
PandaSQL: Parallel Randomized Triangle Enumeration with
SQLQueries

Abir Farouzi
ISAE-ENSMA
Poitiers, France

Ladjel Bellatreche
ISAE-ENSMA
Poitiers, France

Carlos Ordonez
University of Houston

USA

Gopal Pandurangan
University of Houston

USA

Mimoun Malki
Ecole Supérieure en Informatique

Sidi Bel Abbes, Algeria

ABSTRACT
Triangles are an important pattern in large-scale graph analysis for
their practical use in many real-life applications. However, with the
expansion of networks, maintaining a balanced computational load
is challenging especially for problems like triangle computations
because of skewed vertices. On the other hand, there is a huge
amount of data in database management systems (DBMSs) that
can be modeled and analyzed as graphs. With these motivations in
mind, we developed PandaSQL, a novel approach using SQL queries
to enumerate all the triangles in a given graph based on Randomized
Triangle Enumeration Algorithm. Our approach is elegant, abstract,
and short compared to traditional languages like C++ or Python.
Moreover, our partitioning queries ensures a perfect load balancing.
Thus, the triangle enumeration is independent, local, and parallel.

CCS CONCEPTS
• Information systems→Relational parallel and distributed
DBMSs; Structured Query Language.

KEYWORDS
DBMS, Parallelism, Triangle Enumeration, Graphs, Query Lan-
guage.

ACM Reference Format:
Abir Farouzi, Ladjel Bellatreche, Carlos Ordonez, Gopal Pandurangan, andMi-
moun Malki. 2020. PandaSQL: Parallel Randomized Triangle Enumera-
tion with SQL Queries. In Proceedings of the 29th ACM International Con-
ference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3340531.3417429

First author is also affiliated to Ecole Supérieure en Informatique, Sidi Bel Abbes,
Algeria.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3417429

1 INTRODUCTION
Larger networks are being generated day after day as the world is
more interconnected than before. Examples include real-world net-
works such as social, transportation, Web, and biological networks.
Hence, graph problems including triangle enumeration problem are
becoming even more difficult to solve since the current networks
present larger size, more complex structure with different degree
distributions, and the existence of complex topological structures
like cycles or cliques. Taking this into account, our work focuses
on enumerating triangles on large graphs inside DBMS using SQL
queries inspired by the Randomized Triangle Enumeration Algo-
rithm [7].

Analyzing graph in DBMS received scant intentions, this can be
explained by the fact that relational DBMSs don’t define graph con-
cepts. Nevertheless, some work like [2, 8, 9] add an additional layer
to DBMS that can deal with graph concepts while the processing
remains inside DBMS. Another, more practical reason, not to use
relational DBMSs for graph analysis is the emergence of powerful
parallel graph engines in the Hadoop big data ecosystem like Neo4j
and Spark GraphX. However, these systems are standalone requir-
ing significant efforts to link and integrate information about the
graph. Unlike DBMSs that enable direct and transparent integration
using SPJA (selection, projection, join,aggregation) operations. In
addition, most of graph data are stored in non-graph databases,thus
they are not explicitly stored as graphs. Moreover, analyzing large
networks in relational databases outside DBMSs using traditional
programming languages or graph-based systems, users need to
export data to external files which is considerably slow, thereby
going through performance bottleneck while losing data manage-
ment capabilities provided by DBMSs including query processing,
security, concurrency control, and fault tolerance.

In this perspective, our approach PandaSQL1 based on SQL
queries to enumerate graph triangles presents an inside DBMS
solution that exploits all the benefits and functionalities of DBMSs
while performing graph analysis. Indeed, our approach feats the
distributed DBMS partitioning strategy to partition the graph rep-
resented as edge table in such a way that eliminates the data
movement between cluster hosts during the triangle computations.
Hence, ensuring that the triangle enumeration step remains local,

1PandaSQL can be found at: https://forge.lias-lab.fr/projects/sql4triangle.
A beginner video demonstration via an intuitive GUI is available at:
https://youtu.be/pwcYkOUV8_s and an expert video with detailed queries is
available at: https://youtu.be/78Dd0rnMR4Q

https://doi.org/10.1145/3340531.3417429
https://doi.org/10.1145/3340531.3417429

Figure 1: System Architecture

parallel, and independent from the other hosts. In this demonstra-
tion, we opt for columnar DBMS giving its fast query processing,
however, our queries should work perfectly on row DBMS as well.

2 SYSTEM DESCRIPTION
This work is a continuation of previous research efforts targeting
to implement different graph analysis algorithms using queries,
among others triangle counting problem [1]. Besides, optimizing
linear recursive queries, which has triangles as a particular case of
the transitive closure of the input graph [5, 6].

In the following, we start by presenting the global architecture of
the system, then we define the graph in database perspectives and
we give an overview of our approach to enumerate the triangles in a
given graph𝐺 . Finally, we present the different query optimizations
leading to the best performances.

2.1 System Architecture
Our system consists of 𝑘-machines model; a popular theoretical
model for large-scale distributed graph computation [4], where 𝑘 is
the size of the cluster, built over share-nothing architecture. Each
machine can communicate directly with the others by message
passing (no shared memory).

In order to achieve a perfect load balancing, the number of ma-
chines 𝑘 must be chosen as shown in equation (1):

𝑘 = 𝑝3/𝑝 ∈ N (1)

Fig. 1. depicts an overview of our system. Initially, a client
(Python, Java,..) submits the query to the distributed DBMS via
its corresponding database connector API. The host receiving the
query becomes an Initiator node while the others remain Executor
nodes. The initiator node picks an execution plan and shares it
with the executors then all the hosts perform the query (Data can
be exchanged between hosts by message passing depending on
the query and data distribution). Finally, the result of the query is
output to the client for presentation.

2.2 Graph Definitions
In our system, a given graph 𝐺 is stored as an adjacency list in
an edge table 𝐸_𝑠 (𝑖, 𝑗) with primary key (𝑖, 𝑗) representing source
vertex 𝑖 and destination vertex 𝑗 . Each tuple of table 𝐸_𝑠 defines
the existence of an edge. If the graph is directed, the edge table
𝐸_𝑠 holds the set of directed edges. Otherwise, for each tuple (𝑖, 𝑗)
inserted in the edge table 𝐸_𝑠 , (𝑗, 𝑖) is also inserted.

2.3 Randomized Triangle Enumeration
The high-level idea behind our approach is to partition the set
of vertices of the input graph in such a way that eliminates data
movement during the task of triangle enumeration, by ensuring a
perfect balancing of the workload. Full details can be found in [3].

PandaSQL consists of two fundamental steps: (i) graph partition-
ing and (ii) local triangle enumeration.

2.4 Graph Partitioning
In this step, the vertices set of the input graph is randomly par-
titioned into 𝑘1/3 subset of 𝑛/𝑘1/3 each, then each of the 𝑘 ma-
chines examines the edges between pairs of subsets of one of the
(𝑘1/3)3 = 𝑘 possible triplets of subsets of vertexes. In order to
achieve this partitioning, our approach consists of the following
sub-steps:

Initially, the input graph is imported to the edge table 𝐸_𝑠 (𝑖, 𝑗)
and a small table called 𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2, 𝑐𝑜𝑙𝑜𝑟3) is
created, it holds all the 𝑘 possible triplets of color subsets, where
each triplet is attributed to one unique machine among the 𝑘 ma-
chines. The table 𝑇𝑟𝑖𝑝𝑙𝑒𝑡 is replicated on each machine in order
to accelerate the local join. Then, each vertex of the input graph
picks independently and uniquely at random one color from 𝑘1/3

distinct colors. Each vertex and its picked color are stored in a ta-
ble called 𝑉 _𝑠 (𝑖, 𝑐𝑜𝑙𝑜𝑟) that allows to send each edge to a random
proxy machine. This is done by a double join between table 𝑉 _𝑠
and edge table 𝐸_𝑠 . The resulting output is stored in proxy table
𝐸_𝑠_𝑝𝑟𝑜𝑥𝑦 (𝑖, 𝑗, 𝑖_𝑐𝑜𝑙𝑜𝑟, 𝑗_𝑐𝑜𝑙𝑜𝑟). Sending edges to proxies is the
most important step in our approach because all the partitioning
step depends on it. Finally, each machine collects the edges that may
form a triangle according to the color triplet assigned to it from the
proxies. As result, the table𝐸_𝑠_𝑙𝑜𝑐𝑎𝑙 (𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑖, 𝑗, 𝑖_𝑐𝑜𝑙𝑜𝑟, 𝑗_𝑐𝑜𝑙𝑜𝑟)
is created by performing join and union operations between𝐸_𝑠_𝑝𝑟𝑜𝑥𝑦
and 𝑇𝑟𝑖𝑝𝑙𝑒𝑡 . The 𝐸_𝑠_𝑙𝑜𝑐𝑎𝑙 table is partitioned on the cluster hosts
so that all the edges belonging to the same machine are stored on
one single machine among the 𝑘 hosts, which eliminate having
multiple copies of edges replicated over the cluster.

2.5 Local Triangle Enumeration
The previous step ensures having all possible formed triangles
hosted, according to their end-vertices, on their corresponding
machines. This partitioning ensures having a balanced data distri-
bution and workload. Therefore, the current step becomes local,
independent, and parallel. Indeed, local triangle enumeration is
performed by double local self-join on the table 𝐸_𝑠_𝑙𝑜𝑐𝑎𝑙 since all
required edges to form triangles on each machine are available on it
(no data movement). Fig. 2. illustrates an example of our approach
on cluster of 8 hosts.

Figure 2: Randomized Triangle Enumeration on Cluster of 8 hosts

2.6 Optimization
As we chose columnar DBMS for our demonstration, we emphasize
that setting up the following optimisations can speed up the query
running time and help us to reach the desired workload balancing.
These optimizations are applied during the DDL and they are less
portable.

2.6.1 Compression: Data compression is a technique used by colum-
nar DBMS to reduce the storage required to save the contents. We
used run-length encoding (RLE) which replaces a sequence of iden-
tical values in a column with a set of pairs. Each pair represent
the number of contiguous occurrences for a given value <value,
occurrence>.

2.6.2 Small table replication: replicating small tables on each host
of the cluster represents a good optimization step. It ensures the
availability of required data on each host, thus, exclude having data
movement during join operations. We replicate the table 𝑇𝑟𝑖𝑝𝑙𝑒𝑡
since it has only 8 tuples. This speeds up the execution time of the
join between𝑇𝑟𝑖𝑝𝑙𝑒𝑡 and 𝐸_𝑠_𝑝𝑟𝑜𝑥𝑦 in the edge collecting by local
machine sub-step.

2.6.3 Projections: are optimized collections of table columns that
provide physical storage for data. They can contain some or all
of the columns of one or more tables. Projections in columnar
DBMS are equivalent of indexes in row DBMS. Columnar DBMS
creates automatically projection for each created table, however,
the definition of projections can be done manually to satisfy some
requirements. In the previous section, projections were specifically
defined for two main reasons: (i) to replicate the Triplet table on
each host of the cluster and (ii) to send each edge to it corresponding
machine in the edge collecting from proxies sub-step.

3 SYSTEM DEMONSTRATION
3.1 Main Points
As explained in the introduction, enumerating triangles is funda-
mental to solve more complex graph problems, but the triangles
themselves may not be interesting to the end user, especially if
there is a large number of triangles (e.g. many groups of 3 people).
Therefore, the goal of our system demonstration will be to illustrate
how a clever randomized distributed algorithm can work on top of
a traditional DBMS, evaluating SQL. We hope our system can open
the possibility of programming other randomized algorithms with
queries.

Our main goals, going from logical database aspects to physical
and processing aspects, are the following: (1) an overview of the
parallel computation model, contrasting it with respect to the num-
ber of machines (processing nodes); (2) highlighting advantages
of SQL over C++ or Java (slower, but more scalable and getting
benefit from DBMS features); (3) understanding SQL table defini-
tions; (4) explaining how color triplets are assigned to machines; (5)
understanding edge distribution imbalance when there exist highly
skewed vertices; (6) explaining why a distributed join does not scale
to a large number of machines; (7) explaining why a traditional SQL
queries may hit a bottleneck with skewed vertices; (8) explaining
why a random assignment of edges re-balances workload to solve
the triangle enumeration.

3.2 Demonstration Overview
Our scenario is directed to both beginner and expert researchers
who want to learn how randomized algorithms can work in SQL.
As shown in Figure 3, in an intuitive GUI the user will choose a
graph to analyze, where this graph is stored as a list of edges (𝑖, 𝑗).
The system will display m (# of edges) and n (# of vertices). Then
the system will display "top" skewed vertices in descending order
of degree (say 15 or less). Then, to solve triangle enumeration, the
user will choose between the traditional SQL queries or the new
randomized queries. We will provide medium-sized graphs that

Figure 3: PandaSQL Main GUI

can be analyzed in less than one minute (n=10k). After evaluating
the queries the user will visualize dynamically created pie charts
showing edge distribution among the machines (i.e. workload). For
the traditional solution, the user will be able to see skewed vertices
across machines that will slow down join computation (larger in-
termediate results). In contrast, for the randomized solution, the
user will see edges involving skewed vertices are shuffled and then
the number of edges per vertex on each machine is approximately
the same. Moreover, the user will understand why the distributed
join with the randomized edges assignment is faster.

For experienced users, who understand query processing and
DBMS internals, we will provide a more technical overview of our
randomized solution. We will explain: why the number of machines
must be a cube of the number of colors (i.e. in our demo 2 colors,
hence 8machines), potential speedup as𝑘 grows (8,27,64, and so on),
efficient access to edges in tables (by index lookup or binary search),
how tables are physically partitioned by chosen columns (critical
for balanced workload), the actual balanced edge distribution after
edges are sent to the proxymachine, why the two randomized edges
join produce intermediate tables that are uniformly partitioned as
well, how joins can indeed work locally, and finally why triangle

enumeration does not require edge redistribution at the end. To
round up this scenario, we will explain why columnar DBMSs have
a performance edge over row DBMSs for graph analytics.

REFERENCES
[1] S. T. Al-Amin, C. Ordonez, and L. Bellatreche. 2018. Big Data Analytics: Exploring

Graphs with Optimized SQL Queries. In DEXA Workshops. 88–100.
[2] J. Fan, A. G. S. Raj, and J. M. Patel. 2015. The Case Against Specialized Graph

Analytics Engines.. In CIDR.
[3] A. Farouzi, L. Bellatreche, C. Ordonez, G. Pandurangan, and M. Malki. 2020. A

Scalable Randomized Algorithm for Triangle Enumeration on Graph based on
SQL Queries. In DaWaK.

[4] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. 2015. Distributed
Computation of Large-scale Graph Problems. In ACM-SIAM SODA. 391–410.

[5] C. Ordonez, , W. Cabrera, and A. Gurram. 2017. Comparing columnar, row and
array DBMSs to process recursive queries on graphs. Information Systems 63
(2017), 66–79.

[6] C. Ordonez. 2010. Optimization of Linear Recursive Queries in SQL. IEEE TKDE
22, 2 (2010), 264–277.

[7] G. Pandurangan, P. Robinson, and M. Scquizzato. 2018. On the Distributed Com-
plexity of Large-Scale Graph Computations. In SPAA. 405–414.

[8] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. T. Xie. 2015.
SQLgraph: An efficient relational-based property graph store. In ACM SIGMOD.
1887–1901.

[9] Y. Tian, E. K.Xu, W. Zhao, M. H. Pirahesh, S. Tong, W. Sun, T. Kolanko, M. S. H.
Apu, and H. Peng. 2020. IBM Db2 Graph: Supporting Synergistic and Retrofittable
Graph Queries Inside IBM Db2. ACM, 345–359.

	Abstract
	1 Introduction
	2 SYSTEM DESCRIPTION
	2.1 System Architecture
	2.2 Graph Definitions
	2.3 Randomized Triangle Enumeration
	2.4 Graph Partitioning
	2.5 Local Triangle Enumeration
	2.6 Optimization

	3 SYSTEM DEMONSTRATION
	3.1 Main Points
	3.2 Demonstration Overview

	References

