
PAID: Power-efficient AI-optimized Databases

Ayoub Bouhatous1, Ladjel Bellatreche2, El Hassan Abdelwahed1, and Carlos
Ordonez3

1 Cadi Ayyad University, Marrakech, Morocco
2 LIAS/ISAE-ENSMA, Poitiers, France
3 University of Houston, Texas, USA

Abstract. Over the past two decades, the database and big data re-
search communities have devoted significant efforts enhancing energy
efficiency (EE) of SQL Query Processors (QPs). However, with the rising
worldwide emphasis on energy conservation, developing “green” QPs has
become a key concern for sustainable computing. Traditionally, these
QPs were designed to optimize response time, but not energy consump-
tion. We identify four challenges: (i) Most work focuses on optimiz-
ing Inputs/Outputs (IO), but the CPU is responsible for the major-
ity of energy consumption, being much higher than IO operations, (ii)
Most approaches exploit Machine Learning (ML) models to predict energy
consumption, but without modifying the core query processing mecha-
nisms, (iii) AI techniques remain largely unexplored to dynamically re-
duce query energy consumption, and (iv) existing approaches do not
dynamically adjust CPU configurations (including the number of cores
and frequency) to choose the most energy-efficient setting for a given
query. To address this gap, we introduce PAID, a subsystem integrated
with the query optimizer that combines old AI with new AI: a Genetic
Algorithm (GA) with a Neural Network (NN). The NNmodel predicts query
energy consumption based on a cost model, whereas GA determines the
optimal configuration, deciding CPU frequency and core allocation for
each query. The GA configuration is then fed into the NN model to tune
prediction accuracy. Our experiments, conducted on the TPC-H query
benchmark with PostgreSQL, show that PAID effectively finds CPU con-
figurations that exceed the performance of default settings, achieving
significant energy savings.

1 Introduction

The query optimizer, a major component within DBMS, plays a central role
to analyze and pre-process data. The development of efficient query processors
(QP) continues to be an active area of research, with ongoing advancements and
innovations regularly presented at major database conferences and in prominent
journals. As data science applications proliferate, query processors have become
the backbone for data preparation and data exploration phases, enabling the
efficient use of machine learning and deep learning techniques.

In parallel, the ICT industry, which is comparable in size to the aviation
sector, is estimated to be responsible for 1. 8% - 2. 8% of the global carbon foot-



2 A. Bouhatous et al.

print, according to recent research studies4. Therefore, growing environmental
concerns will require policymakers, industry stakeholders and researchers to pri-
oritize energy efficiency5 (EE) in the design of future computing systems. Thus,
improving the EE of QPs is also important in achieving the goals of sustainable
computing. To quantify the energy consumption during query execution, we fo-
cus on query Q21 from the TPC-H Benchmark on MySQL DBMS, running on a
Dell Inc. Precision 5820 Tower. This system is powered by an Intel® Xeon® W-
2123 processor (3.60 GHz, 4 cores, 8 threads) and equipped with 16GB of RAM.
We measure energy consumption trends across three distinct phases: (1) before
query execution, (2) during execution, and 3 after execution. Prior to executing
the query, the computer consumes 51.3 watts. However, during execution, it
consumes 119.145 watts, indicating a notable variation in power consumption.
After query execution, we measure energy consumption at two intervals: after 2
seconds (54.6964 watts) and after 10 seconds (52.9054 watts), respectively. This
slight variation is likely due to the DBMS collecting statistics.

Aligned with this motivation, the database community has shown significant
interest over the past two decades in developing various initiatives to address the
challenge of EE in databases. These efforts include surveys [28,2,10], methodic
studies for facilitating research on this topic [1], and prediction models for assess-
ing the energy consumption of traditional DBMS query processors. These models
have been applied to both row-oriented DBMSs, such as PostgreSQL and Oracle
[7,9,24,25,2,3,30,16,15], and column-oriented DBMSs, like MonetDB [5]. These
prediction models have also been utilized to select optimization structures (e.g.,
materialized views [24], bitmap join indexes [7], and cache management strate-
gies [9]) that balance response time and energy consumption.

By conducting an in-depth analysis of these research initiatives, we observe
that they introduce both hardware and software tactics to enhance EE [1]. Hard-
ware manufacturers have made significant strides in developing high-performance
Central Processing Units (CPUs) [4,26], Graphics Processing Units (GPUs) [18],
and specialized hardware accelerators (e.g., Tensor Processing Units, FPGAs)
[23]. Dynamic Voltage and Frequency Scaling (DVFS) is recognized as one of
the most effective techniques for reducing power consumption in both CPUs
and GPUs. By dynamically adjusting the voltage and frequency based on work-
load demands, DVFS helps optimize energy efficiency without significantly com-
promising performance.[6,22]. Software tactics include, among others, analytical
cost models designed to predict the energy consumption of queries. These mod-
els extend conventional query optimizers by incorporating parameters such as
IO, CPU usage, and memory costs. Machine learning (ML) techniques are then
applied to process these parameters, enhancing the accuracy of energy consump-
tion predictions and enabling more EE query execution strategies [2] (Figure 1).
More recently, these models have been further refined by incorporating hardware-
related parameters, such as the number of CPU cores and frequency [3]. However,

4 https://www.databridgemarketresearch.com/whitepaper/

future-of-carbon-footprint-of-information-and-communication
5 The achievement of the same level of services while consuming less energy.

 https://www.databridgemarketresearch.com/whitepaper/future-of-carbon-footprint-of-information-and-communication
 https://www.databridgemarketresearch.com/whitepaper/future-of-carbon-footprint-of-information-and-communication


PAID: Power-optimized AI-driven Databases 3

Query Processor

Memory CPU Input-Output

Memory_Cost

CPU_Cost

Input_Output_Cost

c
o
r
e

c
o
r
e

c
o
r
e

ML 
Models

Fig. 1: Global picture of existing prediction models.

they primarily rely on basic predictive methods such as linear regression, multi-
ple regression, and random forest [24,5,9].

The analysis of the current state of the art reveals two important findings that
need to be consolidated, as well as two main limitations. The two findings are:
(F1) The pivotal role of ML techniques in aiding the development of
environmentally-friendly QP.
(F2) The importance of ML solutions that integrate both software and hardware
parameters to accurately predict energy consumption.
The two main limitations are:
(L1) The existing energy consumption prediction models rely on simple ML tech-
niques.
(L2) Despite the CPU’s dominance in energy consumption, existing ML-
based solutions often overlook the importance of optimizing CPU configura-
tions—specifically, the number of cores and CPU frequency. Instead, they rely
on the default settings predefined by the host machine of the target DBMS, po-
tentially missing opportunities for improved energy efficiency.

To overcome the above two limitations, we propose a novel optimization system
PAID that integrates Genetic Algorithm (GA) [13] and Neural Networks (NN) [8].
GA aims at selecting the optimal number of CPU cores and a CPU frequency for
a given query. The configuration chosen by the GA is subsequently incorporated
into the NN model to enhance the accuracy of the prediction. Thereafter, NN are
utilized to predict both energy consumption and response time of queries.

To the best of our knowledge, our research work is the first to focus on se-
lecting energy-optimal configurations for multi-core CPUs combining GA and NN.
The contributions of our paper are as follows: (1) An NN-based prediction model
for energy consumption and time processing, which considers Input-Output cost,
Memory, CPU Number of Cores, and CPU Frequency as input features. This
model is compared against a Random Forest technique used as a baseline. (2)
Introduction of a GA dedicated to selecting an optimal configuration of CPU in
terms of the number of cores and CPU frequency for a given query. (3) Devel-
opment of a subsystem PAID that integrates a GA and NN into a DBMS (Post-
greSQL).

Our paper is organized as follows: Section 2 offers a comprehensive review of
related works. Section 3 provides a detailed description of our PAID subsystem,
including the two main components: the NN model and GA. Section 4 outlines



4 A. Bouhatous et al.

the experimental setup and discusses the results obtained. Finally, Section 5
concludes the paper and presents our directions for future work.

2 Related Work

In this section, we delve into the major works proposed to examine the EE of data
processors. These studies can be broadly categorized into three main approaches:
(i) hardware-oriented, (ii) software-oriented, and (iii) hybrid approaches.

Hardware-oriented approaches Research efforts have focused on reducing
CPU energy consumption in data storage systems. Hardware manufacturers are
developing multi-core technologies and EE components, with modern CPUs incor-
porating Advanced Configuration and Power Interface for dynamic power man-
agement [12]. Dynamic Voltage and Frequency Scaling (DVFS) is widely used
to optimize energy use, with CPU governors controlling frequency adjustments
[21,14]. Studies have explored energy-saving techniques, such as Processor Volt-
age Control and DVFS, to balance query performance and energy consumption
by lowering voltage and frequency based on workload characteristics [17]. Re-
search has also introduced adaptive clock speed adjustments to optimize energy
use in OLTP systems, achieving a 7.6% reduction in total energy consumption
[11]. Experimental studies demonstrated that reducing CPU frequency signif-
icantly improves energy efficiency in main-memory DBMS [19]. Additionally,
the POLARIS algorithm was developed to optimize power consumption while
maintaining transaction latency requirements. It achieves this by dynamically
adjusting processor frequency based on predicted execution times of ongoing
and queued transactions [14].

Software-Oriented Approaches Here we review major studies on integrat-
ing energy considerations into query processors. It highlights the development
of analytical cost models that predict query energy consumption using cost esti-
mations from DBMS query optimizers. Xu et al. [29,30] proposed a cost model
predicting query energy consumption based on response time in PostgreSQL,
using linear regression. Kunjir et al. [15] developed a pipeline-based model with
stepwise linear regression to minimize peak power consumption in query execu-
tion. Contrary to Kunjir et al. [15], Lang et al. [16] proposed an operator-based
energy model for select, project, and join operations, using linear regression to
guide energy-efficient query execution plans. In [24,25], the authors introduced
a pipeline-structured energy model employing polynomial regression, integrated
into the EnerQuery System build on the top of PostgreSQL. Guo et al. [9] exam-
ined the influence of memory and cache structures on energy consumption and
developed a linear cost model incorporating memory, CPU, and I/O costs. Dem-
bele et al. [5] etended sequential models to parallel execution environments using
a combination of polynomial regression and artificial neural networks, improving
energy estimation in multi-core systems with fixed settings.For more details on
hardware and software solutions, please refer to [20].

Hybrid Approaches In [3], the authors conducted an empirical study to ex-
plore the impact of CPU configurations, including the number of CPU cores and
their frequency, on query performance, power consumption, and energy con-



PAID: Power-optimized AI-driven Databases 5

sumption during the execution of analytical queries. Building on the insights
gained, they proposed an enhanced version of the simple ML model from [5], in-
corporating additional features related to multi-core CPUs and their frequencies.
The proposed solution yielded promising results, outperforming existing major
energy cost models. However, it is important to note that these new features are
derived from the default settings of the machine hosting the target DBMS, with-
out taking into account the potential benefits of selecting the optimal hardware
configuration tailored to the specific requirements of each query.

3 Integrating old and new AI: GA and NN

Before presenting our PAID systems, we provide key definitions.

Query Optimizer

Hardware Default
Settings

CPU Cost

Neural Network Prediction
Model

IO Cost

Mem Cost

Database Size

Degree of Parallelism

CPU Frequency

Predicted Time Predicted
Power

Genetic Algorithm for selecting
Frequency and # Cores

PAID Framework

Query

Fig. 2: The PAID Subsystem.

Definition 1. Power is the measure of the rate at which work is performed or
the amount of energy expended per time unit, generally a second. It is quantified
in watts (W). More precisely, power can be defined as follows: P = J/T , where
P , J , T , represent respectively, power in Watts, work done in Joules per time
unit and a time unit, generally a second.

Definition 2. Energy is defined as a measure of the capacity to perform work
over a time period. The unit of measurement for energy is the Joule. Formally,
energy is defined as follows: E = P×T , where P , T , and E represent respectively,
a power in watts, a period of time in seconds, and the energy consumption in
Watts-seconds.

In the context of IT, energy typically refers to the electrical energy consumed
by a computing system over a certain period of time, while power refers to the
rate at which electrical energy is consumed per second [27]. For a given system,
the electrical power consumption can be divided into two distinct parts:



6 A. Bouhatous et al.

Definition 3. Static Power (Pstatic) that corresponds to the power required
to operate, in an idle state, various components of the motherboard, such as
processors, memory, IO devices and fans.

Definition 4. Dynamic Power (Pdynamic) that refers to the power consumed
during the execution of a workload.

The total electrical power (Ptotal) consumption of a given computing system
is the sum of its static power and dynamic power.

Ptotal = Pstatic + Pdynamic (1)

We consider the average power consumed during the query execution: Ptotal/2.

3.1 NN model

Our NN model aims to estimate the energy consumption (output) considering
critical CPU settings, including the number of cores (NBC) and CPU frequen-
cies ranging from fmin to fmax, with δ increment.

According to the state-of-the-art, estimating the energy consumption for a
given query Qi requires considering the following key features: CPU cost, I/O
cost, memory cost, and database size. These features can be easily extracted
from data statistics and query plans generated by query optimizer calls (e.g.,
EXPLAIN in PostgreSQL and EXPLAIN PLAN in Oracle).

Therefore, from an energy consumption perspective, a given query Qi can be

represented by the following feature vector
−→
Qi, which serves as input to our NN

model:−→
Qi = (COSTCPU(i,j,k)

, COSTIOi
, COSTMEMORYi

, Tablessizei), where:
COSTCPUi,j,k

, COSTIOi
, COSTMEMORYi

, and Tablessizei represent respec-
tively the CPU cost, the number of pages read/written from secondary stor-
age (persistent storage), the number of pages accessed in main memory when
executing Qi, and the size of the used tables by the query Qi. A CPU con-
figuration used for executing a query Qiis represented by the following vector:−−−−−−−→
CPU(i,j,k) = (FRQ(i,j,k), CORE(i,j,k)), where: FRQ(i,j,k), and CORE(i,j,k) rep-
resents respectively the CPU frequency j and the number of cores k used during
Qi execution.
It is important to highlight that, in existing studies, all CPU vectors associated
with queries are fixed. That is, the CPU configuration (frequency and number of
cores) remains fixed across all queries, rather than being dynamically optimized
based on individual query characteristics. In PAID, the task of filling these vec-
tors is handled by our GA which works in tandem with our NN.

Query execution can be performed using into two distinct modes: (i) Serial
mode: in this mode, the degree of parallelism (DOP ) is limited to 1, meaning
that all operators of a query are executed using a single core. In contrast, parallel
mode allows query operators to be executed using multiple cores.

Based on these two vectors, a query Qi is then represented by a vector ob-

tained by concatenating the query feature vector
−→
Qi and the CPU configuration



PAID: Power-optimized AI-driven Databases 7

vector
−−−→
CPUi. The query vector is initially passed through a set of fully con-

nected layers of monotonically decreasing size. The parameters of our NN model
are provided in Section 4.

3.2 Selecting an Optimal CPU Configuration: A Genetic Algorithm

As the number of cores on commodity processors continues to increase, selecting
the optimal CPU configuration can become both time- and energy-costly. This
situation motivates us to avoid the exhaustive enumeration of all possible CPU
configurations in order to select the optimal one. Therefore, we propose a GA

aimed at selecting the best CPU configuration (in terms of the number of cores
and frequency) for a given query Qi.

Let us first formalize the problem of CPU configuration selection. Given the

extended query Qi vector
−−→
EQi = (

−→
Qi,

−−−→
CPUi) and our NN model that predicts the

energy consumption (power and time) of queries under a given CPU configura-
tion, our selection problem consists in setting the best CPU configuration that
minimizes both the power consumption (FPower) and execution time FTime.

minimize(j,k)F : Fpower(
−→
Qi,

−−−−−−−→
CPU(i,j,k))× Ftime(

−→
Qi,

−−−−−−−→
CPU(i,j,k)) (2)

where j ∈ {1, 2, . . . , NBC} be the number of active CPU cores, and j ∈ [fmin, fmax].
Our GA solves this problem, with F as the fitness function.
Our NN model predicts energy consumption and response time for a given

query by considering static features extracted from the DBMS hosting the target
database and default parameters related to the CPU, without varying them. In
contrast, the GA selects the best configuration for a given query. By sending
predicted energy from the NN to theGA, PAID enables NN to get the optimal CPU
configuration. Figure 2 illustrates the connection between NN and GA, where the
fitness function used by the GA is provided by the NN model.

4 Experimental Study

This section describes the experimental study that we conducted to validate our
solution.

Setup: We conduct our experiments on a Dell Precision Tower 3620 server with
the following configuration: a Dell 09WH54 motherboard, 16 GB Dual Channel
DDR4 @ 2133MHz main memory, an Intel Core i7-6700 CPU @ 3.4GHz (1 CPU
– 4 Cores – 8 Threads), and an SSD Disk SM951 NVMe SAMSUNG 256GB.
The server has a Thermal Design Power (TDP) of 65W, and the CPU frequency
can be dynamically adjusted using the DVFS technique. A detailed description
of the static and dynamic power consumption of the main components of our
server is provided in Table 1.

Our experimental setup consists of three main components: a client machine
(monitor), a database server and a power meter called Yocto-Watt6 (manufac-
tured by Yoctopuce) at a frequency of 1 Hz. It is directly placed between the

6 https://www.yoctopuce.com/FR/products/yocto-watt



8 A. Bouhatous et al.

Table 1: Static and dynamic power of our server components
Component Static Power (Watt) Dynamic Power (Watt)

Processor 8.97 42.90

Main Memory 2.50 4.68

Hard Disk 4.0 6.3

database server and the electrical power supply and it is linked using a USB cable
to the client machine for data collection. Our server is installed with PostgreSQL
DBMS (release 14.1), under Ubuntu 20.04 (kernel 20.04.4 LTS). Database statis-
tics are also collected from the DBMS.

Datasets: We utilize the TPC-H benchmark7 to train and evaluate our models.
Three databases are generated with sizes of 10 GB, 30 GB, and 50 GB. In
addition to the benchmark’s original 22 queries, we generate 70 additional queries
randomly.

For each database, we collected query execution plans and measured energy
consumption using our power meter. Each query was executed multiple times
while varying the number of CPU cores (degree of parallelism (DOP )) from 1
to 4, which corresponds to the maximum number of available cores. (=max core
number), and adjusting CPU frequency configurations between 0.8 GHz and 3.4
GHz.

Before conducting our experiments, we deactivated unnecessary background
tasks and cleared both the operating system and PostgreSQL buffers before
each query execution. To assess the effectiveness of our NN model, we selected
Random Forest Regression as a baseline, given its demonstrated reliability in
recent state-of-the-art studies.

Following that, we used a dataset comprising 50 GB and 22 TPC-H queries to
validate and assess the accuracy of our cost model. Once our model was validated,
we could predict the energy consumption of new queries without relying on the
power meter.

Our Results: To assess our NN model, we implemented a Random Forest Re-
gression (RFR) technique using the optimal parameters summarized in Table 2.
This table presents the best training parameter values selected for both models
after completing the training phase using the sklearn8 tool. The RFR serves as a
baseline, allowing us to compare the performance of our NN model and evaluate
its efficiency in predicting energy consumption.

The input layer of our NN model consists of 6 neurons, corresponding to the
number of features in the input data. The subsequent three layers are densely
connected, with each neuron in a layer being connected to every neuron in the
previous layer. We use the rectified linear unit (ReLU) as the activation function
for the hidden layers, which introduces non-linearity to the network.

7 https://www.tpc.org/tpch/
8 https://scikit-learn.org/stable/

https://www.tpc.org/tpch/


PAID: Power-optimized AI-driven Databases 9

Table 2: RFR and NN Best Parameters
RFR n estimators 100

max features 6
max depth None
min samples split 2
min samples leaf 1

NN Input layer 6 neurons
1st hidden layer 32 neurons
2nd hidden layer 16 neurons
3rd hidden layer 8 neurons
Output layer 2 neurons
Activation function for hidden layers ReLU
Optimizer function Adam
Learning rate 0.0125
Loss function MAE

The output layer consists of two neurons, each producing a single output
value, indicating the two outputs predicted by the network. The activation func-
tion for these output neurons is linear, which allows for continuous predictions
of power consumption and query execution time.

The model is compiled using the Adam optimizer with a learning rate of
0.0125, and the loss function employed during training is mean absolute error
(MAE).

Table 3 presents the evaluation results of Random Forest Regression (RFR)
and our NN model, showcasing their performance metrics for predicting power
consumption and query execution time.

Table 3: Results of RFR and NN in predicting power consumption and time of
queries

Model’s Output Evaluation Metrics RFR NN

Power MAE 2.3 2.5
R2 63.82 64.17

Time MAE 54.72 13.85
R2 47.51 83.64

For the power consumption prediction, the mean absolute error (MAE) is
used as the evaluation metric. The RFR model achieved an MAE of 2.3, indicat-
ing that, on average, the predicted power consumption differed from the actual
values by 2.3 watts. The NN model, on the other hand, achieved a slightly higher
MAE of 2.5, suggesting a marginally higher prediction error compared to RFR.



10 A. Bouhatous et al.

This performance difference highlights that, while the NN model provides useful
insights, RFR remains slightly more accurate in predicting power consumption
in this particular scenario.

To assess the overall fit of the models, the coefficient of determination (R2)
is employed. The RFR model achieved an R2 value of 63.82, indicating that
it explains approximately 63.82% of the variance in power consumption. Simi-
larly, the NN model achieved an R2 value of 64.17, suggesting a slightly better
performance in explaining the variance compared to RFR. This result indicates
that while both models provide a decent explanation of the variance, the NN

model performs slightly better in capturing the underlying patterns in power
consumption.

For the time prediction, the evaluation metrics used are MAE and R2. The
RFR model achieved an MAE of 54.72, indicating an average prediction error
of 54.72 seconds for time. On the other hand, the NN model achieved a signifi-
cantly lower MAE of 13.85, suggesting a superior performance in predicting time
compared to RFR. This indicates that the NN model has a more accurate and
precise prediction capability for query execution time, outperforming RFR by a
considerable margin.

In terms of the overall fit, the R2 value for time prediction using the Random
Forest Regression (RFR) model is 47.51, meaning the model explains approx-
imately 47.51% of the variance in time. In contrast, the NN model achieved a
much higher R2 value of 83.64, indicating significantly better performance in ex-
plaining the variance in time. This suggests that the NN model provides a more
accurate and reliable prediction for query execution time compared to the RFR
model.

The NN model generally outperforms the RFR model in terms of both MAE
and R2 for predicting power and time. This indicates that the NN model provides
superior accuracy in estimating the energy consumption and execution time of
queries, making it a more reliable choice for predicting these metrics.

Impact of our GA in Energy Savings: We conduct an experiment to eval-
uate the real impact of the best configuration generated by the GA. Table 4
summarizes different parameters of our GA. To to so, we consider three CPU
settings for each query:

1. Default Energy: This represents the energy consumption using the default
configuration of the CPU.

2. Optimized Energy: This represents the energy consumption using the
CPU settings proposed by our GA.

3. Real Minimized Energy: This represents the optimal energy consumption
using the best CPU settings. To find the most suitable CPU configuration
that minimizes the energy consumption of a query, we provide COSTCPU ,
COSTIO, and COSTMEMORY as input to our GA. This later then proposes

the CPU settings
−−−−−−−→
CPU(i,j,k) that lead to minimal energy consumption. Fi-

nally, we adjust the number of cores and CPU frequency based on these
settings and execute the query.



PAID: Power-optimized AI-driven Databases 11

Table 4: GA parameters.

Parameter Value

Encoding Type Real value encoding

Selection Method Elitist selection

Crossover Type One-Point Crossover

Probability of Crossover 0.5

Mutation Type Uniform mutation

Probability of Mutation 0.1

Max Evaluations 1200

Fig. 3: Energy consumption measurements of TPC-H queries.

4.1 Connecting our NN and our GA

Figure 3 presents a summary of the results obtained. Across nearly all queries,
a notable reduction in energy consumption is observed. We identified CPU con-
figurations that achieve energy savings of up to 30% without any significant
performance degradation compared to the default CPU configuration in most
cases. Moreover, in addition to minimizing energy consumption, our approach
also led to a decrease in execution time. Furthermore, a key observation high-
lighting the effectiveness of our approach is that the energy consumption and
performance of queries using the CPU configurations proposed by our approach
closely resemble the optimal consumption levels, demonstrating the precision
and effectiveness of the configurations generated by our GA.

On the Joint Benefits Stemming from Integrating GA and NNs: We
conducted experiments to quantify the impact of CPU frequency and paral-
lelism, varying the number of cores, on response time and energy consumption
for 22 queries, covering various analytical scenarios. Based on these results, we
identified the best configuration for each query. With respect to response time,
as expected, results strongly indicate that a higher number of cores yields the
best response times (Fig. 4), except for Queries 3 and 22, which are less de-
manding than the other queries. Specifically, query 3 requires only two joins and
sorting based on a single attribute, whereas query 22 contains nested queries
and also involves sorting by one attribute. These differences in query complexity



12 A. Bouhatous et al.

Fig. 4: Optimal configuration to achieve the best query response time per query

Fig. 5: Optimal configuration to achieve the best energy consumption per query

explain why the performance gains from increasing the number of cores are less
pronounced for these two queries.

Nevertheless, we found that energy consumption is correlated to elapsed time,
which is counter-intuitive. In terms of energy consumption, utilizing all available
cores results in energy savings for all queries, except for Queries 3 and 9. Specif-
ically, Query 9, which involves six joins and sorting based on two attributes,
exhibits high energy consumption even when all cores are utilized. This suggests
that, in certain cases, the overhead of managing parallelism or the specific na-
ture of the query may outweigh the benefits of additional cores. The increased
complexity of handling multiple joins and sorting operations in Query 9 likely
leads to higher energy usage, despite the potential performance benefits from
parallelism.

Due to the large number of queries and the wide spectrum of values, plotting
all results together was impractical. Therefore, we chose to present representative
results for three queries: Q1, Q11, and Q22. Query Q1 involves no joins but



PAID: Power-optimized AI-driven Databases 13

includes four sums, three averages, and a sort with two attributes. This query
serves as a simple case, primarily focusing on aggregation and sorting. Query
Q11 consists of four joins, two nested queries, three sums, and one sort. This
query represents a more complex query structure, with multiple joins and nested
operations. Query Q22 includes four nested queries, two joins, two aggregations,
and a sort. This query is particularly intricate, showcasing a combination of
nested queries, joins, and aggregation operations.

(a) The case of Query Q1 (b) The case of query Q11

(c) The case of query Q22 (d) Average of all 22 queries

Fig. 6: The impact of number of cores and CPU frequency on power savings

Figure 6d shows average energy consumption corresponding to all queries,
by varying the degree of parallelism and CPU frequency.

Surprisingly, for the three queries, reveal that employing more than two cores
reduces power consumption (results shown in Figures 6a, 6b, and 6c). As for CPU
frequency, higher values do not necessarily translate into power savings.

An important takeaway is that employing a moderate frequency yields a
compromise between energy and speed, making it our recommended solution.
In addition, lower CPU frequencies lead to less CPU cooling, further reducing
energy.

5 Conclusion

In this paper, we combined classical optimization techniques (genetic algorithms,
popular before in AI combinatorial optimization) with modern AI prediction
models (neural networks, the most popular these days for prediction) to opti-
mize energy in a data processing system. Our optimizations are integrated into
PAID, a subsystem integrated with the query optimizer. We explained there is a
large number of hardware combinations, which makes selecting an optimal one,



14 A. Bouhatous et al.

a hard problem. On the other hand, going beyond linear regression models, we
explained neural networks can learn and predict energy and consumption based
on a query workload. Therefore, we argue both techniques need to be integrated,
complementing each other. To validate our prototype, we conducted experiments
using the TPC-H benchmark, to understand tradeoffs between energy and ef-
ficiency. We were able to reduce energy consumption by 30%, producing query
acceleration as well in most cases. Additionally, results indicate that using more
cores, surprisingly, reduces both energy consumption and response time, whereas
the impact of CPU frequency depends on diverse query profiles (i.e. not possible
to have a general solution), contradicting previous studies that rely on default
settings.

There are interesting directions for future work. We would like to explore
other optimization algorithms, like greedy algorithms, and dynamic program-
ming, but we believe they will not produce a drastic difference. On the other
hand, we would like to understand how the optimization problem can be rephrased
as a learning problem, computable by a neural network. Our preliminary study
was conducted on a server with a Solid State Drive (SSD) and Non-Volatile
Memory (NVM), but in the future NVM may become prevalent, paving the
way for main memory database systems. Main memory database systems can
potentially produce more energy savings, keeping the CPU busy, without wait-
ing for Inputs-Outputs. Finally, with the migration trend from on-premise to
cloud-based database systems, we need to reconsider all aspects, including vir-
tual CPUs, elastic CPU, and extending cloud database systems architectures to
incorporate three dimensions: scalability, cost, but also energy.

References

1. Bellatreche, L., Djellali, F., Macyna, W., Ordonez, C.: Energy-aware query pro-
cessing: A case study on join reordering. In: IEEE Big Data. pp. 3743–3752 (2023)

2. Binglei, G., Jiong, Y., Dexian, Y., Hongyong, L., Bin, L.: Energy-efficient database
systems: A systematic survey. ACM Comput. Surv. (2022)

3. Bouhatous, A., Bellatreche, L., Abdelwahed, E.H., Ordonez, C.: The impact of
multicore cpus on eco-friendly query processors in big data warehouses. In: IEEE
Big Data. pp. 4463–4472 (2022)

4. Corporation, L.: Five strategies for cutting data center energy costs through
enhanced cooling efficiency (2007), http://www.rvip.ru/files/1071/Emerson_

EfficiencyWP_low_041707.pdf

5. Dembele, S.P., Bellatreche, L., Ordonez, C., Roukh, A.: Think big, start small: a
good initiative to design green query optimizers. Clust. Comput. 23(3), 2323–2345
(2020)

6. Etinski, M., Corbalán, J., Labarta, J., Valero, M.: Understanding the future of
energy-performance trade-off via DVFS in HPC environments. J. Parallel Distrib.
Comput. 72(4), 579–590 (2012)

7. Ghabri, I., Bellatreche, L., Yahia, S.B.: Energy efficiency vs. performance of ana-
lytical queries: The case of bitmap join indexes. In: IEEE Big Data. pp. 3066–3074
(2021)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

http://www.rvip.ru/files/1071/Emerson_EfficiencyWP_low_041707.pdf
http://www.rvip.ru/files/1071/Emerson_EfficiencyWP_low_041707.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org


PAID: Power-optimized AI-driven Databases 15

9. Guo, B., Yu, J., Liao, B., Yang, D., Lu, L.: A green framework for dbms based on
energy-aware query optimization and energy-efficient query processing. Journal of
Network and Computer Applications 84, 118–130 (2017)

10. Harizopoulos, S., Shah, M.A., Meza, J., Ranganathan, P.: Energy efficiency: The
new holy grail of data management systems research. In: CIDR (2009)

11. Hayamizu, Y., Goda, K., Nakano, M., Kitsuregawa, M.: Application-aware power
saving for online transaction processing using dynamic voltage and frequency scal-
ing in a multicore environment. In: Architecture of Computing Systems. vol. 6566,
pp. 50–61 (2011)

12. Inc, U.E.: Advanced Configuration and Power Interface Specification (2016), http:
//www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf

13. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multim. Tools Appl. 80(5), 8091–8126 (2021)

14. Korkmaz, M., Karsten, M., Salem, K., Salihoglu, S.: Workload-aware CPU per-
formance scaling for transactional database systems. In: SIGMOD. pp. 291–306
(2018)

15. Kunjir, M., Birwa, P.K., Haritsa, J.R.: Peak power plays in database engines. In:
EDBT. pp. 444–455 (2012)

16. Lang, W., Kandhan, R., Patel, J.M.: Rethinking query processing for energy effi-
ciency: Slowing down to win the race. IEEE Data Eng. Bull. 34(1), 12–23 (2011)

17. Lang, W., Patel, J.M.: Towards eco-friendly database management systems. In:
CIDR (2009)

18. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving GPU
energy efficiency. ACM Comput. Surv. 47(2), 19:1–19:23 (2014)

19. Noll, S., Funke, H., Teubner, J.: Energy Efficiency in Main-Memory Databases. In:
Datenbank-Spektrum. pp. 335–344 (2017)

20. Ordonez, C., Macyna, W., Bellatreche, L.: Energy-aware analytics in the cloud. In:
BiDEDE@SIGMOD. pp. 3:1–3:6 (2024)

21. Pallipadi, V., Starikovskiy, A.: The ondemand governor: past, present and future.
In: Proceedings of Linux Symposium. pp. 223–238 (2006)

22. Psaroudakis, I., Kissinger, T., Porobic, D., Ilsche, T., Liarou, E., Tözün, P., Aila-
maki, A., Lehner, W.: Dynamic fine-grained scheduling for energy-efficient main-
memory queries. In: DaMoN Workshop. pp. 1:1–1:7 (2014)

23. Qasaimeh, M., Zambreno, J., Jones, P.H., Denolf, K., Lo, J., Vissers, K.A.: Ana-
lyzing the energy-efficiency of vision kernels on embedded cpu, GPU and FPGA
platforms. In: FCCM. p. 336 (2019)

24. Roukh, A., Bellatreche, L., Bouarar, S., Boukorca, A.: Eco-physic: Eco-physical
design initiative for very large databases. Inf. Syst. 68, 44–63 (2017)

25. Roukh, A., Bellatreche, L., Ordonez, C.: Enerquery: Energy-aware query process-
ing. In: ACM CIKM. pp. 2465–2468 (2016)

26. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of
a database server. In: ACM SIGMOD. pp. 231–242 (2010)

27. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor sys-
tems. ACM Computing Surveys 37(3), 195–237 (2005)

28. Wang, J., Feng, L., Xue, W., Song, Z.: A survey on energy-efficient data manage-
ment. SIGMOD Rec. 40(2), 17–23 (sep 2011)

29. Xu, Z., Tu, Y., Wang, X.: Exploring power-performance tradeoffs in database sys-
tems. In: IEEE ICDE. pp. 485–496 (2010)

30. Xu, Z., Tu, Y.C., Wang, X.: Dynamic Energy Estimation of Query Plans in
Database Systems. In: ICDCS. pp. 83–92 (2013)

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf

	PAID: Power-efficient AI-optimized Databases

