
Efficient OLAP with UDFs

Zhibo Chen
University of Houston

Department of Computer Science
Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Department of Computer Science
Houston, TX 77204, USA

ABSTRACT
Since the early 1990s, On-Line Analytical Processing (OLAP)
has been a well studied research topic that has focused on
implementation outside the database, either with OLAP
servers or entirely within the client computers. Our ap-
proach involves the computation and storage of OLAP cubes
using User-Defined Functions (UDF) with a database man-
agement system. UDFs offer users a chance to write their
own code that can then called like any other standard SQL
function. By generating OLAP cubes within a UDF, we
are able to create the entire lattice in main memory. The
UDF also allows the user to assert more control over the
actual generation process than when using standard OLAP
functions such as the CUBE operator. We introduce a data
structure that can not only efficiently create an OLAP lat-
tice in main memory, but also be adapted to generate associ-
ation rule itemsets with minimal change. We experimentally
show that the UDF approach is more efficient than SQL
using one real dataset and a synthetic dataset. Also, we
present several experiments showing that generating associ-
ation rule itemsets using the UDF approach is comparable
to a SQL approach. In this paper, we show that techniques
such as OLAP and association rules can be efficiently pushed
into the UDF, and has better performance, in most cases,
compared to standard SQL functions.

Categories and Subject Descriptors
E.1 [Data Structure]: [Trees]; H.2.4 [Database Manage-
ment]: Systems—Relational Databases; H.2.8 [Database
Management]: Database Applications—Data Mining

General Terms
Algorithms, Experiments, Measurement

Keywords
OLAP, UDF, CUBE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-250-4/08/10 ...$5.00.

1. INTRODUCTION
On-Line Analytical Processing (OLAP) [2, 6] is a set of

exploratory database techniques that allow the user to ef-
ficiently retrieve specific aggregations [6]. OLAP users try
to find interesting or unexpected results by analyzing sub-
sets of datasets using aggregations to generate different lev-
els of detail. The underlying structure of OLAP is the di-
mensional lattice, which stores the aggregations for all lev-
els of detail. Figure 1 shows the lattice for a dataset with
four dimensions. Without optimizations, OLAP processing
can be slow, but techniques [6], such as precomputation by
aggregating on all dimensions, help improve performance.
For the most part, an OLAP server, which sits between
the DBMS and the client computers, is required to perform
OLAP queries. Other ways of approaching OLAP queries
have also been studied. Research have been conducted on
representing OLAP lattices outside the database [16] as well
as generating the lattice within the DBMS using only SQL
[12]. These two approaches showcase the generation of lat-
tices using the flexible C and the more restrictive SQL. There
is a marked difference in the speed of these two approaches
with the restrictive SQL being much slower than C. How-
ever, few have tried to merge the best of both approaches
using user-defined functions (UDFs).

UDFs allow the user to write their own C-level code, which
can then be compiled into object code and embedded di-
rectly into the DBMS. The result is a function that can be
used just like any standard SQL commands. The UDF is
basically an application programming interface (API) that
allows end-users to extend the DBMS without actually com-
ing in contact with the source code. In our research, we used
table-valued functions (TVF) to push OLAP into the UDF.
TVFs are able to take in values and return an entire table
as a result [5]. In the past, UDFs could not perform an I/O
task on the database and could only return values. However,
with TVFs, we can now read and return entire tables. This
development allows us to generate and hold entire tables
within main memory and delay writing to the physical disk
space until the generation is completed. In this paper, we
propose using User-Defined Functions (UDFs) to generate
entire OLAP lattices in main memory and only write the
results to an output table once the lattice is completed.

This paper is organized as follows. Section 2 introduces
some important definitions. The lattice structure and al-
gorithm is presented in Section 3. We discuss and show
some experimental results in Section 4. Section 5 explains
research related to this paper. Our conclusions and possible
future work is presented in Section 6.

41

Figure 1: Dimension Lattice; d=4.

2. DEFINITIONS
We focus on a fact table F with n records having d cube

dimensions [6] where D = {D1, . . . , Dd}, and e measure
attributes, where e ≥ 1. The precomputed version of ta-
ble F is called table C and also includes d dimensions, but
may have a smaller n. The dimensional lattice is the data
structure that represents all subsets of dimensions and their
containment. The size of the lattice depends on d and is
computed as 2d−1 for binary dimensions. The data that is
stored within the dimensional lattice is obtained from the
measure attributes. We call each subset combination of di-
mensions a lattice node, which can be further divided into
lattice groups, each of which represents one specific combi-
nation of values. We consider the empty set to be the top
node and the full dimension set to be the bottom node. One
level of the lattice contains all combinations that have the
same number of dimensions.

3. UDF-BASED LATTICE GENERATION
The creation of an OLAP lattice within the UDF requires

a special data structure that should be able to handle the
large number of combinations and also allow for quick out-
puts to tables. The UDF is different than creating the same
structure outside the DBMS because we cannot indefinitely
maintain the entire structure in memory. Instead, the struc-
ture has to quickly be converted into rows that can then be
stored within a table. In this section, we will first intro-
duce the lattice structure that can accommodate all these
requirements. Next, we will provide the algorithm for gen-
erating this structure and writing to the table. Then, we
will show how this structure can be applied to an OLAP
example. Finally, we will show how this structure can also
be used toward association rule itemsets.

3.1 Lattice Structure
The format of our lattice structure is shown in Figure 2

for three dimensions. The structure is tree-like with each
node of the tree representing one combination set within a
lattice. A two-tiered design is used in which the first level
includes information regarding the node and its combination
of dimensions. The second level stores data regarding the
groups within each node. The data stored within each node
depends on the task that the OLAP structure will accom-
plish. Example of stored data include the mean, median,
sufficient statistics, or a combination of the values. While
the number of nodes within the structure only depends on
the number of dimensions, the number of groups within a
node depends entirely on the dataset. A dataset with more

Figure 2: Data Structure; d=3.

distinct tuples will cause more groups to be created than a
sparse dataset. On the top level, every node is connected
with its supersets and subsets in order to allow for quick
traversal of this structure. For example, the node {011} is
connected to two subsets {001} and {010} as well as one
superset {111}. While the links are not used during lattice
generation, they are helpful for future processing by allow-
ing for quick access to all related nodes above and below a
specific node. The second level is not as widely connected,
with each group only being linked to its neighbors in the
same node. While some other data structures have indexes
that allow for quick access of specific nodes [7], we do not
require such indexes since future explorations will not be
conducted in main memory. Instead, the UDF is designed
to only hold the data structure in main memory and once
generated, the lattice will then be inserted into a table.

3.2 Algorithm
Prior to the execution of this algorithm, table F needs

to be precomputed into a new table C by aggregating on
all dimensions [6]. The rationale is that by aggregating on
all the dimensions, we can create a new table which will be
much smaller than the original table. In effect, table C is
table F aggregated to the finest granularity. In the worst
case that all tuples of F are distinct, then table C will be the
same size as F and we suffer no penalties. However, should
there be a significant reduction in the input table size, then
performance would improve because the algorithm would
have to have process as many tuples. As a result, we use
table C as a substitute for table F throughout the algorithm.

The algorithm consists of two parts: the updating of the
nodes/groups and the traversal of the lattice. For each tu-
ple of the input table, we need to determine if a node exists
within the lattice structure. If it does not exist, then a new
node will need to be created and linked with the appropri-
ate subsets and supersets. These links can be accomplished
by the removing or inserting of individual dimensions, de-
termining if those nodes exist, and creating a link if possi-
ble. On the other hand, if the node already exists, then the

42

Algorithm to create the lattice structure in UDF
Input: precomputed fact table C
1 : Create a new lattice structure LAT
2 : while more tuples exist in C do
3 : rowval ← next tuple from C
4 : setD ← ”000”
5 : while more combinations exist do
6 : if node with setD combination not exist then
7 : node ← new Node with setD as description
8 : insert node into LAT

and link with subsets and supersets
9 : else
10: node ← node with setD as description
11: end if
12: dims ← extractDims(rowval, node)
13: if dims exists in node then
14: group ← getGroup(node, dims)
15: update stored values in group
16: updateGroup(node,group)
17: else
18: newGroup ← new group
19: populate group with required values
20: insertGroup(node,newGroup)
21: end if
22: setD ← addOne(setD)
23: end do
24: Insert or replace node into LAT
25: end do
26: Write lattice structure to DBMS

node can be directly used because we know the links have
already been created. We do not pre-generate the entire
lattice structure in memory because of the sparse nature of
the datasets. This sparseness becomes more apparent as the
number of dimensions increases.

Once the appropriate node is extracted or created, we
will then either update a group or create a new group for
that particular node. Afterwards, we would need to retrieve
the group containing those specific values or create a new
group with those values. If the group is in existence, then
we need to add the measure attributes associated with the
current tuple to those already stored in the group. If the
group is new, then we would create a new group and insert
the measure attributes. The process for adding or inserting
these new attributes depends on the final goal of the lattice.
If only a total number is required, then we would simply add
one to the group. On the other hand, if the lattice is to be
used for more complex calculations, such as statistical tests
[12], then we may need to store the sufficient statistics of
the measure attributes. Regardless of what’s stored inside
the lattice, the procedure is the same. For a new group, we
must insert the group at the end of the group list within
the node and change the appropriate links. The order of the
groups within a node does not matter because we will not
be using this structure for exploration.

For each tuple, we need to traverse the lattice structure.
We can accomplish this by changing each dimensions into a
1 for on or a 0 for off. When combined, this forms a binary
value that can be easily incremented. The exact order in
which we traverse the lattice does not matter. As a result,
we can begin with all 0s for the binary representation, which
represents the empty set or root node of the lattice structure.

Table 1: Sample OLAP Input Table.
ID D1 D2 D3 M1
1 0 0 1 15.2
2 1 0 1 19.3
3 1 0 0 81.5
4 1 1 0 62.8
5 1 0 1 60.5

Figure 3: Lattice Structure for OLAP Example.

Once we complete each node, we can add one to the binary
representation to obtain the next node. Once the represen-
tation reaches all 1s, then we know we have traversed the
entire lattice. For example, if we have a lattice structure
representing three dimensions, we would start with the bi-
nary 000, meaning no dimensions are in the set. The next
two nodes to be visited would be 000+1 or 001 and 001+1 or
010, which corresponds to the node D1 and D2, respectively.

Since the algorithm updates the structure each time a new
tuple is read into memory, we cannot apply a support or pop-
ulation threshold on the data structure. The algorithm only
performs one-pass on the entire condensed dataset, C, and
thus we do not know the actual size each node in the lattice
until the entire table is read. The problem is that this does
not allow for the inclusion of support related constraints,
which are helpful in increasing performance. Multiple passes
would need to be performed in which the data structure is
broken into multiple levels. In this way, we can control the
support between levels.

3.3 Generation of OLAP Lattice
We will now show an example of the generation of an

OLAP lattice using our proposed structure. Table 1 shows
a sample dataset F with three dimensions and one measure
attribute. Though we are using only binary values for the
dimensions because they are used in many data mining prob-
lems, our algorithm can handle more dimension values. For
this example, suppose we wish to create a lattice that would
hold the sum of the measure attribute. Then, we would

43

Table 2: Sample Association Rule Input Table.
ID D1 D2 D3
1 0 0 1
2 1 0 1
3 1 0 0
4 1 1 0
5 1 0 1

Figure 4: Lattice Structure for Association Rules.

start with the first tuple, and traverse the lattice while up-
dating or creating new groups for specific nodes. Assume
that in this example, we are only storing the sum of the val-
ues. Then, the first node we would reach is the node 000.
Since this node has not been created, we would create the
node and insert it into the lattice structure. Node 000 rep-
resents the empty combination or the one where none of the
dimensions matter. This means that all of the tuples will be
added to this node since we have no criteria.

As a second example, if we were at the node with binary
representation 010, then we would be observing only the
second dimension when determining which group to update.
For the first tuple, this node will also need to be created, but
future tuples will not need to create the node, only update
it. The number of groups within this node is equal to the
number of distinct values for the second dimension. In our
case, D2 has a value of 0 for the first tuple. Thus, we would
create a new group to represent the value 0 and store 15.2
within it. How this group represents 0 depends on the im-
plementation of the data structure. For example, if hashes
are used, then the group would have a key of 0 and a value
of 15.2. Let us now look at what would happen if we are at
the same node, 010, with the second tuple. Again, we would
only be interested in the second dimension and the group 0.
Since this group was already created by the first tuple, we
would need to retrieve the data and update it to 34.5. This
value would then be stored in group 0 of the node 010. This
addition or updating of groups within nodes would continue
until the lattice is completely traversed. Figure 3 shows the
lattice structure stored by the UDF for the sample data set.

3.4 Generation of Association Rule Itemsets
The first step in most association rule algorithms is to

generate the itemsets from the dataset. We will now show
how our lattice structure can also be used to generate such
itemsets. Our proposal will not consider any constraints and
will instead generate data for all possible itemsets. There
are two major differences between using the lattice structure
for OLAP and for association rules. While OLAP considers

each node to represent the combination of the dimensions,
association rule considers each node to represent the set of
items that can be found within the same transaction. For
example, if we arrive at node {011}, OLAP would see this
as meaning we are looking at the combination of D1 and
D2. On the other hand, association rule would see this node
as meaning both item D1 and item D2 are present in a tu-
ple. The second major difference is that each node of OLAP
may contain many groups while the nodes of association
rules would only contain one group. For example, nodes in
OLAP contain groups that have both 0s and 1s. However,
the association rule nodes would only care about those di-
mensions whose values are 1. Please note that we are not
looking at the negation of items.

Table 2 displays an example of a data set that can be
used to create the association rule itemsets. In this case,
the dimensions are binary because most association rule al-
gorithms use only binary values. By not using the traditional
transaction format, we can deal with less tuples and be pro-
vided with more information per row. The procedure for
creating a lattice structure for itemsets is virtually identical
to creating it for a lattice. We begin with the node 000, but
in this case, we do not even create the node. The reason is
that 000 represents the case where none of the dimensions
are observed, and since association rule works on the exis-
tence of items, there needs to be at least one dimension that
is on. For example, if we look at the next node, 001, then
we see that dimension 1, or D1, is on while the rest of the
dimensions are off. If we look at the sample dataset, then
we can see that the first tuple does not have a 1 in D1. This
means that the first tuple will not affect such a node, and
we will not create this node. Instead, we will move on to
the next node and so on. This is a classical case of how as-
sociation rule would disregard this node for itemsets while
OLAP, which counts 1s and 0s, would create a group repre-
senting the value 0. Let us now move forward several nodes
to the node 100, which looks at D3. Since the first tuple
affects the node 100, a new node will be created with these
descriptions and placed into the lattice structure. Within
this node, we will have to create a new group with a store
data value of 1 because only one tuple so far touches this
node. We would then traverse the rest of the nodes. After
going through the entire dataset, the final lattice structure
for this example is shown in Figure 4.

3.5 Storage of Lattice Structure
The efficient storage of the lattice structure must also be

studied since we are using UDFs, which loses all data stored
in main memory upon completion. In order to allow for the
most efficient access of specific nodes of the structure, we im-
plemented a full index on the output table. In the table, we
use ”ALL” to represent the dimensions that were not used in
the aggregation. Table 3 shows an example of a lattice struc-
ture stored in the database. This procedure is suitable for
all situations except in the case when one of the dimensions
has a value that is also represented by ”ALL”. However,
these cases are rare and can be solved individually. The size
of the output table depends on the values that are stored
within the lattice. For example, if we are storing only counts
within the lattice, then a four dimensional dataset with one
measure attribute would create an output table with four
dimensions columns and one count column. On the other
hand, suppose we are storing sufficient statistics within the

44

Table 3: Sample Storage Table for Lattice Structure.
D1 D2 D3 Data

ALL ALL ALL 239.3
0 ALL ALL 15.2
1 ALL ALL 224.1

ALL 0 ALL 176.5
...

...
...

...

lattice. Then, for the same dataset would generate an out-
put table with four columns that are dimensions and three
columns for the sufficient statistics. The three columns be-
ing N (count), L (sum of measure attribute), and Q (sum
of measure attributes squared). Regardless of the size of the
output table, the primary index on all the dimensions allows
for efficient retrieval of specific combinations.

4. EXPERIMENTAL EVALUATION
We conducted our experiments on a server with 3.2GHz

CPU, 4GB RAM, and 600GB HD. The DBMS is SQL Server
2005, and we performed our UDFs using table-valued func-
tions. The following subsections first presents the two datasets
used throughout this experiments. Next, we will show and
analyze the performance of the UDF versus a pure SQL ap-
proach on both datasets. Then, we will compare the UDF
to the CUBE operator that can be found within the DBMS
also on both datasets. Finally, we will show that the lat-
tice structure used in the UDF can also be implemented to
generate association rule itemsets on the Heart dataset.

4.1 Datasets
We used two datasets to experimentally show the perfor-

mance of the UDF versus both SQL and the CUBE operator
inside of SQL Server. The first dataset is a private medical
dataset with heart data with n=655, d=21, and e=4. The
dimensions represent factors of a patient while the measure
attributes represent the degree of stenosis, or narrowing of
the arteries in the heart. We choose to analyze this medi-
cal dataset because despite its small size, it still produces a
large number of patterns. The second dataset is a processed
version of the ORDERS table from the TPC-H benchmark
database with the default parameters. We decided to use the
total price as the measure attribute, removed the comments
column, and expanded the date to three columns represent-
ing year, month, and day. The resulting dataset has the
following properties: n=1.5 million, d=8, and e=1.

4.2 Performance for OLAP
In this section, we will compare the execution times of

generating the entire lattice using UDFs versus the execu-
tion times for using pure SQL. The SQL approach uses the
GROUP BY command to obtain each node of the dimen-
sional lattice. In order words, for the node {D1,D2}, the
SQL would include a GROUP BY on D1 and D2. Once the
groups are obtained, the values are inserted into an output
table for further exploration or analysis. Additional infor-
mation regarding the SQL approach can be found in [12].

Figure 5 shows a comparison of the execution times when
varying d to generate an OLAP lattice using UDFs and pure
SQL on the Heart dataset. The use of main memory within
the UDF helps decrease the execution time to less than 10%

Figure 5: Scalability of UDF and SQL for d.

Figure 6: Scalability of UDF and SQL for d on TPC-
H Dataset.

of the time it takes for SQL to create the lattice. While both
approaches are still affected by the combinatorial growth of
the lattice as d increases, the UDF approach has a signifi-
cantly slower growth rate than the SQL approach. For the
TPC-H dataset, Figure 6, we can observe a similar diver-
gence in which the SQL approach is able to keep pace with
UDF only for the first few dimensions. Once the lattice size
reaches a large size, the UDF becomes much faster. Both
figures also show how the gap between the two approaches
widens as d increases regardless of which dataset is used.

There are several reasons behind why UDF is over ten
times faster than SQL. First, the SQL approach requires one
aggregation to be performed for each combination of the di-
mensions. As a result, the input table is scanned many times
during the course of a lattice generation. In fact, the number
of table scans is equal to the number of dimensional nodes in
the lattice. While this is not inhibiting for very small d, once
d surpasses six or seven, the number of table scans becomes a
bottleneck. On the other hand, the UDF only performs one
scan of the input table and generates the lattice as it is read-
ing the tuples. The size of the lattice still affects the UDF
because it needs to update many of the nodes for each of the
tuples. While this may seem slow, such updates are faster
than the aggregations. The second reason supporting the
UDF approach is that it is performed in main memory. The
lattice structure is used to hold the entire lattice in memory
until completion. At that time, the entire structure is writ-
ten into a table. Therefore, permanent disk space is only
used during the last phase of the generation. We found that
the time to write to the output table takes up nearly 50% of

45

Table 4: UDF versus SQL for OLAP varying n with
d=12 on Heart dataset.

n PreComputation(sec) UDF(sec) SQL(sec)
655 0 159 1827

6,550 0 159 1828
65,500 1 159 1828

655,000 2 160 1829
6,550,000 8 161 1829

the execution time of the entire UDF, especially for larger
dimensions. For the SQL approach, everything is performed
on disk and in permanent space. Though each aggregation
results only in an insert, this is still much slower than in
memory. In addition, the table scans all require reading
from the disk and results in longer execution times for the
SQL approach.

We now observe the effect of varying n on both the UDF
and SQL approaches to generating the lattice. In this case,
we are holding d at 12 and duplicating the dataset by factors
of 10 to create the larger tables. The precomputation step of
both approaches helps keep the execution times steady even
as n grows into the millions. The reason is that by condens-
ing the input table into distinct values, we combined many of
the tuples that were identical in terms of the dimensions. For
example, in a dataset with twelve dimensions, there are a to-
tal of 4096 different combinations of the dimensions, which
means that the precomputed input table can only have a
maximum of 4096 rows. Thus, for all these large tables, we
can condense them to input tables with at most slight over
four thousand tuples. The key to the increasing n is that
the complexity depends less on how many tuples there are
and more on d. It is the number of dimensions that controls
the maximum number of distinct tuples possible in a table.
As a result, for tables with large n and small d, there will
be a large decrease in the number of rows that leads to an
equally large increase in performance. Thus, the precom-
puted step helps to make both approaches efficient even for
large n. There will only be a problem if there is a large
d, which has been explained previously. We can see from
Table 4 that the execution times exhibit very little change
though the UDF approach is still over ten times faster than
the SQL approach. While we did not vary the n for the
TPC-H dataset, it is safe to assume that for a dataset with
a smaller d, the result will be similar to that obtained for
the Heart dataset. In the case of the TPC-H dataset, we are
looking at the maximum of 256 tuples in the precomputed
table regardless of the size of the dataset.

Though the previous experiments have binary dimensions,
our data structure can also handle dimensions with more dis-
tinct values. Neither the algorithm nor the structure needs
to be changed because more distinct values only produces
more groups, not nodes. The performance of the algorithm
should not be affected because the groups are still either al-
tered or added into each node. The only difference is that
there will be more groups under each node.

4.3 Comparison with CUBE operator
Whenever the generation of an OLAP lattice is consid-

ered, we must look at the CUBE operator provided in SQL
Server. This operator also creates the lattice and the main

Table 5: UDF versus CUBE operator varying d on
Heart dataset. *denotes unable to compute.

d UDF Time(sec) CUBE Time(sec)
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 2 1
9 5 1

10 10 1
11 31 *
12 159 *
13 412 *
14 695 *
15 985 *

Table 6: UDF versus CUBE operator varying d on
TPC-H dataset. n=1.5M

d UDF Time(sec) CUBE Time(sec)
1 3 2
2 3 2
3 3 2
4 3 2
5 3 2
6 3 2
7 4 2
8 4 3

difference is the use of NULL in the place of the ALL key-
word. Table 5 and Table 6 show a comparison of the times
for the UDF approach and for using CUBE in both the Heart
and TPC-H datasets. As we can see, the CUBE operator
is faster than the UDF for dimensions higher than eight,
but it cannot go further than ten dimensions on the Heart
dataset. In fact, the CUBE operator cannot go beyond ten
dimensions for any dataset because of the limitation set by
the DBMS. On the other hand, the UDF approach is only
limited by the memory space that the lattice uses, allowing
it to reach higher dimensions.

In addition to the limitation on number of dimensions, the
CUBE operator is also restrictive because we cannot alter
the way it behaves. For example, depending on the final
goal of the OLAP lattice, we can apply constraints that will
remove parts of the lattice and improve performance. For
example, if we use the lattice to perform analysis [12], then
we can include a depth constraint that will limit the size
of the lattice. The depth constraint [13] determines how
deep the lattice will be calculated. If we set a depth of four
on a twelve dimension table, then the lattice will only be
calculated up to a level of four. This results in nodes that
have a maximum of four dimensions. Such a constraint can
be implemented in the UDF approach, but cannot be ac-
complished in with the CUBE operator. In fact, because
we cannot change the CUBE operator in any way, no con-
straints or changes can be implemented. Thus, we believe
that the flexibility of our UDF approach makes it a more ap-

46

Table 7: UDF versus CUBE Operator varying n with
d=10 on Heart dataset.

n UDF Time(sec) CUBE Time(sec)
655 10 1

6,550 10 1
65,500 11 3

655,000 12 7
6,550,000 17 14

Table 8: UDF versus SQL for Association Rule vary-
ing d on Heart dataset.

d UDF Time(sec) SQL Time(sec)
2 0 1
4 0 2
8 1 5

10 12 12
12 23 19
14 124 26
16 680 57

pealing approach than using the CUBE operator because of
the ability to implement constraints or other optimizations.

Table 7 shows the performance of the two lattice genera-
tion methods when the size of the dataset is increased. The
UDF approach is affected much less than the CUBE ap-
proach as n increased. Our UDF approach increased less
than one fold when the dataset was increased by 10,000
times, but the CUBE approach saw an increase in execution
time of fourteen folds. Not only this, when we approached
millions of rows, the execution times for both datasets ap-
pear to be converging. The main reasoning behind narrow-
ing of the gap between the two approaches is the use of the
precomputation step for our UDF approach. As explained
above, it reduces the size of the input table to more manage-
able levels. Thus, we can see that while the UDF approach
appeared to be much slower than using the CUBE opera-
tor for small datasets, the difference is less pronounced for
large datasets. The main advantage of the UDF approach
over the CUBE operator is the flexibility that the UDF en-
joys. Optimizations such as constraints can be applied to
the UDF by the user while the CUBE operator cannot be
changed to apply these optimizations.

4.4 Performance for Association Rules
We will now compare our UDF approach against a purely

SQL approach in terms of generating association rule item-
sets. In both approaches, we are generating the full set of
itemsets, with no support threshold or set containment re-
strictions. Table 8 shows the execution times for both the
UDF approach and the SQL approach. As can be seen,
the UDF is comparable with the SQL approach until ten
dimensions, after which the SQL approach performs much
better. The main difference between the two approaches is
that the pure SQL approach includes the support constraint
that the UDF approach is not able to mimic. For SQL, the
strategy is to use multiple passes to determine support at
least level of the itemsets and filter based on that. Since
the UDF approach uses only one pass, we are unable to con-
fidently determine the support of any itemsets until all of

Table 9: UDF versus SQL for Association Rules
varying n with d=12 on Heart dataset.

n UDF Time(sec) SQL Time(sec)
655 23 19

6,550 23 23
65,500 24 54

655,000 26 114
6,550,000 32 *

the dataset has been read. This difference greatly affected
the efficiency of the code since the SQL approach was able
to prune portions of the itemsets while the UDF approach
needed to generate the full set of itemsets.

Though it may seem that the SQL approach is better than
using UDF, the truth is not as simple. The dataset that was
used to conduct the experiment only had 655 tuples. If we
increase the size of the dataset, by duplicating the rows,
a completely different pattern emerges. Table 9 shows the
execution times for increasing large datasets. We see that
while the SQL approach performs well at lower n, when we
increase the size of the dataset, the perform drops. On the
other hand, the performance for the UDF remains virtually
constant. Additional experiments showed that this trend
holds in all of the other dimensions. The only change be-
tween the different dimensions is that the point at which
UDF surpasses SQL in performance changes.

5. RELATED WORK
We propose the generation of OLAP lattices within user-

defined functions. To the best of our knowledge, no one has
pushed OLAP processing into the UDF. OLAP lattices and
cubes have been generated using various structures both out-
side the database and inside the database. The authors in
[4] developed a statistical tree that stored the OLAP lattice
in a tree format with the ALL sections being calculated on
the fly. A condensed version of an OLAP lattice that used
prefix and suffix redundancy reduction to create smaller lat-
tices was presented in [16]. On the other hand, [12] presents
one case where the OLAP lattice was generated entirely us-
ing SQL without using UDFs or stored procedures. The
authors in [9] combined OLAP with association rules using
OLAP servers from MS SQL Server 2000. Our approach dif-
fers from these references because we use UDFs to perform
similar tasks.

On the UDF side, much research has been implemented on
comparing the effectiveness of UDF versus SQL. The authors
in [14] not only showed how UDFs are just as efficient in
arithmetic operations as standard SQL, but also showed how
UDFs can be used to extend the DBMS with capabilities
that SQL does not have. UDF is taken one step further
in [11] by showing that it can be used to build and score
statistical models. Various other approaches to extend the
capabilities of SQL have also been taken. The authors in [3]
showed how primitive operators can be used to perform tasks
such as pivoting and sampling. The efficient computation of
percentages in horizontal and vertical formats is proposed
by [10]. Similar to these approaches, our research involves
extending SQL to perform additional tasks. However, we
choose to use UDFs and extended SQL with the ability to
efficiently produce OLAP lattices.

47

Association rules [1], like the OLAP lattice, has gener-
ally be implemented outside the database. The authors in
[7], developed an algorithm for generating large numbers of
rules efficiently. Constraints were also developed to both
improve performance and decrease the number of rules ob-
tained in [13]. The generation of on-line association rules
was proposed in [8]. While all of the above references pro-
posed new structures or methods of generating association
rules, none of them are implemented within the database.
We show that our lattice structure can also be used to store
association rule itemsets. The authors of [15] introduces the
computation of association rules using UDFs, but the pro-
cess is split into multiple UDFs. In our case, not only are
we creating one user defined table valued function that will
generate the itemsets in one call, we have also provided a
more versatile UDF that can be used for OLAP processing.

6. CONCLUSIONS
In this paper, we propose to push the generation of the

OLAP lattice into UDFs instead of completely within the
database or entirely outside the database. The rationale is to
find a middle ground between the highly efficient algorithms
of C and other high-level languages with SQL within a more
secure database. We developed a new lattice structure to
store the lattice while it is in main memory. Even though
the structure would have to be written to physical space at
the completion of the UDF, we experimentally found that
the resulting execution time was still over ten times faster
than generation the lattice with standard SQL. This trend
holds not only for datasets of various dimensions, d, but
also of various length, n. In addition, we also compared the
UDF approach to the built-in CUBE operator found in SQL
Server. We found that while CUBE was more efficient than
our UDF approach for some dimensions, it is limited both
by the number of dimensions and by its flexibility. Not only
can it not exceed ten dimensions, but the user has no con-
trol over any aspect of the generation. On the other hand,
performing the generation in UDF had a higher limit with
the flexibility to apply constraints or change the output rep-
resentation. Furthermore, we also used the lattice structure
to generate association rule itemsets and compared it with
an approach using only standard SQL. Based on the exper-
iments, we can conclude that UDFs are slower than using
standard SQL for datasets with small n. However, as n
increases, the performance of UDF catches up to and sur-
passes that of the SQL approach. Thus, we show that the
generation of an OLAP lattice or association rule itemsets
within UDFs is possible and warrants further research.

For future work, we want to increase the maximum num-
ber of dimensions that can be handled by the UDF by using
techniques for dealing with sparse data. The memory con-
sumption of the methods compared in this paper needs to
be investigated in more detail. We want to investigate the
support constraint and implement it as the dataset is being
read. In addition, we want to explore the possibility of using
bitmaps or other indexing data structures to represent the
lattice. This would allow us to both improve performance
and increase the capacity of the UDF. Finally, we want to
compare the UDF approach with other similar methods that
allowed for either OLAP processing or generated association
rules. Such comparisons would let us study where our ap-
proach ranks and also help pinpoint specific trouble locations
in the implementation or algorithm.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD Conference, pages
207–216, 1993.

[2] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. ACM SIGMOD
Record, 26(1):65–74, 1997.

[3] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[4] L. Fu and J. Hammer. Cubist: a new algorithm for
improving the performance of ad-hoc OLAP queries.
In DOLAP Workshop, 2000.

[5] B. Hamilton. Programming SQL Server 2005. O’Reilly
Media, 1st edition, 2006.

[6] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, San Francisco, 1st
edition, 2001.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM SIGMOD
Conference, pages 1–12, 2000.

[8] C. Hidber. Online association rule mining. In ACM
SIGMOD Conference, 1999.

[9] R. Messaoud, S. Rabaséda, O. Boussaid, and
R. Missaoui. Enhanced mining of association rules
from data cubes. In DOLAP, pages 11–18, 2006.

[10] C. Ordonez. Vertical and horizontal percentage
aggregations. In ACM SIGMOD Conference, pages
866–871, 2004.

[11] C. Ordonez. Building statistical models and scoring
with UDFs. In ACM SIGMOD Conference, pages
1005–1016, 2007.

[12] C. Ordonez and Z. Chen. Evaluating statistical tests
on OLAP cubes to compare degree of disease. IEEE
Journal of Transactions on Information Technology in
Biomedicine, 2008.

[13] C. Ordonez, N. Ezquerra, and C.A. Santana.
Constraining and summarizing association rules in
medical data. Knowledge and Information Systems
(KAIS), 9(3):259–283, 2006.

[14] C. Ordonez and J. Garćıa-Garćıa. Vector and matrix
operations programmed with UDFs in a relational
DBMS. In ACM CIKM Conference, pages 503–512,
2006.

[15] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In ACM
SIGMOD, pages 343–354, 1998.

[16] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: shrinking the petacube. In ACM
SIGMOD Conference, pages 464–475, 2002.

48

