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ABSTRACT
An ER diagram is a fundamental visual abstraction to design a
database. Modern ER notation has evolved with UML symbols to
represent both entities (logical level) and relational tables (physical
level). On the other hand, flow diagrams (flowcharts, process flow)
remain an importantmechanism to visualize themain steps of a data
processing pipeline. However, in modern data science projects there
is a significant fraction of data that does not come from databases or
data that is exported outside the database system, being processed
by Python code, without any data model whatsoever. In this paper,
we present a novel diagram which is built from source code and its
associated browser-based GUI for collaborating on data integration
and data preprocessing, mixing diverse data sources and diverse
programming languages (mainly Python and SQL). Specifically, our
targets are data integration, data cleaning and data transformation,
which are needed to derive data sets that can be used as input for a
machine learning model. We present a couple of target applications
and a preliminary GUI, which partially automates diagram creation.
We show our diagram has promise understanding, extending and
reusing both data preparation source code and data sets.

KEYWORDS
Diagram, Python, ER, database model, SQL, source code

ACM Reference Format:
Carlos Ordonez, Robin Varghese, Nguyen Phan, andWojciech Macyna. 2024.
Growing a FLOWER: Building a Diagram Unifying Flow and ER Notation
for Data Science. InWorkshop on Human-In-the-Loop Data Analytics (HILDA
24 ), June 14, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3665939.3665958

1 INTRODUCTION
In most data science projects most code development time is spent
integrating and pre-processing data because data sets come from
diverse sources, they have different structure, they come in dif-
ferent file formats and they are not integrated. Hence data data
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scientists need to collect, integrate, merge, aggregate, clean, and
transform data before they can perform analysis. This is achieved by
using powerful libraries (mainly from Python these days) or query
languages (SQL, SPARQL), but the programming effort remains
significant. Such data transformations create many intermediate
files, tables, even matrices, in a disorganized manner. This prob-
lem becomes more difficult when pre-processing big data beyond
alphanumeric data sets (i.e. traditional statistical or data mining
analysis). Today the AI analytic challenge generally involves a
combination of plain data files, databases, text, images and even
video.

ER diagrams have a proven track record in modeling, design-
ing data structure and relationships, extending their use beyond
databases. Their strengths lie in their key coherence, generality,
flexibility, and intuitive visual representation. On the other hand,
despite being older, flow diagrams remain the primary mechanism
for visualizing major components or main processing steps of a
software system, although they are less useful for understanding
complex algorithms. In a traditional database project, an ER di-
agram is iteratively refined, then this ER diagram is mapped to
relational tables, which are normalized for efficient transaction
processing, in general with SQL. Therefore, the database structure
is designed first and then tables can populated with data. In this
paper, we reverse this process, where the input is source code and
files with non-relational data and the goal is create a data-centric
diagram, combining flow and ER elements. While we are not the
first to propose diagrams for understanding data pre-processing, to
the best of our knowledge, we are the first to extend modern UML
diagram notation for ER with a minimal change (instead of a more
disruptive change): an arrow symbol on top of the relationship.

Previous work [11] proposed a framework (analytic component
architecture) and amethod (steps) to generate diagrams from source
working on databases and plain big data files (logs, csv, SQL files).
In closely related work on ER diagrams, other researchers have
proposed entities for workflows [6], conceptual modeling for data
processing [4], automatically drawing flow diagrams [3], [16], and
learning data transformations [13], [12]. On the other hand, nu-
merous methods and tools have been proposed to enhance the
collaboration between users, data, and processes in data science
projects. Such tools can improve the understanding of code exe-
cutions [17], simplify the annotation process [8], visualize data
transformation [14], [5], and accelerate the lifecycle process [2],
[7].

https://doi.org/10.1145/3665939.3665958
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1.1 Example
Consider an AI project aiming to predict which products are likely
to increase in sales based on historical sales data, web interaction,
product features, customer demographics and customer reviews.
This is, arguably, the most common AI project in the retail industry.
In this case data sources are relational databases, web server logs,
text written in natural language and even images. Data scientists
start gathering and integrating diverse files with SQL or Python,
helped by relational and NoSQL database systems. It is reasonable
to assumemost processing is happening in Python programs, which
in turn connect to diverse systems, which can send queries both
in SQL and NoSQL, which can process files with Py libraries (e.g.
pytorch, Pandas) and which can read files extracting information in
common formats (CSV, JSON). Then a team of analysts starts com-
puting "merge" (join) operations between sales tables and related
sales information (customer, product based on keys when feasible),
computing sales aggregations by product id and some appropriate
time unit (weeks, months). Then depending on model requirements,
the analyst performs feature engineering (creates variables in a
statistical sense, create target/prediction variables) to perform re-
gression, time series analysis or classification. During the project it
will be necessary to apply diverse data transformations to deal with
missing values, outliers, spikes, numeric singularities (undefined
matrix factorizations, unstable gradient) and so on. Needless to
say, the Python code behind doing all this data manipulation can
reach hundreds and even thousands of lines. maintained by multi-
ple people. Considering this challenging data analysis environment,
our diagram has the following major goals: (1) identifying keys
embedded in the code which are used to access each record, row or
vector or which key attributes are used to merge (join, link) files
with diverse information. Since files may not come databases we
assume there exists at least a subscript to access each row, each
line, each section, each page and so on, captured by some Python
variable. We should emphasize that an ER diagram does not make
sense without keys because are the mechanism to identify instances
(objects, records) and link entities (via foreign keys). (2) identifying
non-key attributes (features, variables) which depend on the previ-
ously identified keys. In Section 4 we showcase this representative
project.

1.2 Contributions
Our contributions can be summarized as follows, comparing with
closely related work. The ideas in this paper have roots in an ex-
tended ER diagram to understand complex SQL queries doing data
pre-processing in a data mining project, working exclusively with
relational tables inside a DBMS [10] (i.e., the formerly popular data
warehouse). Intuitively, the result of each query is a “transformation”
entity and raw input data represents ‘source” entities. Given the
migration of analytic processing outside the DBMS realm pushed
by data science, we were motivated to revisit this idea in a much
broader context [9, 15]. This paper represents a major technical
improvement over [9] and [15], where an initial prototype was
proposed. The prototype [9] introduced a primitive Python parser
to identify variables in Python code using the Pandas library, refer-
ring to data frames and matrices and proposed introducing a flow
symbol. The integration with the Python ecosystem is important

given the significant research in the field of data science today. In
[15], we explored how our hybrid diagram (FLOWER=FLOW+ER)
can be exploited in an IT organization following Business Admin-
istration practices, to assist data scientists in pre-processing raw
data. In this paper, we provide a formal statement of the diagram
building problem and we refine and extend the FLOWER diagram
to represent data flow more accurately, considering relationship
cadinality, flow direction and we added identifying processing func-
tion (from source code). In addition, we present two case studies on
Natural Language Processing (NLP) and biomedical nerve signals,
where we show we can partially automate identification of entities
and their keys in analytic data objects like data frames, tables and
matrices. From a practical perspective, we now offer an interactive
GUI designed to facilitate collaboration among data scientists. This
GUI enables team members to share insights, update, and refine
programs in a shared cloud environment.

2 BACKGROUND
2.1 Definitions
Our proposed diagram is a minimal, but useful, extension of an
entity-relationship (ER) diagram. In an ER diagram the basic unit of
information is an entity, where each element (also called instance)
can be identified by a key. Entities are linked with each other via
relationships, which get captured via foreign keys. Relationships
have cardinalities on each end, based on the participating entities
(1:1, 1:N, M:N). We treat entities as objects (with physical storage im-
plications), abusing a little traditional conceptual modeling, which
treats entities as language concepts.

Given the evolution of ER and Object-Oriented Design (OOD)
tools, we adhere to modern UML notation which is more concise
and more elegant than old ER notation. UML notation scales well
to many entities, having many attributes producing a more elegant
diagram with less elements and lines than old ER notation where
each attribute is placed in an ellipse. In this notation, entities are
depicted by rectangles, and relationships are illustrated by lines,
with crowfeet on the "many" side (also called :N side). It is assumed
that each entity has an identifying set of attributes (e.g. a table key,
a matrix entry subscripts), such as a primary key, a file name, a
variable name, subscript(s) or an object id. We assume that, in gen-
eral, each entity ends up associated with one data file highlighting
the importance of specific data objects stored by the analyst. For
now, considering all potential transformations in main memory is
out of scope because Python is a dynamically typed language and
the transformations may be scattered in the source code.

The ER diagram can be understood as a graph. Let G = (E,R)
be a directed graph where E represents entities (as vertices) and R
represents relationships between entities (as edges) of the graph.
G must be connected, which in practical terms means any file
can be integrated with any other file with a chain of merge (join)
operations.

2.2 Cross Industry Standard Process for Data
Mining (CRISP-DM)

CRISP-DM (Cross-Industry Standard Process for Data Mining) is a
widely used software development standard born during the data
mining era for guiding and managing the process of extracting
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useful knowledge from data. CRISP-DM remains in wide use today
in big data analytics. This is a robust framework that consists of
six main stages (phases):

(1) Business Understanding: In this initial stage, the project
objectives and requirements are defined from a business
perspective. Understanding the business goals and criteria
for success is crucial.

(2) Data Understanding:Here, data collection and exploration
take place. The data is gathered, its quality assessed, and
initial insights are gained to inform subsequent steps.

(3) Data Preparation: Data preprocessing occurs in this stage.
Tasks such as cleaning, transforming, and integrating data
are undertaken to ensure it’s suitable for analysis.

(4) Modeling: This stage involves the selection and applica-
tion of various modeling techniques to build predictive or
descriptive models based on the prepared data.

(5) Evaluation:Models are evaluated based on predefined cri-
teria to determine their effectiveness in meeting the business
objectives set in the first stage.

(6) Deployment: Finally, successful models are deployed into
production, and plans are made for monitoring and main-
taining their performance over time.

Our diagram main goal is to understand data integration and
data preparation source code from a data-centric perspective. We
provide a framework that assists users in better understanding data
preprocessing in machine learning and AI projects. Moreover, we
broaden the perspective to a "data-centric" approach, which offers
intuitive visualization to project managers involved in challenging
Big Data projects.

3 AUTOMATICALLY BUILDING A DIAGRAM
UNIFYING DATA FLOW AND ER: FLOWER

3.1 Representing Flow with an Arrow
To capture data flow in visual form, we propose to extend ER rela-
tionships with an arrow indicating the direction of data flow. To
bind flow to source code, the arrow is labeled with a function name
or with a mathematical expression parsed and isolated (scoped)
from the source code, instead of traditional verbs (e.g., "sold by,"
"works for," "is part of," etc.), as used in traditional ER diagrams. The
arrow direction is fundamental as it signifies input and output in
functions or expressions in a data science program (most commonly
Python these days), originating from “source” entities and moving
towards “destination” entities computing data transformation, data
derivation or data integration. Then the challenges are identifying
entities, understanding which variables in the program can act as
keys and then linking entities via such keys.

We believe our arrow symbol is a minor, yet powerful change,
that facilitates navigation through interconnected data objects (files,
tables, data frames, matrices), providing a data-centric processing
flow (instead of function-centric).

3.2 Problem Statement
In this section we atempt to formalize our problem and its solution,
based on database systems principles, extended with programming
languages concepts.

Goal: The goal is to identify n entities embedded in source code,
where each entity is either a source (raw data) entity or a trans-
formation (used as a generic term to capture data integration, data
derivation, data cleaning, data aggregation).

Input: The input is source code written in some programming
language (e.g. Python) and data files (perhaps exported from a
SQL or NoSQL system). We assume external data sources like SQL
databases, key-value stores get exported and converted to a file
format that can read in Python (e.g. the most common today are
CSV and JSON). The input source code is parsed to identify vari-
able names and function names with standard compiler techniques
(context-free grammars, parser, scoping).

Solution: In the initial solution explored in this paper, we identify
entities and their keys in the source code, helped by human inter-
action. Keys are variables which can be used to uniquely identify
one piece of information. Therefore, a subscript or position can
act as a key. The remaining attributes in an entity are functionally
dependent on the key. Looking at data values to discover functional
dependendies is left as future work because most dependencies can
be identified from source code and looking at data values requires
executing (running) code.

Output: we propose to represent FLOWER metadata with JSON
object-oriented notation, given its well-defined syntax, flexibility
to capture diverse structure, text-based storage and interoperability.
Entities are stored in a list of {entity,attribute,keyflag} triples and
relationships are {entity,key,entity} triples. The key is the “glue” that
links to entities together, where key can either be primnary key
on one entity and foreign key on the other entity (1:N), or primary
key and foreign keys on both (1:1).

Examples: Each element in a Python list is functionally depen-
dent on its position (automatically determined). Each row in a ma-
trix, each record in a data frame, each coordinate in a vector, can be
uniquely identified with one subscript (e.g. [i]). It is straightforward
all entries ai1,ai2, .. in a matrix row are functionally dependent on
i: i → ai1, i → ai2, . . . . Each entry in a sparse matrix, stored in
“triple” (i, j,v) form, can be uniquely identified with the row/col-
umn i, j pair (noice this is a traditional database storage in SQL):
i, j → v . Each line in a text file can be uniquely identified with a
line number, like a code development editor. We acknowledge our
keys come from code, not from a design process. Therefore, they
abuse established database concepts.

3.3 Building Diagrams
Our solution generates a preliminary diagram as follows. This dia-
gram can be polished and manually customized by the data scientist.
First, we show a preliminary example of the generated diagram
using the corresponding JSON files in Fig 3.

(1) First, we incorporate the Human In The Loop (HIL) aspect
to manually annotate major transformations in the code,
providing initial starting points for diagram generation. A
purely automated approach based on every data transforma-
tion in a Python script, would produce a convoluted diagram
with excessive entities. With some initial insights provided
by the user, annotated by "#start - transformation()" and
"#end - transformation()" comments in the Python script, we
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Figure 1: FLOWER diagram for NLP pre-processing (dataframe level data unit). Highlighting code, data flow visualization
through FLOWER, and team collaboration of each user’s customized version history.

can have an overall idea of the major transformation for a
code block.

(2) Using the Python built-in standard libraries tokenize and
ast, we are able to extract the annotated code blocks into
a structured view of the code. Our proposed preliminary
approach identifies data-preprocessing transformations by
targeting the basic dataframe manipulation functions in
pyspark like select(), drop() and transform() for the
NLP case study and functions in numpy like dot(), append(),
transpose() for the biomedical case study. Using these
identify fundamental transformations, we can automatically
provide suggestions expanding the initial proposed major
transformation. In our interactive GUI, a user will be able to
update the diagram by editing the corresponding json files.

(3) Next, we make an initial pass through the input Python
program determining whether the basic data unit for in-
terpretation (entity), should be represented as files (higher
level of abstraction) or dataframe variables (lower level of
abstraction). Our proposed approach uses typical semantics
in Python where we can identify whether the computation
involves writing to a file (to_csv()), or is an in-RAM process
and provide a recommended representation in the diagram.
Furthermore, we differentiate this in entity notation in the
diagram by a folder icon for files Figure. 3, and a clipboard
icon for dataframes Figure. 1.

Metadata for our FLOWER diagram is stored as follows. There are
two JSON files, where the first file contains the entities (attributes,
keys) and the second one contains relationships (connecting keys
together). In the data transformation module, we define the trans-
formation type and create new transformed entities. Data scientists
may perform several transformations discussed above in the source
code that generates a temporary entity. In the case of “Merge", the
entity structure may change but the attribute values remain the
same, and the "Aggregation" may use one or more grouping at-
tributes along with or without aggregations (sum, count, avg). In
general, aggregations will return numbers, but using only “Group
by" will return the attribute values as their types. Mathematical
transformations will mostly return derived attributes. Now, the new
transformed entities are linked with the original entities using an
arrow. After each valid transformation step, we can store the newly
generated ER-Flow diagram in JSON files. This ER-Flow diagram
can help data scientists to have data-oriented view of the program,
navigate source code, reuse functions, and avoid creating redundant
data sets.

These are the main steps towards creating a data set for ML
analysis:

(1) Data Source Entities: Identified via a primary key. Using
a filename as a primary key is valid because filenames are
unique identifiers for files within a folder in the file system.
This ensures that each record associated with a particular
filename remains distinct and easily retrievable.
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(2) Data Transformation Entities: Our case studies examine
applications in AI. AI is full of data transformations and
often inherit attributes from the data source.

(3) Relationships: We link two entities Ei ,Ej i with relation-
ships and are described by the Python functions that perform
the transformations.

(4) Drawing Diagram: Given the Data Source and Data Trans-
formation entities and their respective relationships, we can
automatically generate our FLOWER diagram (hybrid mix-
ing data flow and ER=FLOW+ER).

(5) Finalized Data Set: AI/ML data sets are often written as
one final data set and fed to iterative training. We offer two
case studies involving one or multiple finalized data sets.

Human In The Loop: While certain steps in the process can
be automated, some substeps require human intervention. This is
particularly true in Natural Language Processing (NLP) and biomed-
ical signal processing, where the selection of specific features often
determines the desired outcome of the target variable. However,
the context of the original data sources frequently becomes ob-
scured or entirely lost after several layers of pre-processing and
transformation, reducing the information to mere numerical ma-
trices. To address this issue, we aim to demonstrate the value of
interactive visualizations of data transformations. Our proposed
FLOWER diagram seeks to restore context to the transformed data,
providing valuable insights in the process. Moreover, we utilize
modern web application architecture on cloud platforms to offer in-
teractive functionalities for users, enhancing the overall experience
and facilitating deeper data analytics and understanding.

3.4 Diagram Symbols
Our entity concept is broad: entities can represent a file, a matrix, a
relational (SQL) table, or a dataframe (Python, R). A file can contain
an image, a document or data records (i.e. CSV or JSON). From a
programming language perspective, objects in main memory can
be atomic data types (integers, reals, string, dates), or composite
(lists, multidimensional arrays and data frames). We want to stress
our data scope goes beyond previous database-centric approaches
focusing only on records with alphanumeric attributes (SQL tables,
plain strongly-structured CSV files).

Entities are classified as source entities, representing raw data
and Data Transformation (integration, cleaning, derivation) entities
being the output of some tool or program written in a typical data
sience programming language (Python, R, SQL).

In our generalized diagram entities represent a set of data el-
ements. In turn, data elements can be records, SQL rows, image
pixels, text keywords, video frames. Moreover, data elements can
be aggregated bottom up to obtain more abstract entities.

Furthermore, we propose a tweak to the usual UML notation
used in ER diagrams. We want to add in function calls that lead
to significant changes, next to the usual notation that show rela-
tionships between entities. This idea is what led us to create the
FLOWER diagrams. By visualizaing data flow and transformations,
we make it easier to see not just how data is structured, but also
how it’s being changed as it moves through processing pipelines.
This approach makes ER diagrams not just a static snapshot of data
relationships but also a map showing data in motion, providing

a clearer picture/interpretability of what’s happening under the
hood.

3.5 Data Integration and Data Transformation
We focus on representing data integration and transformation for
analytics, including machine learning, graphs, and even text files
(documents). However, our proposed diagram does not consider the
"analytic output" such as the parameters of the ML model, model ac-
curacy, language embedding, IR metrics like precision/recall, graph
metrics. We consider simple filter transformations as an implicit
property of entities and providing representation in the diagram
hinders data flow interpretability as it will convolute with excessive
entities. Similar to the σ operator in relational algebra, the result is
simply reduced to a fewer number of rows or the source entity.

Furthermore, we propose these major categories of data trans-
formations:

(1) Merge, which splices (joins) multiple entities. We can think
of it as a generalized relational join operator (1). We assume
Merge is a generic operator to integrate diverse data sources.

(2) Aggregation, which partitions data elements and computes
some aggregate function.

(3) Mathematical, which represent derived attributes coming
from a combination of functions and value-level operators
(e.g. equations, arithmetic expression, nested function calls).

3.6 Collaboration: Cloud Environment
To enhance the usability of our proposed FLOWER diagram, we
plan to enable collaborative viewing and editing in a cloud environ-
ment using the socketio networking library. This setup will allow
data scientists to interact with the diagram simultaneously, pro-
moting teamwork and knowledge sharing. Using a peer-to-peer
approach with socketio, we can synchronize the application’s state
across users without a complex server-client infrastructure, en-
suring all collaborators work with the latest diagram version in
real-time. Additionally, a collaborative history list view will track
each modification by date and user, improving transparency and
teamwork. This cloud-based setup is designed to streamline data
pre-processing and team communication.

3.7 Tool: GUI
To make our FLOWER diagram more accessible and user-friendly,
we have developed an interactive web application that allows users
to generate and manipulate the diagram with ease. The web ap-
plication consists of a split-pane layout, with the interactive UML
diagram displayed on the middle panel and a code preview on the
left panel (figure 1). Users can select an entity or relationship link
in the diagram, which will highlight the corresponding part in
the code or show a preview of the associated data file on the left
panel. This interactive feature helps users navigate between the
visual representation and the underlying code and data, facilitating
a deeper understanding of the data pre-processing process. The
right panel features a collaborative history list view, detailing the
diagram’s modifications by various team members, organized by
date. While currently a mockup, the list view is a chronological
interface that offers snapshots of the UML diagram at various stages
of its development. We are actively working to evolve this into a
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fully functional feature with visual previews and a robust version
control mechanism that allows reverting the diagram to any specific
timestamp.

Our framework is built using Node.js, and React.js, a front-end
library for building user interfaces with components. The interac-
tivity within the web application is powered by ReactFlow, a com-
prehensive library for creating draggable, zoomable, and customiz-
able node-based graphs. We’ve also integrated the react-syntax-
highlighter library to improve the readability of Python code snip-
pets.

4 CASE STUDIES
We feature two AI/ML examples with FLOWER diagramming. For
credibility, we opted for these case studies because they have pub-
licly available source code (APPENDIX) and corresponding pub-
lished research. In the presented case studies, the source entities
are colored white and the transformed entities are colored grey.
The data flow of the transformed entities are linked with an arrows
and the corresponding Python functions performing the transfor-
mations.

4.1 Diagram Qualitative Properties
To evaluate the visual quality and effectiveness of the FLOWER
diagram, we list a set of properties commonly used in visualization
research that consider various aspects of the diagram’s design and
presentation. We aim to ensure that the diagram is clear, readable,
and informative for its intended audience.

(1) Visual Clarity: The diagram should prioritize legibility and
readability by using consistent font sizes, appropriate edge
line widths, and sufficient background color contrast. This
ensures that the information presented is easily discernible
and visually appealing.

(2) Layout andOrganization:The placement of entities should
be logical and balanced, minimizing overlaps and ensuring
a clear flow of relationships. Relationship lines should be
routed cleanly, minimizing crossings, and related entities
should be grouped together with adequate spacing to avoid
clutter and improve visual coherence.

(3) Information Density: The ratio of entities to relationships
should be balanced to convey necessary information without
overwhelming the viewer. The diagram should be concise
and focused, avoiding the inclusion of extraneous or redun-
dant information, while maintaining the ability to effectively
communicate the key aspects of the data model.

4.2 Natural Language Processing
We provide a typical data preparation pipeline for NLP applied to
analyzing Amazon reviews. Pre-processing data is a crucial step
towards providing stable mode performance especially in predictive
deep neural network models. The main steps are as follows:

• Tokenizing the text to break down the review into manage-
able pieces.

• Removing non-English words to maintain language consis-
tency.

• Eliminating stop words that add little to no value to the
analysis.

• Applying lemmatization to condense words to their base or
dictionary form.

• Stripping punctuation to reduce noise and focus on textual
content.

• Conducting Part-Of-Speech (POS) tagging to understand
grammatical structures.

• Selecting relevant features that contribute most significantly
to model performance.

In general, this structured approach strives to ensure text data is
prepared for the further complexities of NLP during model train-
ing. More importantly using FLOWER, this process becomes far
more understandable and intuitive. Additionally, a team is able to
collaborate together simultaneously and have deeper insights of
the overall data processing beginning from the data source, us-
ing an interactive webapp. Users are able to login securely using
private credentials and have their own local representation of the
production data pipeline. We provide an example in Figure 1 how
an NLP pipeline is derived from a python script, producing our
intuitive FLOWER diagram, with interactivity to the code and the
json representation of the entity for possible modifications.

As demonstrated in Figure 1, we believe FLOWER successfully
maintains visual clarity, clean layout and intituitive organization
when handling 26 entities. By employing consistent fonts, col-
ors, and spacing, along with adjustable and scalable components,
FLOWER proviers intuitive visualization that remains effective
even with high information density.

4.3 Biomedical Signals

Figure 2: Interactive FLOWERwebapp for biomedical signal
pre-processing.

In this section we present a practical example illustrating how to
pre-process a set of biomedical signal data for clustering [1]. This
paper delves into the challenges and advancements in identifying
similar patterns in physiological nerve signals collected from micro
electrical sensors in animal organs. The primary challenge is dis-
cerning these patterns, which appear as spikes within millisecond
time-windows amidst high-dimensional data sets, especially with
the interference of background electrical noise.
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Figure 3: FLOWER diagram for biomedical signal data pre-
processing (file level data unit).

• Objective: The main aim is to detect similar patterns in high
throughput nerve signal data.

• Previous Systems: Earlier methods combined PCA (Princi-
pal Component Analysis) and K-means clustering but were
slow and required multiple tools.

• Proposed System: The paper introduces an integrated sys-
tem that combines signal filtering, feature engineering, and
multidimensional data summarization for a more effective
integration of PCA and K-means clustering.

• Applications: The ultimate goal is to associate signal pat-
terns with specific physiological functions, potentially lead-
ing to innovative medical treatments via nerve stimulation.

• Contribution: The research offers an efficient method to an-
alyze multiple continuous signals over time, detecting signal
patterns across them using machine learning techniques.

• Implementation:The entire system is implemented in Python,
a popular language in Big Data and Data Science.

The transformations applied to the source (raw) signals are as fol-
lows:

(1) Computing Correlations Between Channels:
• Correlations are computed based on split raw data sets
({D1, D2, ..., DM}).

• An incremental algorithm computes the correlationmatrix
using a summarization matrix formed by multiplying the
combined raw data set with its transpose (e.g. D1DT

1 , ...,
DMDT

M ).
(2) FilterNoiseAndDetect Spikes:Noise is filtered and spikes

are detected from the correlated channels.
(3) Reduce Dimensions to d̂ Dimensions: Original variable

values are retained instead of using principal components.
Contrary to the NLP use case, we also demonstrate FLOWER’s

ability to maintain high-quality diagram visualization with fewer
source entities in Figure 2. Even with lower information density,

clarity and organization are effectively upheld. With fewer entities,
the diagram becomes more digestible at an initial glance, enhancing
ease of understanding. Moreover, despite the reduced number of en-
tities, the transformations depicted remain concise and accurately
represent the essential pre-processing steps. This adaptability high-
lights FLOWER’s effectiveness across varying levels of complexity.

5 CONCLUSIONS
We have shown our proposed FLOWER (FLOW+ER) diagram and
interactive GUI have promise enhancing collaboration and automa-
tion aspects of typical analytic pipelines and workflows. Our idea is
basically reverse software engineering, but producing a data-centric
diagram instead of code. Users can examine and collaborate on their
own customized FLOWER diagrams, they can browse source code
following a data-centric representation, they can understand how
to reuse and extend existing data sets instead of creating new ones.
Even though we cannot claim code development can be automated,
we believe a data-centric representation could partially automate
code maintenance.

We have identified functional dependency discovery in source
code as a central problem towards automatic diagram construc-
tion, but this aspect requires further research. We have currently
explored building the diagram from source code, without looking
at data, which means our entire FLOWER computation is O(1).
However, we anticipate it will be necessary to execute code and
inspect values, at least on data samples to infer data types and eval-
uate code correctness. Our future efforts will enhance our tool by
considering additional DevOps software development aspects such
as Continuous Integration (CI) using popular source code control
like GitHub, and Continuous Delivery (CD) through cloud services
(e.g. AWS CodePipeline and Azure Pipelines). This DevOps angle
will allow for deeper code development insights and more effective
code reuse and maintenance.

Table 1: Overview of DevOps Pillars Addressed by our
FLOWER Solution (human participation is required in all
pillars)

DevOps Pillar Enhanced by
FLOWER

Collective Responsibility Partially
Collaboration and Integration Yes
Pragmatic Implementation Yes
Bridging Compliance and Development No
Automation Partially
Measure, Report and Action Partially
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