
Integrating Flow and Structure in Diagrams for
Data Science

Enea Vincenzo Napolitano
University of Naples Federico II

Italy

Elio Masciari
University of Naples Federico II

Italy

Carlos Ordonez
University of Houston

USA

Abstract—In Data Science, data modeling (including rela-
tional databases and big data) has traditionally used Entity-
Relationship (ER) diagrams to represent structural character-
istics of data. However, ER diagrams lack the capability to
capture the flow and transformation of data through analytic
pipelines, which are essential to manage modern data science
workflows. On the other hand, flowcharts have been used for
decades to describe the processing. Based on this motivation, this
paper provides a historical perspective identifying the limitations
of employing ER diagrams and Data Flow Diagrams (DFDs),
separately, emphasizing the need to integrate both solutions.
We examine established diagram notations and design models,
including traditional models such as UML, ER, DFD, BPMN,
and FLOWER. Our literature analysis suggests that integrative
diagram approaches can provide a more intuitive and compre-
hensive understanding of data collection, data integration, and
data transformation for big data analytics in the future.

I. INTRODUCTION

Entity-Relationship (ER) diagrams have long been the dom-
inant method for data modeling, offering a robust framework
for the detailed and conceptual representation of data struc-
tures. ER diagrams serve to define entities, attributes, and
the relationships between them in a manner that is effective
and comprehensive, thereby establishing them as a corner-
stone of traditional data modeling practices. However, they
are primarily concerned with static structural representation
and do not adequately capture the flow and transformation
of data across processes. This limitation is made apparent
when considered in conjunction with Data Flow Diagrams
(DFDs), which emphasize the movement and processing of
data, thereby underscoring the necessity for a more integrated
approach in the field of modern data science and analytics.

In the context of contemporary data science processes,
there is a discernible shift away from explicit data modeling
towards a more pronounced emphasis on data manipulation
and analysis. This transition can be attributed, at least in part,
to the advent of modern tools such as IBM Workflow Diagram
Software, Pentaho, ERWin, Lucidchart, and Tableau. These
tools frequently employ their own proprietary visualizations
and notation, rather than established standards such as ER
or DFD. These tools prioritize flexibility and user-friendly
interfaces, but may not fully capture the complexities of both
data structure and flow in a unified manner.

Despite the prevalence of such tools, there is a continued
need for effective data-modeling practices. In recent years,
a number of methods have been proposed with the aim of

enhancing the effectiveness of ER diagrams. These include the
Unified Modeling Language (UML), DFDs, and the Business
Process Model and Notation (BPMN). Each of these modeling
techniques serves a distinct purpose and is beneficial at dif-
ferent stages of system development and analysis. However,
these tools often operate in isolation, lacking the integration
necessary to provide a comprehensive view of both data
structure and flow.

In order to address this gap in the available tools, it may be
beneficial to consider combining the structural representation
of entity relationship diagrams with the dynamic visualization
of data flow diagrams. The objective of this article is to
emphasize the value of such integrated solutions in the field of
data science, where an understanding of both the structure and
flow of data is essential for deriving meaningful information.

II. BACKGROUND

This section presents the theoretical background required to
understand ER diagrams and DFDs.

A. Theoretical Concepts of the Entity-Relationship Model

The ER model is based on several foundational theoret-
ical concepts, which provide a formal framework for data
modeling. Once polished, an ER diagram is often mapped to
a relational database schema, where the entities, attributes,
and relationships are translated into tables, columns, and
constraints that adhere to relational database principles.

1) Entities and Entity Sets: An entity set E is a collection
of similar entities, which can be represented as:

E = {e1, e2, e3, . . . , en}

where ei represents an individual entity in the set. Each
entity is considered a unique instance of the real-world object
or concept the entity set represents.

2) Attributes and Attribute Sets: Each entity in an entity
set has attributes that describe its properties. These attributes
can be formally defined as a function:

A : E → V

where V is the set of possible values that the attribute can
take.

Domain: For each attribute, its domain defines the set of
permissible values. Formally, the domain D of an attribute A
is a subset of V , specifying the valid range or set of values:

D ⊆ V

3) Relationships and Relationship Sets: A relationship set
R is a collection of relationships, each involving entities from
potentially different entity sets. It can be defined as follows.

R = {(e1, e2, . . . , ek) | ei ∈ Ei}

where each ei is an entity from a corresponding set of
entities Ei. Relationships are crucial for illustrating how
entities interact with one another in a model.

4) Keys:

• Primary Key: A primary key is a minimal set of
attributes that uniquely identifies each entity within an
entity set. Formally, if E is an entity set and K ⊆ A is a
set of attributes, then K is a primary key if and only if:

∀ei, ej ∈ E, (K(ei) = K(ej) =⇒ ei = ej)

This ensures that no two distinct entities in the set share
the same value for the primary key attributes, thereby
providing uniqueness.

• Foreign Key: A foreign key (FK) is an attribute or a set
of attributes in one entity set that serves as a reference to
a primary key (PK) in another (or the same) entity set.
Formally, if Ei and Ej are two entity sets and FK ⊆
Ai (attributes of Ei) is a foreign key that references the
primary key PK ⊆ Aj (attributes of Ej), then for every
ei ∈ Ei, there exists an ej ∈ Ej such that:

FK(ei) = PK(ej)

In relational databases, this foreign key constraint is
known as an inclusion dependency, which ensures that the
values in the foreign key columns of one table must match
the values in the primary key columns of another table.
This concept is fundamental to maintaining relational
integrity between tables.

5) Cardinality Constraints: Cardinality constraints specify
the number of entities that can participate in a relationship.
If R is a relationship set that involves entity sets Ei and Ej ,
then cardinality constraints can be expressed as:

cardinality(R,Ei) = (m,n)

where m and n represent the minimum and maximum
number of times an entity from Ei can participate in the
relationship R.

B. Data Flow Diagrams

Data Flow Diagrams (DFDs) are graphical representations
used to model the flow of data within a system, highlighting
the processes, data stores, and external entities involved. They
are useful for both system analysis and design, providing a
clear picture of how data moves through a system and how it
is transformed by various processes.

Mathematically, DFDs can be understood within the frame-
work of graph theory, where a DFD is represented as a directed
graph G = (V,E). In this graph, V represents the set of
vertices and E represents the set of directed edges. Each vertex
v ∈ V can be classified into one of the following types:

• Process vertices (P ⊂ V): These vertices transform
incoming data into outgoing data. They are often depicted
by circles or rounded rectangles and represent operations
or computations performed on data. Processes define the
system’s functionality.

• Data store vertices (D ⊂ V): These represent locations
where data is stored and are usually drawn as open-ended
rectangles or parallel lines. Data stores act as repositories
where information is held for later use, and they interact
with processes by either providing input data or receiving
output data.

• External entity vertices (X ⊂ V): These denote the
sources or destinations of external data to the system
and are represented by rectangles. External entities are
outside the system boundaries but interact with it by
sending data to or receiving data from processes. They
are crucial for understanding how the system interfaces
with its environment.

The directed edges E, represented as arcs (u, v) ∈ E,
signify the data flow between vertices. These edges are labeled
with the data that are transmitted, providing clarity on what
information is moving and how it is being transformed. For
an edge (u, v) ∈ E, it indicates that data flow from vertex u
to vertex v.

To represent the structure of a DFD more rigorously, the
graph G = (V,E) is often shaped like a flow network,
consisting of a source vertex, intermediate processing vertices,
and a sink (destination) vertex. The source vertices (S ⊂ V)
represent the starting points of data flows (typically external
entities), while the sink vertices (T ⊂ V) represent the
endpoints (often data stores or external entities receiving data).
The intermediate vertices (I = V \ (S ∪ T)) represent the
processes that transform or route data as it flows through the
system.

For a more formal computational analysis, the structure and
flow of a DFD can be described using incidence matrices or
adjacency matrices, which are common tools in graph theory.
For a given DFD graph G = (V,E), its adjacency matrix A
is defined as:

Aij =

{
1 if there is a directed edge from vertex vi to vj ,

0 otherwise.

This matrix formulation facilitates computational analysis
and simulation of data flows. For example, by analyzing
the powers of the adjacency matrix, one can determine the
transitive closure of data flows, identifying all possible indirect
paths between vertices.

Moreover, DFDs can be hierarchical, meaning that com-
plex processes can be broken down into more detailed sub-
diagrams, known as ”leveled” DFDs. This allows for a lay-
ered approach to system modeling, starting from a high-level
overview and drilling down into finer details as needed. Each
level must maintain consistency with its parent level, ensuring
that all data inputs and outputs remain compatible across
different abstraction layers.

C. BPMN

Business Process Model and Notation (BPMN) is a stan-
dardized graphical notation used to model business processes.
BPMN is designed to bridge the gap between business process
design and implementation by providing a clear and intuitive
way to represent workflows.

Core Elements:
• Flow Objects:

– Events: Represent the start, intermediate, and end
points of a process.

– Activities: Tasks or work performed within the pro-
cess, depicted as rectangles with rounded corners.

– Gateways: Decision points that control the diver-
gence or convergence of process flows.

• Connecting Objects: Arrows that define the sequence
flow, message flow, and associations between flow ob-
jects.

• Swimlanes: Used to group activities by actor or role,
represented as pools and lanes.

• Artifacts: Additional information, such as data objects
or annotations, to provide context.

III. HISTORICAL PERSPECTIVE

This section examines the history of key data modeling
methods and how they have evolved over time, highlighting
their strengths, limitations, and contemporary relevance.

A. Data Structure

1) ER Diagram: In 1976, Peter Chen introduced ER di-
agrams as a method for conceptual modeling of data. This
approach was developed to address the limitations of previous
modeling methods by providing a more natural and visual
way of representing relationships between entities in computer
systems. The ER model rapidly became the de facto standard
for database design due to its capacity to represent complex re-
lational scenarios in a transparent and comprehensible manner
[1].

One of the key strengths of ER diagrams is their flexibility,
which allows for the representation of a virtually unlimited
range of data structures. It can be safely assumed that any
object in the world can be identified in some way, whether
by position, index in an array, or other attributes. This makes

ER diagrams highly adaptable. Furthermore, the process of
ER modelling serves to abstract away the complexities of
programming and computer architecture, focusing purely on
the data structure and its relationships without the need for
concerns about implementation details.

Over time, ER diagrams have been widely adopted in dif-
ferent fields, including relational database design, information
system design, and the integration of heterogeneous systems.
As more complex data environments have emerged, such as
object-oriented databases and NoSQL databases, the ER model
has been adapted to represent non-relational data structures.
However, its primary application remains in the context of
traditional relational databases [2]. The advent of data lakes
and AI data repositories has given rise to new challenges in
the efficient storage of diverse data formats (e.g. text files, web
pages, blogs) that do not map neatly to SQL-based structures.
These developments illustrate the evolving role of entity-
relationship diagrams in modern data management solutions.

2) UML: The Unified Modeling Language (UML) was
developed in the early 1990s in response to the increasing
complexity of software systems. The main creators of UML
were Grady Booch, Ivar Jacobson, and James Rumbaugh.
UML was born out of the need to unify various existing
modeling methods such as OMT (Object Modeling Tech-
nique), the Booch method, and Objectory. The first official
version of UML was released in 1997 under the auspices
of the Object Management Group (OMG). Since then, UML
has become an international standard for modeling software
systems, providing a comprehensive range of diagrams for
software design, analysis, and documentation [3].

Unlike ER diagrams, UML introduces the concept of ”meth-
ods” attached to ”classes,” which can be thought of as ”entities
with methods.” This distinction is significant because, while
ER diagrams focus purely on data structure and relationships,
UML provides a way to model the behavior of the system in
addition to its structure. In software development, where the
source code tends to be structured around functions or meth-
ods, UML’s object-oriented approach offers a more holistic
view of the system’s architecture.

As software development methods have evolved, UML has
seen a change in its applications. In the early 2000s, it was
mainly used in the context of formal documentation-based
software development methods, such as the waterfall model.
However, with the rise of agile methodologies, the use of UML
has been somewhat reduced, favoring simpler diagrams and
greater iteration. Despite this, UML remains a key tool in areas
where detailed documentation is required, such as industrial
software engineering and embedded systems [4].

Figure 1 illustrates an example of a UML representation of
the classes that correspond to an ER model.

B. Flow

1) Data Flow Diagram: The Data Flow Diagram (DFD)
was first introduced by Tom DeMarco in his publication,
’Structured Analysis and System Specification’, released in
1979. DFDs have become a principal tool for modeling data

Fig. 1. ER diagram in UML notation of an order management system for an
online shop.

flows in computer systems. This type of diagram represents
the flow of data between various parts of a system, with
the objective of facilitating the understanding and analysis of
system requirements. A DFD is formally defined as a directed
graph G = (V,E), where V represents the set of vertices
(processes, data stores, external entities) and E represents
the set of directed edges (data flows). Over time, the formal
definition of DFDs has been refined, but their core conceptual
framework remains the same.

DFDs were widely used during the 1980s and 1990s,
especially in information system development projects, and
are still used today in specific contexts [5]. They continue
to be valuable tools in the analysis of legacy systems, the
documentation of existing systems, and the education of
software engineers due to their simplicity and visual clarity [6].
Despite the decline in their use for new systems development,
DFDs remain relevant for specific applications.

Figure III-B1 illustrates an example of a DFD.
2) BPMN Diagram: The BPMN was developed in response

to the need for a standardized representation of business pro-
cesses. BPMN was initially developed by the Business Process
Management Initiative (BPMI) in 2004 and was subsequently
incorporated into the OMG, which released version 2.0 in
2011. BPMN was designed with the intention of being com-
prehensible to both business analysts and technical developers,
with the objective of bridging the gap between the design of
business processes and their implementation in information
systems[7], [8].

It is worth noting that BPMN appears to have been inspired
more by the conceptual framework of Data Flow Diagrams

Fig. 2. An example of a level 0 DFD for an online shop.

Fig. 3. BPMN example of an online shop.

(DFDs) than by Entity-Relationship (ER) Diagrams. This
is evident in its emphasis on modeling the flow of pro-
cesses, tasks, and decisions within a system, which aligns
more closely with the principles of DFDs that prioritize the
movement and transformation of data rather than the static
relationships between entities, as in ER diagrams.

BPMN is often used in conjunction with ER diagrams
to provide a more complete representation of both business
processes and data structures. The release of BPMN version
2.0 saw significant enhancements, including support for col-
laborative processes and the ability to model complex events.
This has positioned BPMN as a versatile tool for process
modeling in dynamic and global business contexts [9].

Figure III-B2 provides an example of BPMN.

C. Current Solutions

Recent years have seen the development of various methods
to address the limitations of traditional data modeling tech-
niques and better integrate data flow and structure modeling.

One notable approach is DBPMN (Data-aware and
Decision-aware BPMN), which builds on BPMN and DMN S-
FEEL (Simple-Friendly-Enough-Expression-Language) to cre-
ate a more formal and native definition of business process
models. This approach allows for the encoding of both data-
and decision-aware processes, providing a more comprehen-
sive and formalized representation of business workflows that
includes both process flow and decision logic. This integrated

Fig. 4. An example of a FLOW + ER.

model is particularly valuable for capturing the complex
dynamics of modern business processes, especially in data-
driven environments [10].

Another innovative method is the hybrid process modeling
approach, which combines BPMN, CMMN (Case Manage-
ment Model and Notation), and DMN to create a more
holistic and efficient representation of business processes. By
integrating these three notations, organizations can achieve a
more structured and realistic representation of their processes,
simplifying the modeling process and improving the clarity of
process documentation [11].

The landscape of BPMN extensions is also rich in var-
ious proposals that aim to improve the expressiveness and
applicability of BPMN in different contexts. A systematic
review of these extensions [12] highlights the various ways
in which BPMN has been adapted to meet the needs of
specific industries and use cases, from incorporating temporal
constraints to enabling data-driven process modeling.

In the area of data representation, the emergence of data
lakes and AI data repositories has reshaped how we think
about data storage and management. Modern data warehouses
have evolved into data lakes [13], capable of storing semi-
structured and unstructured data formats such as JSON, text
files, web pages, blogs and tweets, which cannot be efficiently
managed using traditional SQL databases. The FLOWER
method (FLOW + ER)[14] aims to synthesize the strengths of
these disparate approaches, providing a comprehensive model
that unifies data flow and structural representation, capturing
diverse data types and their movement within systems.

Figure III-C illustrates an example of a FLOWER. It is
evident that the addition of arrows (representing the data flow)
to UML class diagrams (which are structurally analogous to
ER diagrams with augmented methods) is a relatively straight-
forward process. In contrast, the incorporation of structured
elements (such as entities with attributes) into process-centric
diagrams, including BPMN and DFD, is a more complex
undertaking.

In practice, however, many data processing tasks, especially
in environments such as Python, still rely on simple, unstruc-
tured data formats such as CSV files without an underlying
data model. While this approach offers simplicity and flex-
ibility, it often lacks the rigor and consistency provided by
formal data models, thereby underscoring the continued need
for advanced modeling solutions in the evolving landscape of

data science and business process management.

IV. CURRENT LANDSCAPE AND FUTURE DIRECTIONS OF
FLOW AND DATA STRUCTURE

The evolving landscape of data science and AI highlights
the critical need for data modelling approaches that seamlessly
integrate data flow and structure. Traditional techniques such
as ER diagrams, UML, DFDs and BPMN provide valuable
frameworks for capturing business processes and relationships.
However, they often fall short in supporting the complex,
unstructured, and multidimensional data formats prevalent in
modern AI applications and data science workflows, such
as vectors, matrices, JSON, and other non-relational data
types. We argue for a renewed emphasis on comprehensive
data modelling frameworks that go beyond the limitations of
traditional methods to support both business and mathematical
processing. These frameworks should be able to represent the
complex data structures and flows that are fundamental to
effective data-driven decision making and advanced analytics.

The comparison is presented in Table I, which highlights the
formal definition, main elements, and clarity of each method,
among other factors.

Table II provides a summary of the advantages and limi-
tations of each method, providing further information on the
relative strengths and weaknesses of these approaches.

In conclusion, a significant challenge today is the
widespread use of code-centric approaches, particularly in
environments such as Python, where data manipulations are
performed without a coherent underlying data model. This
can lead to inefficiencies, lack of scalability, and difficulties
in maintaining and interpreting data workflows. We believe
that data models are essential not only for traditional data
management, but also for managing the complexity of modern
big data environments, such as data lakes and AI data repos-
itories. Future modelling solutions should strive to integrate
the strengths of existing techniques while accommodating dif-
ferent data types and processes, enabling more robust systems
that can evolve with advances in data science and AI.

REFERENCES

[1] P. P.-S. Chen, “The entity-relationship model—toward a unified view of
data,” ACM transactions on database systems (TODS), vol. 1, no. 1, pp.
9–36, 1976.

[2] R. Elmasri, “Fundamentals of database systems seventh edition,” 2021.
[3] G. Booch, I. Jacobson, J. Rumbaugh et al., “The unified modeling

language,” Unix Review, vol. 14, no. 13, p. 5, 1996.
[4] M. Fowler, UML distilled: a brief guide to the standard object modeling

language. Addison-Wesley Professional, 2018.
[5] T. DeMarco, “Structured analysis and system specification,” in Software

pioneers: contributions to software engineering. Springer, 2011, pp.
529–560.

[6] Q. Li and Y.-L. Chen, “Data flow diagram,” in Modeling and Analysis
of Enterprise and Information Systems. Springer, 2009, pp. 85–97.

[7] S. A. White, “Introduction to bpmn,” Ibm Cooperation, vol. 2, no. 0,
p. 0, 2004.

[8] M. Von Rosing, S. White, F. Cummins, and H. De Man, “Business
process model and notation-bpmn.” 2015.

[9] J. Recker, “Opportunities and constraints: the current struggle with
bpmn,” Business Process Management Journal, vol. 16, no. 1, pp. 181–
201, 2010.

TABLE I
COMPARISON OF DATA MODELS WITH FOCUS ON DATA SCIENCE ACTIVITIES

UML Activity Diagram BPMN DFD ER Model + UML ER Model + Flow
Fundamental Aspects
Definition

A directed graph G =
(A, T), where A is a
set of activities, and T
is a set of transitions
(directed edges) between
them, with optional de-
cision nodes [15]

A tuple (E,A,G),
where E is a set of
events, A is a set of
activities, and G is
a set of gateways,
with directed edges
representing the control
flow between these
elements [16]

A directed graph G =
(P,D, F), where P is
a set of processes, D is
a set of data stores, and
F is a set of data flows
(edges) between them

A tuple (E,R), where
E is a set of entities,
each defined as a set of
attributes, and R is a
set of relationships, ex-
tended with UML class
diagrams as sub-graphs
S(E,R,C), where C is
a set of class associa-
tions

A tuple (E,R, F),
where E is a set of
entities, R is a set of
relations, and F is a set
of directed data flows,
with F represented
as directional arcs
connecting E and R

Main Elements Activities, transitions,
decisions, swimlanes

Events, activities, gate-
ways

Processes, data stores,
data flows

Entities, relationships,
attributes, classes

Entities, relationships,
data flow arrows

Purpose Model workflow and
step-by-step activities in
a process

Model business
processes and data
flows

Visualize data flow and
transformations

Model data structure
with integrated UML
notation

Unify data flow and ER
diagrams

Detail Level Detailed workflow and
activity sequences

Broad business process
context

Focus on data flow Detailed data
structure with UML
enhancements

Integrates data flow with
structure

Data Transformation Fo-
cus

Sequence of activities
and decisions

Integrated into business
processes

Data flow representation Before/after structure
with class relationships

Data flow across ER en-
tities

Data Science Operations Models sequences of op-
erations and decisions

Integrates with business
operations

Clear transformation
steps

Focus on structural
changes, enhanced with
UML

Merge, group by, de-
rived transformations

Ease of Understanding Requires familiarity
with UML and workflow
modeling

Easy for business users Intuitive for data flows Requires ER and UML
knowledge

Requires ER knowledge,
integrated flow

System Integration Can be integrated with
other UML diagrams

Broad process view Data-focused, less on
system integration

Focuses on data struc-
ture with UML linkage

Integrates flow and
structure

Clarity Defined by minimal
|A| + |T |, maximizing
readability through
simplicity and linear
flow where possible

Defined by clarity of
control flow, optimizing
for minimal complexity
in |E|+ |A|+ |G|

Defined by minimal
crossings in G and
linear representation of
data flows F

Defined by minimal en-
tity overlap and clear
separation of class and
relationship diagrams

Defined by the minimal
overlap of E, R, and F ,
optimizing for clear vi-
sual flow and structural
integrity

TABLE II
COMPARISON OF DATA MODELING TECHNIQUES

UML Activity
Diagrams

BPMN DFD ER Model + UML ER Model + Flow

Advantages High detail and speci-
ficity for object-oriented
systems; Clear visual-
ization of complex pro-
cesses

Widely understood in
business contexts; Easy
to communicate across
different stakeholders;
Effective for aligning
technical processes with
business goals

Clear representation
of data flow; Simple
and intuitive; Facilitates
quick understanding of
data flows

Enhanced structural
modeling with
integrated class
relationships; Strong
focus on data integrity
and relationships

Comprehensive view
of complex systems by
integrating data flow and
structure; Designed for
data science, capturing
common operations like
merging and grouping;
High compatibility
with existing data
management tools;
Can be automatically
generated from source
code

Limitations Requires significant fa-
miliarity with OOP and
UML; Can be complex
to implement and under-
stand

Less detailed for techni-
cal processes; Extending
BPMN for data science
operations can introduce
complexity and compat-
ibility issues

Limited in capturing
data structure; Focuses
only on the movement
of data, not on the
structure

More complex due to
UML integration; Re-
quires dual expertise in
ER modeling and UML;
Less adaptable to dy-
namic data flow scenar-
ios

Requires understanding
of both ER and flow
concepts

[10] M. De Leoni, P. Felli, and M. Montali, “Integrating bpmn and dmn:
modeling and analysis,” Journal on Data Semantics, vol. 10, no. 1, pp.
165–188, 2021.

[11] N. Passos and J. L. Pereira, “Business process modeling: how cmmn
and dmn complement bpmn,” 2018.

[12] K. Zarour, D. Benmerzoug, N. Guermouche, and K. Drira, “A systematic
literature review on bpmn extensions,” Business Process Management
Journal, vol. 26, no. 6, pp. 1473–1503, 2020.

[13] A. A. Harby and F. Zulkernine, “From data warehouse to lakehouse:
A comparative review,” in 2022 IEEE International Conference on Big
Data (Big Data). IEEE, 2022, pp. 389–395.

[14] C. Ordonez, S. Maabout, D. S. Matusevich, and W. Cabrera, “Extending
er models to capture database transformations to build data sets for data
mining,” Data & Knowledge Engineering, vol. 89, pp. 38–54, 2014.

[15] M. Bures, B. S. Ahmed, and K. Z. Zamli, “Prioritized process test: An
alternative to current process testing strategies,” International Journal
of Software Engineering and Knowledge Engineering, vol. 29, no. 07,
pp. 997–1028, 2019.

[16] P. Y. Wong and J. Gibbons, “Formalisations and applications of bpmn,”
Science of Computer Programming, vol. 76, no. 8, pp. 633–650, 2011.

