
Accelerating Python Code with Parallel I/O

Robin Varghese1, Hashirul Quadir1, Ladjel Bellatreche2, and Carlos Ordonez1

1=Department of Computer Science, University of Houston, USA
2=LIAS/ISAE-ENSMA, Poitiers, France

Abstract. Python is the dominating data science language used in prac-
tice, leaving behind other languages like C++, Java and R. Python li-
braries wrap highly tuned, efficient, accurate C++ and C code for lin-
ear algebra, numerical methods and data manipulation. Moreover, the
Python runtime works flawlessly across diverse operating systems (Linux,
Windows) and CPU architectures, including x86 and ARM. From an ac-
celerator perspective, Python code is processed on multi-core CPUs and
GPUs, whose power is not fully exploited. In this paper, we study how to
improve Python I/O bottlenecks. We focus on data set summarization
to compute a model on a large data set, stored on a CSV file (the most
common format used in practice). Heeding these challenges, we introduce
two simple, but fundamental, I/O optimizations: parallel multi-threaded
read and chunk-based scan (similar to reading file blocks in a DBMS).
An experimental validation on different cloud servers, provides a realistic
scenario. We show our optimized Python code can work faster than ex-
isting Python functions, it exhibits almost linear speed up I/O as more
threads are used (up to a limit), but it can still leverage parallel pro-
cessing for the CPU-intensive floating point computations. To round up
our study, we justify chunk size is a critical performance parameter that
depends on data set size as well as cloud server configuration.

1 Introduction

Our study aims to highlight I/O on text files as a major bottleneck in AI and
ML computations processed by Python [6] in a typical server in the cloud. Most
analytic projects target is a predictive machine learning (ML) model. Logistic
regression stems from linear regression [4] and logistic regression is a founda-
tion model for deep neural networks [1]. Therefore, we study linear regression
(LR) as a representative and fundamental AI model representing a demanding
computation (I/O + floating point operations) on a large input matrix, perhaps
exceeding main memory limits. Our paper advances [3], where summarization
is proposed to accelerate ML computations in the R language, with serial I/O.
A major step forward is the parallel computation of summarization in Python,
with parallel I/O, with chunked files, in a typical multi-core cloud server. This
paper borrows query processing ideas to compute summarization in parallel in
a DBMS with SQL queries combining joins and aggregations [5].

2 R. Varghese, H. Quadir, L. Bellatreche, C. Ordonez

2 Accelerating and Scaling Data Summarization

2.1 Definitions: Input Matrix and Machine Learning Model

The input data set is defined as X, a d×n matrix consisting of a set of n column
vectors each with d dimensions. We refer to the machine learning model as Θ,
in this case vector β̂.

Our data summarization works well for multiple ML models Θ such as PCA,
NB (Naive Bayes), K-Means clustering, and LR (Linear Regression). Given the
mathematical importance of LR, and being used as a theoretical foundation for
Neural Networks we focus on its solution.

2.2 Data Set Summarization

In order to compute data summarization matrix Γ for LR, first we augment X
with a row of ones to produce a (d + 1) × n matrix X. Y is an n-row vector
corresponding to the output for each n observation. Given a (d + 1) × n input

matrix X, and a (d+1)×1 column vector β̂ of coefficients, the predicted outputs

Ŷ, an n-row vector corresponding to the predicted outputs of each n observation
produced by the LR model, are computed as Ŷ = β̂TX+ ϵ, where ϵ represents
error. For computing Γ , augment X with Y. In general this (d+ 2)× n matrix
is defined as Z, but to optimize I/O we create sub-matrix of size (d + 2) × c
where c is the chunk size (a block of vectors). Therefore, c can be considered
a hyper-parameter and it must be tuned to achieve optimal performance. The
serial computation of a model Θ becomes a two-phase algorithm as follows:

– Phase 1: Summarize X: compute Γ =
∑n

i=1 zi ⊗ zTi ;

– Phase 2: Compute model Θ: Solve β̂ exploiting Γ .

Phase 1: Begin by reading a chunk of the input data set of size d×c. Augment
this chunk in main memory with a row vector of c ones and Y (dependent
variable) also a c row vector. This will produce Z, a (d+ 2)× c, a dense matrix
whose size is Θ(d2). Compute ZZT to produce the partial gamma Γc.

The sufficient statistics (SS) L, n and Q are defined as follows: n = |X|,
L =

∑n
i=1 xi, and Q = XXT =

∑n
i=1 xi · xT

i , n is total number of points in the
data set, L is the linear sum of xi and Q is the sum of vector outer products
of xi. It should be noted that Phase 1 takes most computation time. Phase 2:
Exploit the sufficient statistics integrated into the single matrix Γc to further
compute an ML model. In our target case, the goal is to compute the regression
coefficients β̂ whose solution by the least square method is Ŷ = β̂TX + ϵ. The
“quadratic” sufficient statistic matrix Q and the matrix-vector product XY T are
exploited by substituting them into β̂ = (XXT)−1XYT = Q−1(XYT), where
the second expression is much faster to compute because it is based only on Γ .

The serial algorithm has time complexity Θ(d2n) for Phase 1, but Θ(d3) for
Phase 2 (much lower as n → ∞). That is, Phase 1 dominates time growth.

Data summarization is quadratic in data set dimensionality (i.e. demand-
ing) and therefore, it has a significantly higher time complexity than stochastic
gradient descent, the workhorse of AI models.

Accelerating Python Code with Parallel I/O 3

2.3 Hardware and Software Evolution

Modern computing has evolved to feature multi-core CPUs, with high-end mod-
els like the Xeon Granite Rapids offering up to 128 cores and support for vector-
ized instructions, significantly enhancing computational efficiency. Server mem-
ory configurations range from 16 to 32 GB, scaling up to terabytes to meet
the demands of Big Data and Deep Learning. Advances in storage, with SSDs
providing 3X, NVMs providing 10X, faster read speed than HDDs, have sig-
nificantly narrowed the performance gap between RAM and secondary storage,
though I/O from secondary storage remains a bottleneck, albeit less so with
modern PCI-connected NVMs.

Processing of Python code is done by multi-core CPUs supporting vectorized
instructions, which accelerate matrix computations, but only in memory. In sys-
tems without distributed memory (i.e. a cluster of computers), multi-threaded
processing is the primary parallelization strategy, involving “coarse” threads
(e.g., Python) mapped to hardware CPU threads (embedded in the chip). This
setup emphasizes the importance of multi-threading processing for parallel ex-
ecution in shared RAM scenarios and the alignment of software with hardware
threads to optimize efficiency. However, practical limitations such as Python’s
Global Interpreter Lock (GIL) create a need for alternative parallelism, high-
lighting the complexity of optimizing parallel processing, especially for I/O op-
erations.

2.4 Parallel I/O Efficient Algorithm

Let p be the number of processors (cores, machines), under a partitioned mem-
ory architecture, where each processor has its independent main memory and
persistent storage. We assume d ≪ n and p ≪ n, but d is independent from p.
Our parallel algorithm follows:

– Data set X is uniformly partitioned among the p processors with ≈ n/p
points xi per partition. Initialize: Γ = [0]

– Phase 1 in parallel with p processors: Compute Γ in parallel, dynamically
building zi in main memory, updating Γj in main memory reading Xj from
persistent storage in blocks. Send the partial matrices to the master processor
and aggregate the p partial summary matrices into the global matrix Γ .

– Phase 2 at master processor: Compute Θ using Γ in intermediate computa-
tions. Iterate method until convergence exploiting Γ in intermediate matrix
computations.

Notice we opt for a partitioned memory model with parallel I/O [2] instead of
PRAM, which would require locking mechanisms in Phase 1, introducing signifi-
cant overhead. Parallelization is accomplished by computing separate summaries
on each partition. That is, threads do not share variables in main memory. The
main reason this parallelization is feasible is because matrix multiplication is
distributive and additive, meaning we can compute separate matrix multipli-
cations and add them at the end (with negligible overhead to lock the global
summarization). Phase 2 is very fast since it does not depend on n.

4 R. Varghese, H. Quadir, L. Bellatreche, C. Ordonez

3 Experimental Evaluation

As explained in Section 2 Phase 1 takes around 99% of time and Phase 2 takes
only 1%-2%. Therefore, we focus on studying Phase 1, which is I/O bound.

3.1 Evaluation Setup

Cloud Server Configuration We ran experiments on three cloud servers, pro-
vided by Amazon AWS. Our results should be similar on other cloud providers,
which also use VMware for virtualization. Our server specifications were as fol-
lows: Server 1 (2 vCPUs) is a Xeon-based HVM domU instance with an Intel(R)
Xeon(R) E5-2686 v4 CPU, 2 cores per socket - 1 socket - 1 thread/core, 8GB
RAM. Server 2 (4vCPUs), an Amazon EC2 g4dn.xlarge instance, with an Intel
Xeon CPU with 24 cores and 48 physical threads, 16 GB RAM. 16 GB RAM, 2
cores per socket - 1 socket - 2 threads/core. Server 3 (8 vCPUs) is an Amazon
EC2 g4dn.xlarge instance, with an Intel Xeon CPU with 18 cores and 36 physical
threads, 32 GB RAM. All servers had detached SSD storage, connected via a
fast network, with limited space around 200 GBs and they were running Linux
Ubuntu under VMware.

Python Data Science Libraries Our prototype setup leverages Python li-
braries: Pandas for I/O operations, NumPy for numerical computations, and
threading for multi-threaded parallelism to efficiently read large data sets, elim-
inating RAM limitations. Data sets were chunked (divided into blocks similar
to an SQL table) and partitioned across p files for scalable processing: parallel
multi-threaded I/O, lock-free, without RAM limitations. Each thread worked in
parallel computing Γc matrices. As explained above, to mitigate the I/O bottle-
neck, we utilize Python’s built-in threading library to spawn p threads equal to
the number of data set partitions, stored on p files. Notice we also exploit CPU
parallel processing for floating point operations.

3.2 Profiling Computation Steps to Identify Bottlenecks

To verify I/O is the main bottleneck in the computation, we profiled each com-
putation step on three widely different cloud servers, as shown in Table 1. We
analyzed how the number of threads affects speed. Table 1 shows that 90% of
the whole computation time is due to I/O and this fraction is bigger for large
n, when the data set size exceeds RAM size. Increasing the number of threads
accelerates the summarization computation, but to a limit: for the smaller cloud
servers (2 vCPUs, 4 vCPUs) 8 threads fail, whereas for the larger server (8
vCPUs) the speedup stops at 2 threads. These time results indicate there is a
complex interaction among number of vCPUs, number of threads, data set size
and chunk size. Unfortunately, we could not determine the specific storage device
information (model, block size, PCI vs SATA connection).

Accelerating Python Code with Parallel I/O 5

Table 1: Profiling each step, highlighting significant time is spent on I/O.
#threads size chunk size I/O summarization total total

vCPUs p n c time time time speedup

2 1 16M 100k 491 13 504 1.0X
2 2 16M 100k 242 10 252 2.0X
2 4 16M 100k 173 6 179 2.8X
2 8 16M 100k 173 fail fail -

4 1 16M 100k 421 10 431 1.0X
4 2 16M 100k 219 7 227 1.9X
4 4 16M 100k 165 9 174 2.5X
4 8 16M 100k 165 fail fail -

8 1 1M 1k 30 8 38 1.0X
8 2 1M 1k 22 4 26 1.5X
8 4 1M 1k 275 3 278 0.1X
8 8 1M 1k 885 2 887 0.1X

3.3 Accelerating I/O Speed with Parallelization and Chunks

Our next experiments aim to find out how many threads “saturate” the CPU
cores. Figure 1 compares CPU core saturation with 1 thread versus the optimal
number of threads, obtained from Table 1. That is, we want to use cores as close
as possible to 100% to avoid cores, and vCPUs in consequence, being idle. As
can be seen, 4 threads are optimal for the 4 vCPU server, but only 2 threads
are optimal for the 8 vCPU server. Notice the virtualization software and the
operating system consume CPU cycles anyway on some CPU cores.

Fig. 1: Achieving full vCPU utilization with multi-threaded I/O (black=4 vC-
PUs, gray=8 vCPUs): left/up=1 thread, 4 vCPUs; right/up=4 threads, 4 vC-
PUs; left/down=1 thread, 8 vCPUs; right/down=2 threads, 8 vCPUs.

Our last experiments explore chunk size on two cloud servers, shown in Figure
2. For the 4 vCPUs server increasing c decreases time, but the impact is not
look significant. A large chunk size c =100k gives optimal time, but it does
not improve when chunk size c approaches n = 1M . On the other hand, a
smaller chunk size around c =100 is best for the 8 vCPUs server and then
performance decreases as n grows. These results indicate there exists a chunk
size that minimizes I/O time and they highlight that d, n alone are not sufficient

6 R. Varghese, H. Quadir, L. Bellatreche, C. Ordonez

to determine chunk size. Why? because the number of vCPUs and the storage
device also have an impact.

Fig. 2: Finding optimal chunk size on 2 cloud servers with their best number of
threads: 4 vCPUs and 4 threads; 8 vCPUs and 2 threads.

References

1. Charu C. Aggarwal. Neural Networks and Deep Learning - A Textbook. Springer,
2023.

2. Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko Jacob, and Elias
Vicari. Optimal sparse matrix dense vector multiplication in the i/o-model. In
Phillip B. Gibbons and Christian Scheideler, editors, SPAA 2007: Proceedings of
the 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures,
San Diego, California, USA, June 9-11, 2007, pages 61–70. ACM, 2007.

3. Siva Uday Sampreeth Chebolu, Carlos Ordonez, and Sikder Tahsin Al-Amin. Scal-
able machine learning in the R language using a summarization matrix. In Database
and Expert Systems Applications DEXA, pages 247–262, 2019.

4. T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning.
Springer, New York, 1st edition, 2001.

5. Carlos Ordonez. Scalable parallel machine learning computing a summarization
matrix with SQL queries. In IEEE Big Data, pages 151–160, 2017.

6. Dipanjan Sarkar, Raghav Bali, and Tushar Sharma. Practical machine learning
with Python. A Problem-Solvers Guide To Building Real-World Intelligent Systems.
Berkely: Apress, 2018.

