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ABSTRACT
Big data is nowmostly processed in the cloud andwill keep growing,
fed by databases and the Internet of Things (IoT: sensors, mobile de-
vices, edge computing). On the other hand, AI is pushing computers
and data analysis to limits we had not witnessed before. Analytics
in the cloud is now a major fraction of energy consumption, among
other less CPU-intensive tasks like web services. With this green
computing motivation in mind, we present a survey of past research
and a vision of big data analytics in the cloud. Energy consump-
tion is difficult to minimize because it has conflicting correlated
variables behind: high performance, money cost and pollution, We
identify which software subsystems and hardware components
have a higher impact on energy consumption, understanding how
they can be tweaked or tuned to optimize energy consumption.
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1 INTRODUCTION
Artificial Intelligence (AI) on Big Data is now the dominating trend
to analyze the vast amounts of data generated by the digital ecosys-
tem. Cloud computing has played a significant role in enabling
rapid deployment and scalability of big data analytics, moving
away from local (on-premise) servers. The Internet of Things (IoT)
is a prominent data source of the digital economy, which allows col-
lecting real-time data. The proliferation of smartphones, portable
computers and edge computing devices has further accelerated the
growth of the IoT. Data processing nowadays encompasses a wide
gamut of applications including relational database management
systems, NoSQL and data science (moving towards AI). Moreover,
a significant portion of data processing is migrating to the Cloud.
Schneider Electric estimates that the IT sector power demand will
grow by 50 percent by 2030 [7], reaching 3,200TWh, equivalent to
5 percent Compound Annual Growth Rate (CAGR) over the next
decade (Fig. 1). By 2040, projections indicate that the IT carbon
footprint could reach 14%, with data centers contributing to almost
half of this growth [7]. Given the significant energy requirements
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Figure 1: Breakdown of IT energy consumption.

Figure 2: Energy consumption by hardware components.

of data centers that power cloud services, improving energy effi-
ciency is crucial for sustainability and cost reduction. Based on
energy consumed, AI is now contributing 1% to worldwide carbon
emissions [14], which is less than pollution produced by factories
or vehicles, but it will keep growing.

2 ENERGY OPTIMIZATION: HARDWARE
The statistics shown in Fig. 2 clearly indicate that the CPU consumes
the largest portion of energy [13], followed by the storage device
transitioning from HDDs to SSDs. The goal of this section is to
highlight important energy reduction hardware techniques.

2.1 Dynamic Component Deactivation (DCD)
Techniques in this category aim at leveraging the workload vari-
ability by disabling relevant hardware components when they are
idle. Setting up DCD techniques require prior workload knowledge,
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to predict future workloads. This problem is more difficult in the
cloud, where the hardware is shared by multiple Virtual Machines
(to be discussed later).

2.1.1 Dynamic Performance Scaling (DynPS). DynPS can be seen as
a focused response to DCD, More precisely, instead of complete de-
activation, only the clock frequency of energy-hungry components,
such as the CPU, can be decreased, with corresponding adjustments
to the power supply, when resources are not fully utilized. Dynamic
Voltage and Frequency Scaling (DVFS) is one of the most popular
DynPS techniques, which allows a system to adaptively adjust the
frequency and supply voltage to particular hardware components.
This technique is widely used in ARM CPUs to increase battery
duration, but it is not commonly used in the cloud, where powerful
CISC (x86) CPUs need to deliver top performance, especially when
AI models are computed. The application of the DVFS technique
on a multi-core CPU is a complex task. It is often simplified by forc-
ing each core on a package to operate at the same frequency and
voltage. Having a system with only one global voltage for all cores
(global DVFS) is energy-inefficient. To overcome this limitation,
global DVFS and per-core DVFS architectures with multiple Voltage
Frequency Islands (VFIs) have been proposed. In such platforms,
the cores in an island share the same voltage and frequency, but dif-
ferent islands can be executed at various voltages and frequencies
[15]. Advanced Configuration and Power Interface (ACPI), which is
available on most operating systems, provides a standard interface
for managing processor power states. To summarize, most of these
proposed scheduling algorithms attempt to take advantage of the
energy efficiency and time constraints of a real-time system in order
to tailor the best reasonable compromise between electrical voltage
and performance. The study conducted in [19] presents ongoing
work in designing and implementing an energy-efficient DBMS
(E2DBMS) that enables significant energy conservation while main-
taining a certain level of query processing performance. The tool
achieves its goals via two strategies: (i) modifying CPU DVFS level
through query optimizer based on a target specified by the DBA,
and (ii) an energy-aware data placement technique by putting most
I/O load into a subset of the physical disks, which allows disks
entering low power/performance mode.

2.2 Accelerators
GPUs have evolved from their original purpose of fast processing of
high resolution images and video to become essential components
of modern AI infrastructure. Neural networks (deep, transform-
ers), require many tensor (multidmensional arrays) computations,
which are orders of magnitude more demanding than classical mod-
els (SVMs, decision trees, regression). GPUs provide extremely fast
integer and floating point arithmetic for linear algebra computa-
tions, used to compute every ML model. But this comes at a price:
GPUs consume more energy. In some cases a CPU-GPU architec-
ture can provide better performance compared to executing all
operations on a single device, especially in tasks like ETL (Extract,
Transform, Load) processing and other I/O-intensive workloads.
This can be achieved by harnessing the parallel processing capabili-
ties of GPUs, offloading arithmetic operations to the GPU, allowing
the CPU to focus on I/O aspects of the workload. The cloud offers a
wide variety of server configurations with GPUs, in which the main

consideration is cost, not energy. Currently, Large Language Mod-
els (LLMs) which involve huge tensors with billions of dimensions
require servers with multiple GPUs.

Field Programmable Gate Arrays (FPGAs) are another accelera-
tor choice. An FPGA is a semi-customized integrated circuit that
can be programmed and configured for repetitive specific compu-
tations. CPU-FPGA architecture can be combined with resource
provisioning and per-core CPU DVFS to further reduce energy us-
age [10]. However, FPGAs remain a less popular choice than GPUs
in the cloud due to requiring advanced knowledge of computer
architecture.

Tensor Processing Units (TPUs), invented by Google, are spe-
cialized hardware accelerators (ASICs) for neural network training
workloads. TPUs are known for higher performance and energy effi-
ciency compared to multicore CPUs. TPUs are designed for parallel
processing of multidimensional arrays of real numbers. Since TPUs
were designed specifically for fast matrix multiplications, they are
generally faster than GPUs and consume less energy for the same
workload, but they are more expensive. TPUs remain less popular
than GPUs due to their higher cost, but they have the potential to
surpass GPUs when competing AI libraries like PyTorch take full
advantage of them.

2.3 Main Memory
Server energy consumption has been dominated by the CPU, fol-
lowed my main memory (RAM). To reduce memory energy con-
sumption, many techniques have been proposed. A certain number
of techniques use the adaptive power saving or DVS offered by the
modern multi-banked memory systems. Others reduce the power
consumption by activating only some memory banks, leaving the
other ones idle. Existing optimization techniques and algorithms
focus on the opportunities to switch the entire memory or a part of
it in low power mode, either during or at the time of the running
process. In [12], the authors use rank aware memory allocation
and rate-based data placement to deliberately skew memory ac-
cess rates across available memory. This creates idleness on the
least-loaded memory sections, thereby reducing overall memory
power consumption. Some techniques exploit the CPU cache (e.g.
L2 cache) to reduce energy consumed by RAM, by tuning core activ-
ity. It is important to highlight CPU caches are also power-hungry
components in multicore CPUs.

In the case of neural networks, data movement up and down
the memory hierarchy dominates energy consumption. The data
movement can be reduced by controlling levels of local memory
hierarchy considering different energy cost. Therefore, whenever
data is transferred from a higher level in the memory hierarchy
(e.g. registers) to a lower one (like L1 cache memory), it should be
maximally reused to minimize the need for further access to the
higher levels. Advanced memory technology can reduce the access
energy for high density memories such as DRAMs. For instance,
embedded DRAM (eDRAM) brings high density memory on-chip
to avoid the high energy cost of switching off-chip capacitance.
Moreover, eDRAM is 2.85x higher density than SRAM and 321x
more energy efficient than DRAM [18].

Non-Volatile Memory (NVM) is the latest memory technology,
bridging RAM and SSD [11], practically eliminating secondary
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storage. Its main drawbacks are high energy consumption, shorter
lifetime for write cycles and asymmetric I/O cost between read
and write. When idle NVM draws minimal power to maintain data
available, but it is not zero.

2.4 Secondary Storage
The storage system is an essential part of any system processing
bug data. This is because of the growth in the size of data and the
need to process and archive. The most energy-efficient storage hard-
ware available today is the Solid-State Drives (SSDs). They use flash
memory – a non-volatile memory having similar characteristics to
electrically erasable programmable read-only memory (EEPROM).
SSDs are much more power-efficient than hard disk drives due to
their lack of moving parts. HDDs typically consume 6-15 Watts,
whereas SSDs require 2-5 Watts (1/3). Servers equipped with HDDs
have an average disk power consumption of 7%, while those with
SSDs consume a mere 1%. SSDs dissipate less heat and, as a conse-
quence, require less power for cooling. SSDs also require less power
because most of the time they are in an idle state, whereas HDDs
must continuously spin their disks for fast data access. In short, due
to faster access and lower energy consumption SSDs are increas-
ingly favored over HDDs in cloud data centers. It is anticipated that
HDDs will eventually disappear as SSDs become cheaper.

3 ENERGY OPTIMIZATION: SOFTWARE
Energy efficiency in IT infrastructure is incomplete without energy-
aware software. Software plays an important role in energy effi-
ciency because it complements hardware. Here we provide a com-
prehensive survey, with an emphasis on database systems.

3.1 Virtual Machines and Containers
A common reason that motivates virtualization and containers is
the low utilization of server components. A low utilization level
(i.e., frequently idle) is inefficient due to wasting resources: infras-
tructure, maintenance, hardware, and power. Thus, a solution to
optimize resource utilization is server consolidation by using vir-
tualization, which enables running multiple independent virtual
operating systems on a single physical computer. Virtualization is
one of the most efficient methods for achieving energy efficiency
in Cloud environments because a powerful physical server can sup-
port multiple virtual machines (VMs) with ample resources (CPU
cores, RAM, storage) that will require minimal additional power but
will use the same physical hardware, thereby reducing operating
costs and power consumption aas well as simplifying Data Center
Management. Containerization (e.g. Docker) is an alternative tech-
nique that enables application programs to run and be deployed
on isolated virtual space, but the operating system kernel is shared
among them. Sharing the operating system kernel in a container-
based architecture is one of the key reasons why containers are
more lightweight and faster to start on demand compared to VMs.
Another benefit is that containers can be more easily orchestrated
and scaled up or down to meet dynamic demands of modern ap-
plications and microservices architectures, making them a popular
choice for cloud-native development and deployment. In the server
consolidation method, several virtual machines and containers are
packed in the minimum number of physical machines in order

to turn off or switch the status of the idle hosts to sleep mode to
minimize energy consumption. Container consolidation is more
energy-efficient than VM consolidation [8]. Since the cloud is a
shared resource it is becoming practice to set up a schedule where
the cloud instance becomes available, giving the possibility to turn
off idle machines.

Virtual machine migration, load balancing, and workload cat-
egorization are problem-solving techniques employed to reduce
power consumption in the data centers. These methods involve
migrating virtual machines when specific server thresholds are
reached, distributing the workload evenly among various VMs, and
categorizing workloads before assigning them to servers. To fur-
ther enhance power management in data centers, machine learning
algorithms are often applied on top of these approaches. Dynamic
power management must be accomplished at the data center level.
The objective is to allocate the minimum necessary physical re-
sources to virtual machines while deactivating or putting unused
resources into a sleep or hibernation state [13]. Live migration [6]
moves a VM from one machine to another machine, scaling down
or scaling up resources according to demand. Live migration con-
siders energy, among other factors, load balancing and resource
allocation.

In summary, VMs and containers decrease performance (to ac-
ceptable levels), but with significant energy and cost savings.

3.2 Energy-efficient Algorithms
Quantization: Reducing the precision of numerical representations
(e.g., using 8-bit integers instead of 32-bit floating-point numbers)
can significantly decrease computational demands and energy con-
sumption while maintaining acceptable model performance.

Accelerating ML Algorithms: Developing machine learning al-
gorithms that require fewer iterations or computations to reach a
solution can achieve energy savings. For example, stochastic gradi-
ent descent (SGD) variants can be more efficient than older iterative
methods or batch gradient descent (the default). Model pruning
involves removing unnecessary parameters (or neuron/vertex con-
nections). This optimization reduces computational complexity and
energy consumption, while generally producing a minor impact on
accuracy. During model training, which is the most CPU-intensive
computation, dynamically adjusting the learning rate, batch size,
and other hyperparameters based on energy consumption and sys-
tem load to optimize efficiency. In contrast, inference (deploying a
computed model on new data) has much lower energy cost.

3.3 Operating System
The Linux kernel plays a significant role in the new wave of embed-
ded and mobile devices, in addition to cloud servers [2]. It leverages
various power management features including hardware tuning
tools like hdparm, swsusp, clock gating, voltage scaling, sleep mode
activation, and memory cache deactivation. However, ongoing re-
search aims to enhance the platform’s functionality further. In [17],
the authors explore the behavior of the task management subsys-
tems (scheduler and load balancer) in the Linux kernel onmulti-core
Symmetric Multi-Processing (SMP) systems. It assesses their effec-
tiveness at reducing energy consumption across different scenarios,
such as idle and moderate load, and discusses techniques like timer



BiDEDE ’24, June 9–15, 2024, Santiago, AA, Chile Carlos Ordonez, Wojciech Macyna, and Ladjel Bellatreche

migration, task wakeup biasing, and related heuristics for energy
reduction. Original power management from Linux is reproduced
to Android. However, these solutions do not satisfy mobile devices
or embedded systems. They must consider constraints like limited
battery power capacity for instance.

3.4 Extended Cost Models: I/O and Energy
Here we describe energy savings in data systems, with a focus on
database systems, following the system architecture introduced
in [5]. Energy saving can be considered at both transactional and
query levels. Database transactions, in particular, have a substantial
impact on overall energy consumption. The energy usage corre-
lates with the size of the data involved in the transaction. Larger
data sizes require more resources, such as CPU, memory, and stor-
age, leading to increased energy consumption. To mitigate this,
techniques like batch inserts can significantly improve energy effi-
ciency. Similar challenges arise during data exporting and loading
processes, where energy-saving strategies can also be applied to
reduce resource utilization and energy consumption. At the query
level, most approaches are based on cost models for query process-
ing [4]. In this way, a reasonable trade-off between performance
and energy consumption can be estimated.

Following classical I/O cost models, cost models have been used
in data processing systems for estimating energy consumed in
query processing. In general, the energy consumption of query 𝑄
is the sum of energy used by hardware components: CPU, RAM,
IT, and network (equation 1).

𝐸𝑄 = 𝐸
𝑄

𝐶𝑃𝑈
+ 𝐸

𝑄

𝑅𝐴𝑀
+ 𝐸

𝑄

𝐼𝑂
+ 𝐸

𝑄

𝑁𝐸𝑇
. (1)

Regardless of system, Equation 1 is adapted to take into account
data block sizes involved in energy consumption. The following
linear combination is a typical example of cost model estimation in
one local server.

𝐸 = 𝐸𝑐𝑝𝑢 ∗ 𝑁𝑡𝑢𝑝𝑙𝑒𝑠 + 𝐸𝐼/𝑂 ∗ 𝑁𝑝𝑎𝑔𝑒𝑠 , (2)
where 𝐸𝑐𝑝𝑢 and 𝐸𝐼/𝑂 are the energy consumption coefficients of

a record processed by the CPU (𝑁𝑡𝑢𝑝𝑙𝑒𝑠 ), and the I/O cost coefficient
of an I/O processed page (𝑁𝑝𝑎𝑔𝑒𝑠 ). In a cloud data center these
equations are generalized to𝑀 machines (e.g. a cluster of uniform
CPUs), disaggregated storage (e.g. Amazon S3) [20], high speed
interconnection (e.g. InfiniBand) and networking hardware (e.g.
Ethernet):

𝐸𝑐 = 𝑀 ∗ 𝐸𝐶𝑃𝑈 + 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐸𝑖𝑛𝑡𝑒𝑐𝑜𝑛𝑛𝑒𝑐𝑡 + 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 . (3)

Notice there are subtle changes with respect to a local server:
each machine does not have its own I/O cost since the cloud does
not use a shared-nothing architecture and we are adding separate
energy costs for interconnection (higher) and networking cards
(lower). Another observation, is that we are bundling accelerator
costs into CPU cost.

In the same spirit, other energy costs have been proposed. More
concretely, the energy modeling of a query can be done at three
levels: (i) query level, which considers the characteristics of the
query itself, such as the number of I/O required to execute the
query, (ii) pipeline level, which considers the characteristics of the
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Figure 3: System architecture to develop energy costmodels.

set of operators that run simultaneously and (iii) operator level,
which considers the characteristics of the SQL operator individually.
The energy consumption for a single query is not necessarily the
same as that of a set of queries running at the same time in batch
mode. Therefore, there are two query execution modes to consider
in the design phase of an energy cost model: isolated and concurrent
modes. When a database is deployed in distributed infrastructures,
where its fragments are allocated in various nodes, the network
plays a crucial role in increasing energy. This is due to data transfer
when executing binary database operations like joins, where the
data is not usually localized in the same node. In this case, the cost
models can be easily enriched by an energy coefficient correspond-
ing to the network components. By analyzing the different efforts
in developing cost models related to energy savings, we realize that
they are all defined on top of existing query processing approaches.
As shown in Fig. 3, existing energy cost models reuse the models
already present in the target big data system to build their models
inspired by Equation 1.

After constructing the energy-efficient cost model, the next step
is to identify the coefficients associated with each cost used by the
target storage system (see equation 2). This identification is usually
performed using AI-driven approaches. Most proposed cost models
use traditional machine learning methods to extract the features of
their cost models, with linear regression being the most popular.
Other advanced AI techniques that describe energy behavior during
query processing have to be explored to set the relevant values, and
to dynamically calibrate parameters when the workload changes
[1]. The diverse (non-uniform) nature of CPU nodes in the cloud
makes ML models complex (to estimate the equation coefficients
above).

Validating cost model accuracy is crucial to measure its effec-
tiveness. The disparity between estimations given by cost models
and real energy measurements can be calculated using AC power
measurement tools (e.g. WattsUp Pro ES), which give am exact
reference value.

Developing accurate energy cost models requires understanding
the interactions between various system components, including
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Figure 4: Energy improvement obtained by AI models.

hardware and software. Estimating I/O, CPU, RAM, and cache costs
should be part of the cost model development rather than treating
them as black boxes enriched with energy coefficients. Researchers
need to consider selectivity factors of join predicates, intermediate
result sizes, and algorithms used for basic data operations (e.g., hash
join, sort-merge) when building energetic cost models. Extended
cost models for predicting energy are used by various data sys-
tems to optimize database energy consumption [16]. The system
introduced in [9] integrated an energy cost model into the query
processing module of a DBMS. Rather than choosing plans with
optimal performance, plans with acceptable performance degrada-
tion within a certain threshold are selected to save energy. Such
approaches represent a proof that a trade-off between query per-
formance and energy consumption is feasible.

3.5 AI Models to Predict Energy Consumption
Energy efficiency in machine learning refers to the practice of de-
signing and implementing machine learning algorithms, models,
and infrastructure with a focus on minimizing energy consumption,
while maintaining computational quality of service (QoS). Devel-
oped at the University of Michigan, the open-source optimization
framework Zeus studies deep learning models during training, pin-
pointing the best tradeoff between energy consumption and the
speed of the training. Fig. 4 shows a variety of common deep learn-
ing models benefit from Zeus’ ability to tune GPU power limits
and the training batch size. When both parameters were tuned, the
software achieved up to 75% energy reduction without changing
any hardware components.

3.5.1 Model Architecture. Designing energy-efficientmachine learn-
ing models involves choosing model architectures that strike a bal-
ance between accuracy and computational requirements. Smaller
and more efficient models can achieve similar performance than
larger ones, while consuming fewer resources.

4 OPTIMIZING ENERGY: ENVIRONMENT
The major contributor to the total energy usage in data centers is
IT equipment, which consists of rack servers, storage devices, net-
working equipment and AC cooling systems. It is noteworthy AC
cooling contributes one third of energy consumption. Nowadays,
energy efficiency cooling techniques for data centers have become
a major and attractive challenge. There are two main directions on

power savings of cooling systems, one is to reduce the cooling pro-
duction directly, the other is to reduce power consumption while at
the same time maintaining a given cooling production profile. To
optimize the cooling system the data-driven optimization approach
can be used. It is based on the data and train models which take
various system extrinsic and intrinsic factors into consideration,
hence is highly adaptive to many circumstances like aging devices,
deteriorating equipment conditions, and so on [21]. Cooling effi-
ciency is also influenced by the type of computer system. Rack
servers consume less energy to cool down due to their stacked con-
figuration and efficient ventilation systems. Laptops and notebooks
are designed to consume low power and dissipate heat, with small
fans. But they may be less efficient than rack servers in cooling
efficiency. ARM machines will probably dominae the market. Desk-
tops, on the other hand, are the least efficient to cool because they
are individually positioned, and air circulation is less effective.

5 RESEARCH ISSUES
5.1 Hardware
5.1.1 Hardware accelerators. Hardware accelerators such as GPUs,
TPUs, FPGAs are extensively exploited for computationally inten-
sive tasks, such as neural networks (AI) and numerical methods
(HPC). But their energy consumption is high, especially with large
GPUs. However, initial stages of a project or smaller problems can
be solved with (more energy-efficient) multi-core CPUs. Thus we
need new architectures, extended energy cost models. The growing
trend towards using deep learning and GPUs in data processing sys-
tems poses new challenges for energy efficiency. GPUs are known
to be energy-intensive, the number of data replicas and their size
to maintain fault tolerance would increase CPU usage during data
loading. Dynamic workload assignment to machines, as opposed to
predefined configurations offered by cloud providers, can also have
an impact on energy consumption. FPGAs accelerate specific com-
putations, but could also save energy when repetitive operations
can be offloaded from the CPU.

5.1.2 Dynamic voltage and frequency scaling. Dynamic Voltage
and Frequency Scaling (DVFS) are well-known power manage-
ment techniques in CISC/RISC CPUs. The energy impact of these
hardware features in virtual machines and containers is not well
understood. Moreover, non-uniform hardware (diverse CPUs, far
memory, mixing SSD and HDD) brings up new challenges.

5.1.3 Storage Devices. New storage technologies such as SSDs have
the potential to significantly decrease the energy consumption
associated with processing big data. SSDs are much faster than
HDDs and they consume much less energy. Nevertheless, SSDs
have higher cost and shorter write life. It is necessary to extend and
tune old I/O models, to save energy. Speed and energy tradeoffs
between RAM and SSD need to be studied (SSD access speed is
approaching RAM access speed).

5.1.4 Using machine learning models for tuning file access parame-
ters. Machine learning predictive models have been used to opti-
mize resource utlization in distributed processing in the cloud, in
query processing and in AI itself. There are significant advances
in learning cost model parameters for query processing via AI.
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Such models should be extended to also reduce energy by tuning
parameters, but providing acceptable performance.

5.1.5 Energy-aware edge computing. Edge devices feed the cloud.
Energy-aware edge computing has been explored extensively, given
the fact that devices tend to operate on batteries or small power
supplies. But existing research often focuses on singular objectives
like low latency, data privacy, or power saving. Opportunities exist
for optimizing multiple objectives, such as energy efficiency and
low latency simultaneously. Novel architectures and middleware
have been proposed for interoperability [3], yet operating system
level energy awareness in edge computing remains a challenge. Ad-
ditionally, there is limited research on compiler-level optimization
and managing heterogeneous hardware efficiently, indicating open
areas for systematic energy reduction.

5.2 Software
5.2.1 Virtual Machines and Containers . Virtualization enables the
efficient sharing of hardware among multiple virtual machines
(VMs). Considering the trade-offs between adding more main mem-
ory and more virtual CPUs is essential for optimizing hardware
usage, while achieving higher energy efficiency. By consolidating
workloads onto fewer physical servers, virtualization reduces the
overall energy consumption of data centers. However, optimizing
workloads for energy instead of time performance, understanding
energy consumption by cloud instance type and overall usage of
virtual CPUs require further study.

Container technology (e.g. Docker) is on the rise and warrants
further research into energy efficiency. Well-constructed containers
enable hosts to maximize resource utilization, and isolated contain-
ers operate independently, enabling a single host to perform mul-
tiple functions. Future work should focus on developing efficient
techniques for container/task placement on physical machines, tak-
ing into account CPU multicores, memory, storage, and network
resources collectively.

5.2.2 Energy-efficient Analytic Algorithms. Numerical computa-
tions, and neural networks in particular, consume tons of energy.
Neural networks have motivated using lower precision floating
point arithmetic, smaller integers and quantization (binary coding)
techniques. More numeric techniques to improve energy-efficiency
with minor accuracy sacrifice are needed.

5.2.3 Extended Cost Models. We need more hybrid models combin-
ing energy and I/O cost. Further research is needed on non-linear
models. Cost models should consider environment-level parameters
such as hardware age, physical density (equipment per cubic feet)
and room temperature hosting the data center hardware.

5.3 Socio-Political-Legal Aspects
Revising Economic Models in the Cloud: Current economic models
used by data science in the cloud (SaaS) should be reviewed to in-
clude the energy dimension and adopt the "polluter pays" principle.
This approach will encourage cloud providers and large corpora-
tions to be more environmentally responsible. Evidently, there are
socio-political aspects beyond Computer Science.

Service Level Agreements (SLAs) in the cloud: As cloud computing
continues to evolve, energy consumptionwill likely become another

important requirement in Service Level Agreements (SLAs). In the
past, was to have guaranteed performance under SLAs, but now
energy efficiency will also be a critical factor.
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