc : Memory Allocation API.
1: function memAlloc(gTree, loc)
2: allocFunc← null ▷ Selected API to perform allocation
3: if gTree.isLeaf (loc) then
4: if gTree.дetType(loc) == host then
5: allocFunc←multiCoreAlloc
6: else if gTree.дetType(loc) == gpu then
7: allocFunc← cudaMalloc
8: else
9: return ERR_UnrecoдnizedLocationType
10: end if
11: else
12: children← gTree.дetChildren()
13: if children.areAllMC() then
14: allocFunc←multiCoreAlloc
15: else if gTree.дetType(loc) ∈ {gpu, multicore,virtual} then
16: allocFunc← cudaMallocManaдed
17: else
18: return ERR_UnrecoдnizedLocationType
19: end if
20: end if
21: return allocFunc
22: end function

6.1 Uncertainty in Location Type
Uncertainty in location type makes memory allocation a challeng-
ing problem because it is not a straightforward process. The alloca-
tion process has to be postponed to the execution time since only
then Gecko has enough knowledge to perform the allocation.

Algorithm 3 shows how Gecko allocates memory in a basic con-
figuration that utilizes only CPUs and GPUs — since the current
implementation only supports these two architectures. It starts by
recognizing if the location chosen is a leaf location in the tree or
not. Allocated memories in leaf locations are private memories that
are only accessible to that location. Gecko calls the corresponding
memory allocation API with respect to the location type. If the leaf
location is host, Gecko uses the multiCoreAlloc1 API. If the leaf
location is an NVIDIA GPU, Gecko uses the cudaMalloc API. Other-
wise, due to supporting only multicore and NVIDIA GPUs in this
implementation, Gecko returns an error to developers indicating
the unrecognized type for the allocation. Other architectures (e.g.,
FPGAs or PIMs) can be supported as well by checking the type of
the location at the execution time and calling the corresponding
allocation API.

On the other hand, if the location chosen is not a leaf location,
Gecko traverses the subtree beneath the location and determines if
all of its children are multicore or not. If they are all multicore, sim-
ilar to the previous case, Gecko will use multiCoreAlloc. If none of
the children are multicore and the current location type is multicore,
NVIDIA GPU, or virtual, Gecko allocates memory from Unified
Virtual Memory (UVM) [26] domain2. Otherwise, Gecko returns
an error to developers indicating the unrecognized type for the
allocation.

Figure 4 displays a code snippet that utilizes Gecko’s directives
to allocate memories in the system. It shows the sequence of actions
that takes place when a memory is allocated. First, Gecko allocates
a block of memory to the designated location with the data type
and the total number of elements that the user requested (known as

1The multiCoreAlloc API is a host-based memory allocation API such as malloc,
jemalloc [28], tcmalloc [35], and numa_alloc [25].
2For upcoming architectures, a hardware or a software approach can guarantee the
data consistency among architectures [12, 33].

PMAM’20 , February 22, 2020, San Diego, CA, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

double *X, *Y, *d;
#pragma gecko memory allocate(X[0:N]) type(double) location("LocN")
#pragma gecko memory allocate(Y[0:N]) type(double) location("LocG")
#pragma gecko memory allocate(d[0:N]) type(double) distance(close)

#pragma gecko region variable_list(X,Y,d)
for (int i = a; i<b; i++) {
 d[i] = compute1(X[i]);
 Y[i] = compute2(d[i], X[i]);
}
#pragma gecko region end

1

dummy

*d
Application Memory

2

4

LocG

LocG

LocN
5

6

8

9

Key Value

0x123 location("LocN"), datasize(8), count(N), distance(), real_addr(NULL)

0x789 location("LocG"), datasize(8), count(N), distance(), real_addr(NULL)

0x831 location(""), datasize(8), count(N), distance(close), real_addr(0x981)

Gecko Memory Table (GMT)
3

7

Figure 5. Steps taken by Gecko that shows how distance-based
memory allocations are performed with minimum code modifi-
cation. By simply annotating the memory allocation clause with
distance, Gecko governs the correct state of the pointers inter-
nally.

memory traits). For instance, in the second line of the code snippet
in Figure 4, the programmer requests N1 double-precision elements
in LocN. By using the API function returned by Algorithm 3, the
target variable (in this case, X) holds the memory address (0x123).
Then, Gecko inserts an entry into Gecko Memory Table (GMT)
with 0x123 as the key and the memory traits as the value. GMT
is a hash table that traces memory allocations within the system.
The extractLoc function in Algorithm 2 uses GMT to find the
location of each variable in its input parameter, varList. Please
note that memory allocation directives can also be used within
the conditional statements in the code. In such cases, the pointer
provided to the allocate clause will be populated with a valid
memory address accordingly.

6.2 Distance-based Memory Allocations
Unlike the ordinary allocations that were discussed in Section 6.1, a
programmer does not have to specify the target location in distance-
based allocations. In the former case, a programmer manually spec-
ifies the target location. In the latter, GRL infers the target location
at the execution time. Such memory allocations are performed with
respect to the location that the computational kernel is targeted to
be executed.

Distance-based allocations in Gecko are declared, as either close
or far. Close-memory allocations are performed within the loca-
tion that runs current region. However, far-memory allocations
are performed within the parent (or grandparents) of the targeted
location. For instance, in Figure 4, if LocG is chosen for kernel exe-
cution, declaring a memory as close will allocate memory within
LocG, while declaring it as far:3 will allocate it in LocN (since it is
its third grandparent).

In addition, Gecko provides realloc and move keywords for dist-
ance-based memory allocations. The realloc keyword allocates a
memory block when entering a region and frees it when exiting a
region. However, with the move keyword, a memory block is allo-
cated on the first touch and is moved around within the hierarchy
between the subsequent Gecko regions.

With a minimal code change, Gecko enables the distance-based
memory allocation challenge by how to declare and utilize distance-
based allocations, as discussed above. Figure 5 shows the sequence
of actions that takes place so that Gecko performs a distance-based
allocation. The code snippet in Figure 5, annotated with Gecko’s
directives, is utilizing X and Y variables where each variable points
to N double precision floating-point numbers that are allocated in
LocN and LocG, respectively. We declare a distance-based memory
space, named d, that is designated as a close memory (1). Gecko
starts by allocating a dummy memory block on the heap (2). The
dummy block is basically a handle to distinguish the distance-based
allocations from the regular ones. Then, Gecko inserts an entry
into GMT to record the memory request (3), and then allocates
a memory block as soon as it determines the destination location.
We updated the structure of GMT, as shown in Figure 5, to han-
dle the distance-based allocations. The two new fields, distance
and real_addr, hold the distance parameter and the address of
allocated memory block in the destination target, respectively.

As we reach the region section in our code (4), Gecko finds the
target location to run the kernel. Based on the fact that X and Y vari-
ables are our non-distance-based variables in the Gecko region (5),
the MCD algorithm will choose LocG as the location to execute the
region and the target location to allocate variable d. Then, Gecko
allocates a memory block within LocG, reassigns the variable d to
the new allocation (6), and finally, updates GMT with the new
address (populating the real_addr field as shown with 7). Until
the end of the region, the variable d points to the valid memory
block in LocG. As we reach the end of the region (8), the vari-
able d reverts to its original value, which was the dummy variable
allocated before (9).

7 Gecko In Use
In this section, we will demonstrate how to write an application
with Gecko. For a complete list of all capabilities of Gecko, please
refer to Gecko’s Github repository3.

Figure 6 shows a snapshot of a sample configuration, a visual-
ization of the different configurations and a snapshot of Stream
benchmark programmed using Gecko’s directives. Starting from
the right side of the Figure (for easier explanation) shows the source
code of the Stream benchmark in Gecko. We will go through the
lines of this code and clarify what each line does. Line 1 loads the
configuration file from the disk. The configuration file includes
the definition of location types, the definition of locations, and the
declaration of hierarchies among locations. The top left of Figure 6
shows an example of a configuration file for Configuration a in
the bottom left of Figure 6. Lines 3-5 will allocate memory with
array_size elements and type T at the location “LocH”. We hard-
coded the destination location to “LocH” for the three memory
allocations. This provides greater flexibility to the application. We
can place “LocH” anywhere in the hierarchy since we have defined
it to be a virtual location in our configurations.

We tested our application with different configurations. A list
of all configurations that we targeted are shown in the (bottom
left) of the Figure 6. For example, configurations a and b target
only multicore systems. However, configurations c-e target single-
and multi-GPU systems. Finally, configuration f targets a multi-
architecture system to execute our application. If we change the

3https://github.com/milladgit/gecko

https://github.com/milladgit/gecko

Gecko: Challenges and Solutions PMAM’20 , February 22, 2020, San Diego, CA, USA

Figure 6. Top Left: A sample configuration file that represents Configuration (a) on the bottom left. The first two lines are comments.
Bottom Left: Visualization of different configurations. Note how placing “LocH” in different positions in the hierarchy results in targeting
different architectures. Configuration (a) and (b) target general-purpose processors. Configurations (c) and (d) target one single GPU.
Configurations (e) and (f) target multi-GPU and multi-architecture systems, respectively. Right: A snapshot of the Stream benchmark with
Gecko’s directives.

configuration file so that it represents any of the configurations of
a to f, without recompiling the source code, our program is able to
target different architectures without significant performance loss.

Lines 7-13 show a computational kernel that initializes three ar-
rays that were allocated previously. The runtime execution policy
specifies that Gecko will extract the main policy from an environ-
mental variable (known as GECKO_POLICY) at the execution time.
One should set this variable to any of previously defined policies
in Section 4. The pause statement in Line 14 asks Gecko to syn-
chronize itself with all computational resources (in our case, CPUs
and GPUs) and wait for them to finish their assigned job before
continuing with the next statement in the code; in other words,
pause is a synchronization point.

Lines 19-27 show a loop that contains the main TRIAD kernel
of the Stream benchmark and calls the kernel num_times times.
Similar to the original TRIAD kernel, it is a for-loop that multiplies
each element in array c to a scalar value, adds it to an element in
array b, and stores the final value in array a. Depending on the
configuration and execution policy chosen at the execution time,
Gecko splits the iterations of the main loop in Line 22 (from 0 to
array_size) among the processors and GPUs. For instance, for
Configuration e where number of GPUs is four, each GPU will
process array_size/4 iterations.

The benchmark calls the high resolution timers in Lines 18 and
28 before and after the for-loop to measure the total execution time
of the TRIAD kernel. And finally, Line 31 asks Gecko to free all
memories allocated in the system.

8 Our Evaluations
In this section, after describing the configurations of PSG and Sabine
clusters, we will assess the performance of Gecko in those systems,
each with Stream and Rodinia benchmarks.

8.1 Experimental Setup
We used NVIDIA Professional Services Group (PSG) cluster [29]
and Sabine [32] to perform our evaluations. PSG is a dual socket
16-core Intel Haswell E5-2698v3 at 2.30GHz with 256 GB of RAM.
Four NVIDIA Volta V100 GPUs are connected to this node through
PCI-E bus. Each GPU has 16 GB GDDR5 memory. We used CUDA
Toolkit 10.1 and PGI 18.10 (community edition) for the CUDA and
OpenACC codes, respectively. Sabine is a dual socket 14-core Intel
Haswell E5-2680v4 at 2.40GHz with 256 GB of RAM. Two NVIDIA
Pascal P100 GPUs are connected to this node through PCI-E bus.
Each GPU has 16 GB GDDR5 memory. We used CUDA Toolkit 10.1
and PGI 19.4 for the CUDA and OpenACC codes, respectively.

Note: PSG results use PGI 18.10 and Sabine results use PGI 19.4.
The reason being we no longer had access to PSG when PGI 19.4
version was released. Having said we see little to no difference in
results using both versions for our project.

8.2 Sustainable Bandwidth
We used BabelStream benchmark [13] to measure memory band-
width. BabelStream provides a set of Stream benchmarks in various
programming models and libraries: OpenMP, CUDA, OpenACC,
Kokkos, and RAJA. We created a version of Stream benchmark

PMAM’20 , February 22, 2020, San Diego, CA, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

B/
s)

(a) PSG - Multicore

0

500

1000

1500

2000

Ba
nd

wi
dt

h
(G

B/
s)

(b) PSG - Multi-GPU

1 2 3 4

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

5.00
1.00
0.50
0.10
0.01

Ho
st

 C
on

tri
bu

tio
n

(H
C)

(c) PSG - Heterogeneous
Execution

250
500
750
1000
1250
1500
1750
2000
2250

Bandwidth (GB/s)

Ope
nM

P
Ko

kko
s

RAJA

Ope
nA

CC

Geck
o (

a)

Geck
o (

b)
0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

B/
s)

(d) Sabine - Multicore

CUDA
Ko

kko
s
RAJA

Ope
nA

CC

Geck
o(c

)

Geck
o(d

)

Geck
o(e

)-k
=2

Geck
o(e

)-k
=3

Geck
o(e

)-k
=4

0

500

1000

1500

2000

Ba
nd

wi
dt

h
(G

B/
s)

(e) Sabine - Multi-GPU

1 2
GPU Count (k) in

Gecko(e) configuration

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

5.00
1.00
0.50
0.10
0.01

Ho
st

 C
on

tri
bu

tio
n

(H
C)

(f) Sabine - Heterogeneous
Execution

100
200
300
400
500
600
700
800

Bandwidth (GB/s)

Figure 7. Sustainable bandwidth of the Stream benchmark on PSG
and Sabine. (a), (d) multicore systems, (b), (e) single- and multi-
GPU systems, and (c), (f) heterogeneous systems.

based on Gecko and then compare the sustainable bandwidth pro-
vided by each of the programming approaches as shown in Figure 7.

Results are shown for both systems (PSG and Sabine) and for
three different scenarios: (1) multicore execution, (2) multi-GPU
execution, and (3) heterogeneous execution. In our experiments
with Stream, we set the array size to 256,000,000 double-precision
elements for each array, which results in 6 GB of data in total.
We run the TRIAD loop 200 times and took the average of their
wall-clock time to report the execution time. The multicore results
reveal a negligible difference between the Gecko version of Stream
with other methods (less than 5 GB/s difference in comparison to
OpenACC for both PSG and Sabine). Gecko’s results are reported
for configurations (a) and (b). Sabine’s main processor provides
18 GB/s more bandwidth to access the main memory in comparison
to PSG. It is due to subtle difference in their memory bandwidth; the
theoretical peak memory bandwidth for Sabine’s dual processors is
153.6 GB/s, however, the peak bandwidth for the dual processors
in PSG is 136 GB/s.

Similarly, Gecko’s performance is not affected when we target
GPUs. Single- and multi-GPU results are shown in Figure 7b and
7e. Despite the difference in their hierarchy, configurations c and d
provide the same bandwidth since our memory allocation algorithm
returns the same API function in both cases. However, since CUDA,
Kokkos, RAJA, and OpenACC versions of Stream use non-UVM
(Unified Virtual Memory) memories to execute the benchmark,
there is a 17 GB/s difference in the bandwidth. Note that while
Gecko uses our memory allocation algorithm for data placement,
no source code modification is needed to support multi-GPU utiliza-
tion. As a result a single code base can be maintained for both single-
and multi-GPU execution. By only modifying the configuration file,
Gecko’s Stream source code, as shown in Figure 6, is able to utilize
GPUs as well. Gecko was able to provide 1.8 TB/s and 1.9 TB/s with
three and four GPUs on PSG, respectively. Figure 7b and 7e show
the results of GPU execution. Gecko’s results are represented with
“Gecko (e)-k”, where k specifies the number of GPUs in the hierar-
chy. Gecko supports heterogeneous execution as well with no code
alteration. Heatmap plots on Figure 7 show the sustainable band-
width for the heterogeneous execution of the Stream benchmark on
the main processor and GPUs in the system, simultaneously. Host
workload (HW) specifies the amount of workload assigned to the

Table 1. List of benchmarks in the Rodinia Suite that were ported to
Gecko - A: Number of kernels in the code. B: Total kernel launches.
SP: Single Precision - DP: Double Precision - int: Integer - Mixed:
DP+int

Application Input Data Type A B
bfs 1,000,000-edge graph Mixed 5 39
cfd missile.domn.0.2M Mixed 5 9
gaussian 4096 × 4096 matrix SP 3 12285
hotspot 1024 data points DP 2 20
lavaMD 50 × 50 × 50 boxes Mixed 1 1
lud 2048 data points SP 2 4095
nn 42764 elements SP 1 1
nw 2048 × 2048 data points int 4 4095
particlefilter 1024 x 1024 x 40 particles Mixed 9 391
pathfinder width: 1,000,000 int 1 499
srad 2048 x 2048 matrix Mixed 7 12

host processor and is varied from 0.01% to 90% of the total iterations
of the TRIAD kernel, and the rest is divided equally between the
GPUs. For instance, in case of K=4 and HC=1%, 2,560,000 out of
256,000,000 iterations are assigned to the host’s processor and the
rest (253,440,000 iterations) is divided among four GPUs; it means
Gecko assigns 63,360,000 iterations to each GPU. We utilized the
percentage execution policy to represent above-mentioned cases.
For instance, the equivalent execution policy in Gecko for above
example would be ”percentage:[1.00,24.75,24.75,24.75,24.75]”.

The other implementations of BabelStream do not support multi-
GPU by default and their source codes need to be modified. How-
ever, this is not the case for their Gecko version and a multi-GPU
support is available by only modifying the configuration code. Sim-
ilarly, Gecko supports the heterogeneous execution with changes
in the configuration file. But, this is not the case for the others and
they need some code modifications to utilize both CPUs and GPUs
simultaneously.

8.3 Rodinia Benchmarks
To investigate the effectiveness of Gecko in heterogeneous environ-
ment, we used the Gecko version of the Rodinia suite [18]. Table 1
shows the list of benchmarks used in this paper with their corre-
sponding input, data type, the total number of kernels, and the
total kernel launches at the execution time. Figure 8 shows speedup
of all applications using multi-GPU ((a), (d)) and heterogeneous
execution time of cfd and srad_v2 ((b), (c), (e), (f)) on PSG and
Sabine.

Speedup results were obtained by utilizing only the static
execution policy to equally distribute the workload among the
GPUs. For the speedup results, the X axis lists Rodinia benchmark,
and the Y axis shows the speedup with respect to a single GPU.
Each bar represents different number of GPUs (represented with K).
For the heterogeneous execution, we followed a similar approach
as we did for the Stream benchmark.

Rodinia’s results in Figure 8a and 8d show how multi-GPU uti-
lization is not a suitable option for all benchmarks in Rodinia. The
cfd and srad_v2 benchmark applications show promising results for
scalability. The performance of cfd improves with each additional
GPU. In case of cfd, the input grid elements to the solver were
distributed evenly among available locations. Since computations
related to each element is basically independent with respect to the
other elements, we observe a good speedup as we increase number
of GPUs. The heterogeneous execution of cfd on PSG, as shown
in Figure 8b, does not lead to a performance improvement. How-
ever, the heterogeneous execution of cfd on Sabine (two GPUs and

Gecko: Challenges and Solutions PMAM’20 , February 22, 2020, San Diego, CA, USA

bfs cfd

ga
uss

ian

ho
tsp

ot

lav
aM

D lud nn nw

pa
rtic

lef
ilte

r

pa
thf

ind
er

sra
d_v

2
0

1

2

3

4

Sp
ee

du
p

(a) PSG (4 GPUs)
Gecko(e)-K=1
Gecko(e)-K=2
Gecko(e)-K=3
Gecko(e)-K=4

1 2 3 4
Num. of GPUs

90
80
70
60
50
40
30
20
10
00Ho

st
 C

on
tri

bu
tio

n
(H

C)

(b) cfd on PSG

60000
70000
80000
90000
100000
110000
120000
130000
140000

Execution Tim
e (s)

1 2 3 4
Num. of GPUs

90
80
70
60
50
40
30
20
10
00Ho

st
 C

on
tri

bu
tio

n
(H

C)

(c) srad_v2 on PSG

10
20
30
40
50
60
70
80
90

Execution Tim
e (s)

bfs cfd

ga
uss

ian

ho
tsp

ot

lav
aM

D lud nn nw

pa
rtic

lef
ilte

r

pa
thf

ind
er

sra
d_v

2
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

(d) Sabine (2 GPUs)

1 2
Num. of GPUs

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00Ho

st
 C

on
tri

bu
tio

n
(H

C)

(e) cfd on Sabine

100000

120000

140000

160000

180000

200000

Execution Tim
e (s)

1 2
Num. of GPUs

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00Ho

st
 C

on
tri

bu
tio

n
(H

C)

(f) srad_v2 on Sabine

1

2

3

4

5

6 Execution Tim
e (s)

Figure 8. (a), (d) Speedup results of the multi-GPU execution of
the Rodinia benchmarks on PSG and Sabine, specified with configu-
ration (e) in Figure 6. Heatmap of the execution time of cfd ((b), (e))
and srad_v2 ((c), (f)) for different host contributions and number
of GPUs.

50% host workload) leads to 2X speedup with respect to one single
GPU, as shown in Figure 8e. The reason behind the superiority of
Sabine over PSG is due to two reasons: 1) Sabine has better host
memory bandwidth. Results in Figure 7a and 7d had shown 17 GB/s
difference in main memory bandwidth between Sabine and PSG;
2) Utilizing all available GPUs is not always a good idea. Splitting
the iteration space among many GPUs leads to lesser work by each
GPU, which incurs more overhead. The cfd results on PSG confirms
our finding as well. For all values of HW (except HW=0), utilizing
two GPUs leads to a better performance in comparison to three or
four GPUs. The srad_v2 benchmark benefits more from the hetero-
geneous execution as the heatmap results show. In comparison to
one single GPU (one GPU and HW=0), if we utilize three or four
GPUs while HW is 90%, the speedup is 15X for PSG. Similarly, for
Sabine, the speedup becomes 11.5X, when two GPUs are utilized
and HW is 90%.

Other benchmark applications (bfs, lavaMD, and particlefilter)
do not scale as we increase the number of utilized GPUs. The per-
formance degradation is due to uncoalesced and random memory
accesses in such applications. The bfs benchmark traverses all the
connected components in a graph. Thus, the memory accesses fol-
low a random pattern. The lavaMD benchmark goes through all
atoms in the system and computes the force, velocity, and new
position of each atom. It uses a cutoff range to limit the unnec-
essary computations. However, such cutoff ranges may include
atoms that are currently residing in another GPU device. The par-
ticlefilter benchmark visits elements of a matrix using two nested
for-loops. Heterogeneous execution of bfs, lavaMD, and particle-
filter benchmarks does not improve the speedup either. Utilizing
the host processor has caused a gradual performance degradation
for these benchmarks. In the case of other benchmarks (gaussian,
hotspot, lud, nn, nw, and pathfinder), the performance loss is severe.
Algorithms that follow a very random memory access pattern like
bfs and gaussian are not a suitable option for either multi-GPU or
heterogeneous execution.

The false sharing [21] effect on the inter-device level is the pri-
mary source of performance degradation. It is highly possible that
when device d1 is executing iteration i needs accessing another data
that currently resides on device d2. In such cases, many memory

pages have to be invalidated to perform the iteration i. The invali-
dated page has to travel through PCI-E and NVlink, which are not
performance-friendly. Gecko tries to alleviate this by partitioning
the iteration space fairly among locations (with respect to the cho-
sen execution policy). However, for cases like bfs or gaussian where
memory access pattern is random, Gecko is unable to improve
performance due to unpredictable nature of memory accesses.

9 Related work
Heterogeneous systems have become increasingly prevalent. There
are not many solutions out there that can handle systems with
multiple devices. VirtCL [41] uses an OpenCL approach to utilize
multiple homogeneous GPUs replicating an array on the host and
other devices ensuring the consistency by locking arrays on any
devices that are using it. CoreTSAR [34] introduces directives that
are similar to Gecko’s. GPU-SM [9] enable multi-GPU utilization on
a single node and ensure data consistency with peer-to-peer (P2P)
communications. In this paper, however, our implementation of
Gecko utilized UVM to make sure the consistency among multiple
devices.

Built upon the Parallel Memory Hierarchy (PMH) model [1],
Sequoia [16] represents available memory spaces in a hierarchi-
cal manner, and workloads are distributed statically through their
definition. Hierarchical Place Trees (HPT) [40] bears similarity to
Sequoia and Gecko in the exploitation of the “location” concept.
However, HPT lacks the dynamic features of Gecko, such as dy-
namic memory allocation and dynamic hierarchy. Many modern
languages that provide facilities to describe data distribution and
parallelism through an abstract model for both data and computa-
tion have also been introduced (e.g., Legion [7], Chapel [10], and
X10 [11]). However, unlike above-mentioned models, application
developers can utilize Gecko with their current legacy codes with
minimum code modification and they do not need to rewrite the
whole application from scratch.

The current implementation of Gecko as a directive-based pro-
gramming language has similarities to OpenMP and OpenACC.
The region and pause constructs in Gecko have equivalent coun-
terparts in both OpenMP and OpenACC (in terms of their work-
sharing strategies). However, unlike Gecko, applications developed
with OpenMP and OpenACC only target one architecture (either
multicore or GPUs) when compiled. Gecko supports for the simul-
taneous execution of the kernels on both architectures and enables
switching between them at the execution time. Moreover, Gecko
also supports the inferred execution of computational kernels as
discussed in Section 3, which is not supported in OpenMP and
OpenACC. With regards to memory management, Gecko bears
some similarities to the “Memory Allocators” of OpenMP 5.0; they
both accept traits from the developer to allocate the memory. How-
ever, Gecko uses its hierarchy to provide those capabilities, while
OpenMP 5.0 asks developers to define an allocator per memory
space. Furthermore, the hierarchy in Gecko enables developers to
easily incorporate new memory hierarchies with minimum efforts
by only changing the location, which it is not the case for OpenMP.

10 Conclusion and Future Work
This paper presents Gecko that investigates challenges while devel-
oping a hierarchical portable abstraction for upcoming heteroge-
neous systems. Gecko raises the solution to the high-level, follows

PMAM’20 , February 22, 2020, San Diego, CA, USA Millad Ghane, Sunita Chandrasekaran, and Margaret S. Cheung

a directive-based mechanism and targets heterogeneous shared
memory architectures commonly found in modern high perfor-
mance systems. Gecko is highly user-friendly, dynamic, flexible
and architecture agnostic. Our experiments show how Gecko deliv-
ers a scalable solution primarily for benchmarks where the false
sharing effect among devices is minimal. In the near future, we will
explore the feasibility of automatic data transfer between different
locations with Gecko.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant MCB-1412532 and OAC-1531814.

References
[1] 1993. Modeling parallel computers as memory hierarchies. In Proceedings of

Workshop on Programming Models for Massively Parallel Computers. 116–123.
[2] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and StephenW

Keckler. 2015. Page Placement Strategies for GPUs Within Heterogeneous Mem-
ory Systems. In Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’15).
ACM, New York, NY, USA, 607–618.

[3] A V Aho, J E Hopcroft, and J D Ullman. 1973. On Finding Lowest Common
Ancestors in Trees. In Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing (STOC ’73). ACM, New York, NY, USA, 253–265.

[4] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio,
S. D. Hammond, K. S. Hemmert, S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick,
A. F. Rodrigues, J. Shalf, D. Stark, D. Unat, and N. J. Wright. 2014. Abstract
machine models and proxy architectures for exascale computing. In Proceedings
of Co-HPC 2014: 1st International Workshop on Hardware-Software Co-Design for
High Performance Computing - Held in Conjunction with SC 2014: The International
Conference for High Performance Computing, Networking, Storage and Analysis.
25–32.

[5] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability. In Proceedings
of the 44th Annual International Symposium on Computer Architecture (ISCA ’17).
ACM, New York, NY, USA, 320–332.

[6] R Banakar, S Steinke, Bo-Sik Lee, M Balakrishnan, and P Marwedel. 2002. Scratch-
pad memory: a design alternative for cache on-chip memory in embedded sys-
tems. In Proceedings of the Tenth International Symposium on Hardware/Software
Codesign. 73–78.

[7] M Bauer, S Treichler, E Slaughter, and A Aiken. 2012. Legion: Expressing locality
and independence with logical regions. In SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
1–11.

[8] Luca Benini and Giovanni De Micheli. 2002. Networks on chips: a new SoC
paradigm. Computer 35, 1 (2002), 70–78.

[9] Javier Cabezas, Marc Jordà, Isaac Gelado, Nacho Navarro, and Wen-mei Hwu.
2015. GPU-SM: shared memory multi-GPU programming. In Proceedings of the
8th Workshop on General Purpose Processing using GPUs - GPGPU 2015 (GPGPU-8).
ACM, New York, NY, USA, 13–24.

[10] B. L. Chamberlain, D. Callahan, and H. P. Zima. 2007. Parallel programmability
and the chapel language. International Journal of High Performance Computing
Applications 21, 3 (aug 2007), 291–312.

[11] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10.
In Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications - OOPSLA ’05 (OOPSLA ’05).
ACM, New York, NY, USA, 519.

[12] Loïc Cudennec. 2018. Software-Distributed Shared Memory over Heteroge-
neous Micro-server Architecture. In Euro-Par 2017: Parallel Processing Workshops.
Springer International Publishing, Cham, 366–377.

[13] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2016.
GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-
Core Processors Across Diverse Parallel Programming Models. In International
Conference on High Performance Computing. Springer International Publishing,
489–507.

[14] Robert H. Dennard, Fritz H. Gaensslen, Y. U. Hwa-Nien, V. Leo Rideout, Ernest
Bassous, and Andre R. Leblanc. 1999. Design of Ion-Implanted MOSFETs with
Very Small Physical Dimensions. Proc. IEEE 87, 4 (1999), 668–678.

[15] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power Pro-
visioning for a Warehouse-sized Computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07). ACM, New York,
NY, USA, 13–23.

[16] Kayvon Fatahalian,William J. Dally, Pat Hanrahan, Daniel Reiter Horn, Timothy J.
Knight, Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman
Ren, and Alex Aiken. 2006. Sequoia: programming the memory hierarchy. In
Proceedings of the ACM/IEEE conference on Supercomputing (SC ’06). ACM, New
York, NY, USA.

[17] Millad Ghane, Mohammad Arjomand, and Hamid Sarbazi-Azad. 2014. An opto-
electrical NoC with traffic flow prediction in chip multiprocessors. In Proceedings
of 22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP ’14). 440–443.

[18] Millad Ghane, Sunita Chandrasekaran, and Margaret S Cheung. 2019. Gecko:
Hierarchical Distributed View of Heterogeneous Shared Memory Architectures.
In Proceedings of the 10th International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM ’19). ACM, New York, NY, USA,
21–30.

[19] M. Ghane, S. Chandrasekaran, R. Searles, M.S. Cheung, and O. Hernandez. 2018.
Path forward for softwarization to tackle evolving hardware. In Proceedings of
SPIE - The International Society for Optical Engineering (SPIE ’18).

[20] Millad Ghane, Jeff Larkin, Larry Shi, Sunita Chandrasekaran, and Margaret S.
Cheung. 2018. Power and Energy-efficiency Roofline Model for GPUs. In arXiv.
arXiv:1809.09206

[21] Millad Ghane, Abid M. Malik, Barbara Chapman, and Ahmad Qawasmeh. 2015.
False sharing detection in OpenMP applications using OMPTAPI. In International
Workshop on OpenMP (IWOMP ’15). Springer International Publishing, 102–114.

[22] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, and
Onur Mutlu. 2018. Enabling the Adoption of Processing-in-Memory: Challenges,
Mechanisms, Future Research Directions. arXiv (2018).

[23] HPC Wire. 2019. Cerebras to Supply DOE with Wafer-Scale AI Supercomputing
Technology.

[24] N Jayasena, D P Zhang, Amin Farmahini Farahani, and Mike Ignatowski. 2015.
Realizing the Full Potential of Heterogeneity through Processing in Memory. In
3rd Workshop on Near-Data Processing.

[25] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access): An Overview.
Queue 11, 7 (2013), 40.

[26] Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin Herbordt.
2014. An investigation of Unified Memory Access performance in CUDA. In IEEE
High Performance Extreme Computing Conference (HPEC ’14). 1–6.

[27] Gabriel H. Loh. 2008. 3D-stacked memory architectures for multi-core processors.
In Proceedings of International Symposium on Computer Architecture (ISCA ’08).
453–464.

[28] Jemalloc: memory allocator. 2019. http://jemalloc.net/.
[29] NVIDIA PSG Cluster. 2017. http://psgcluster.nvidia.com/trac.
[30] Matheus Almeida Ogleari, Ye Yu, Chen Qian, Ethan L Miller, and Jishen Zhao.

2019. String Figure: A Scalable and Elastic Memory Network Architecture.
In the Proceedings of International Symposium on High-Performance Computer
Architecture (HPCA).

[31] ORNL’s Summit Supercomputer. 2018. https://www.olcf.ornl.gov/for-
users/system-user-guides/summit/.

[32] Sabine Cluster. 2019. https://www.uh.edu/cacds/resources/hpc/sabine.
[33] Daniel J Scales and Kourosh Gharachorloo. 1997. Towards Transparent and

Efficient Software Distributed Shared Memory. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles (SOSP ’97). ACM, New York,
NY, USA, 157–169.

[34] T R W Scogland, W Feng, B Rountree, and B R de Supinski. 2015. CoreTSAR:
Core Task-Size Adapting Runtime. IEEE Transactions on Parallel and Distributed
Systems 26, 11 (2015), 2970–2983.

[35] TCMalloc: Thread-Caching Malloc. 2018. http://goog-
perftools.sourceforge.net/doc/tcmalloc.html.

[36] Top500. 2019. https://www.top500.org.
[37] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro

Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul
H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and
Miquel Pericas. 2017. Trends in Data Locality Abstractions for HPC Systems.
IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017), 1–1.

[38] Dong HyukWoo, Nak Hee Seong, Dean L. Lewis, and Hsien-Hsin S. Lee. 2010. An
optimized 3D-stacked memory architecture by exploiting excessive, high-density
TSV bandwidth. In The Sixteenth International Symposium on High-Performance
Computer Architecture (HPCA ’10). 1–12.

[39] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[40] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2010. Hierarchical
place trees: A portable abstraction for task parallelism and data movement. In
Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg,
172–187.

[41] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. 2015. VirtCL: a
framework for OpenCL device abstraction and management. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
- PPoPP 2015 (PPoPP 2015). ACM, New York, NY, USA, 161–172.

http://arxiv.org/abs/1809.09206

	Abstract
	1 Introduction
	2 Gecko: The Hierarchical Model
	2.1 Background
	2.2 Brief Overview of Gecko

	3 Inferred Execution
	3.1 Data Locality
	3.2 Most Common Descendent (MCD) Algorithm

	4 Workload Distribution Policy
	5 Gecko Runtime Library
	5.1 Hierarchical Architecture Maintenance
	5.2 Thread Assignment
	5.3 Workload Maintenance

	6 Memory Management
	6.1 Uncertainty in Location Type
	6.2 Distance-based Memory Allocations

	7 Gecko In Use
	8 Our Evaluations
	8.1 Experimental Setup
	8.2 Sustainable Bandwidth
	8.3 Rodinia Benchmarks

	9 Related work
	10 Conclusion and Future Work
	Acknowledgments
	References

