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Abstract—Medical datasets play a crucial role in advancing
healthcare research and supporting clinical decision-making. At
the same time, the reliability of responsible and accountable Al
systems is directly dependent on the integrity and transparency
of the datasets on which they are built. The data subcard imple-
ments the System Cards framework’s data assessment dimension
to evaluate tabular medical datasets across four criteria: privacy,
fairness, quality, and protection. It combines data-level profiling
with optional model-based diagnostics, selected to fit each dataset,
to assess completeness, duplication, outliers, demographic dispar-
ities, re-identification risk, and compliance readiness. Applied to
the UCI Heart Disease and Diabetes Readmission datasets, the
method flags privacy risks, fairness imbalances, quality defects,
and protection gaps that warrant review before modeling. The
data subcard produces quantitative scores and visual summaries,
providing a structured and interpretable mechanism for dataset
accountability within the System Cards framework.

Index Terms—Data metrics, medical data, fairness, scorecard,
privacy, compliance, data quality, responsible AI

I. INTRODUCTION

Artificial intelligence now supports a wide range of clinical
decisions, from diagnosing diseases [1], forecasting patient
deterioration [2], to tailoring treatments based on individual
characteristics [3]. In radiology, Al tools flag subtle abnor-
malities for review [4]. In intensive care, machine-learning
models can raise sepsis alerts hours before conventional scores
detect danger [5]. In hospital operations, predictive analytics
streamline bed assignment and operating-room scheduling [6].
These systems analyze large volumes of patient data quickly,
surfacing patterns that may otherwise go unnoticed and often
help reduce diagnostic delays. As they mature, well-tested Al
tools are becoming trusted clinical aids that enhance decision-
making and workflow efficiency.

Still, the performance of such systems depends heavily on
the quality and integrity of the data [7] behind them. Routine
electronic health records often contain missing values, incon-
sistent coding, and duplicates, which weaken analytic integrity
and introduce bias [8]. A widely used risk stratification tool,
for example, deprioritized care for high-need black patients by
relying on healthcare cost as a stand-in for illness severity [9].
Beyond technical concerns, regulatory constraints introduce
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further complexity. Regulatory frameworks such as HIPAA
[10] and GDPR [11] impose strict requirements for consent,
de-identification, and data stewardship. Recent enforcement
actions demonstrate that inadequate documentation or unclear
consent can hinder Al initiatives, regardless of their technical
accuracy [12]. These challenges underscore the need for a
unified audit method that evaluates dataset quality, fairness,
privacy, and protection as interconnected dimensions rather
than treating them as isolated checks.

II. RELATED WORK

Building accountable Al systems in healthcare requires
datasets that are well-documented, structurally sound, privacy-
aware, and fair. Gebru et al. [13] introduced datasheets for
datasets, a structured documentation format to promote trans-
parency around dataset provenance, collection, and intended
use. Bahiru et al. [14] used the System Cards framework
[15] to evaluate an Al data development scorecard that audits
dataset documentation and development practices. Sambasivan
et al. [16] introduced the Data Readiness Report, which
assesses class noise, feature correlations, outliers, and the lin-
eage of data operations to support transparent documentation
and reproducibility. The AIDRIN framework [17] integrates
data quality metrics, Markov model-based privacy evaluation,
fairness analysis, and compliance with FAIR principles to
provide a multi-dimensional assessment of dataset readiness.
Gupta et al. [18] proposed the Data Quality Toolkit, which
analyzes structured datasets using metrics such as label pu-
rity, class overlap, outlier rate, and feature relevance, and
produces lineage-aware diagnostic outputs to support data
quality improvement. Tibebu et al. [19] evaluate fairness gaps
at the intersection of race and gender, and toolkits such
as Al Fairness 360 [20] and Fairlearn [21] provide metrics
and mitigation approaches for such disparities. Despite these
contributions, most existing methods and frameworks remain
narrow in scope, focusing on a single dimension such as qual-
ity, privacy, or fairness, rather than enabling a comprehensive
evaluation. Many overlook demographic-specific fairness and
fail to provide mechanisms for auditing regulatory compliance.



The data subcard implements the System Cards framework’s
[15] data assessment dimension for tabular medical datasets.
It utilizes raw data inspection and model-based diagnostics to
assess data privacy, fairness, quality, and protection. Unlike
existing approaches, the entire evaluation runs in a local envi-
ronment to preserve privacy, producing a unified, interpretable
subcard supported by visual summaries.

III. METHOD

The data subcard evaluates datasets using four criteria
drawn from the System Cards framework’s data assessment
and assurance dimensions: data privacy (C211), data fairness
(C212), data quality (C213), and data protection (C411). For
each criterion, we define measurable metrics and apply them
to the dataset. The evaluation integrates structured data-level
assessments with optional model-based diagnostics, depending
on dataset characteristics. In the first stage, the raw dataset
is evaluated to generate an initial subcard that visualizes its
overall state. Users can then apply preprocessing and train
a diagnostic model to capture additional properties such as
label consistency and fairness across groups. The final subcard
summarizes both data-level and model-based results through
quantitative scores and visual representations. Designed to run
locally, the system preserves data privacy while providing
actionable insights with minimal setup. Once the evaluation
is complete, users submit their subcard to the main System
Cards framework for rating and certification. An overview of
the method is shown in Fig. 1.

A. Data Privacy (C211)

Protecting patient privacy is essential when analyzing medi-
cal datasets. We assessed privacy risk along three complemen-
tary dimensions: detection of Protected Health Information
(PHI), attribute-level re-identification risk, and group-level re-
identification risk.

1) PHI Detection: Direct identifiers are detected using Mi-
crosoft Presidio (https://microsoft.github.io/presidio/), which
combines pre-trained named-entity-recognition models with
rule-based pattern matching to flag all 18 HIPAA Safe Harbor
categories. For every dataset, Presidio returns the PHI type,
the columns affected, and the proportion of records containing
each identifier, thereby enabling systematic de-identification
before further analysis.

2) Attribute-Level Re-1dentification: Let Q C {1,...,p} be
the indices of quasi-identifier attributes. For each ¢ € Q we
tabulate the frequency of every value v over the n records;
values that appear only once (or very rarely) are marked
high-risk, as an adversary observing x;;, = v can single
out an individual. The attribute-level risk for ¢ is therefore
proportional to the fraction of unique or near-unique values
observed for that attribute.

3) Group-Level Re-Identification: To capture risk from
combinations of quasi-identifiers, we draw a random subset
QQ' C @ and form equivalence classes G whose members
share identical values on all attributes in Q”. The deterministic
risk for a class is defined as rq¢ = 1/|G]|, reflecting the

probability of unique identification when an attacker knows the
exact attribute combination. Because an attacker may exploit
any subset of quasi-identifiers, we estimate worst-case risk
using a Monte Carlo procedure [22]. IIn each of M = 1,000
iterations, we create a subset @’ by including each attribute
in @ with independent probability p, = 0.5. This value
was selected to represent a neutral assumption, where an
adversary is equally likely to include or exclude any given
quasi-identifier, resulting in a balanced distribution of subset
sizes. It is user-configurable to adapt to different threat models
or dataset characteristics. After sampling, equivalence classes
G, are formed and the associated risks r¢ ., are recorded.
The empirical distribution of r¢g ,, is then summarized by its
mean, standard deviation, and maximum, providing a robust
estimate of re-identification risk.

B. Data Fairness (C212)

Fairness is examined using three dataset-level metrics. Let
s denote a sensitive attribute such as gender, age, or race,
and let g represent one of its possible groups (for example,
s = female). Let Y be the outcome variable taking classes c.
Representational rate is defined as P(s = g), measuring the
share of records in each group. Outcome rate evaluates class
balance as P(Y = ¢ | s = g) for every group. Intersectional
outcome rate extends this idea to multiple sensitive attributes:
for attributes si,...,sx with values ay,...,ax, the rate is
given by P(Y = ¢ | $1 = a1,82 = ag,...,5x = ak).
Together, these probabilities reveal both single-attribute and
compound disparities in outcome distributions.

C. Data Quality (C213%)

Ensuring the integrity and reliability of medical datasets
is essential for producing valid analyses and robust models.
The data quality in the System Cards framework is limited
to the labels of the dataset; in this method, we extend it to
encompass the entire data quality measure. Given a dataset
D = {(x4, y;)}, with n records and p features, where
x; = (%i1,...,%yp) and y; is the ground-truth label, we
applied the following metrics. Completeness is the proportion
of non-missing values per feature w;;. Data-type validation
confirms that each x;; matches the expected clinical format.
Duplicate detection compares entire feature vectors x; to
identify repeated records. Feature correlation uses Pearson
coefficients for continuous features and CCramér’sV for cat-
egorical features to flag multicollinearity. Qutlier detection
applies both univariate (inter-quartile range) and multivariate
(Mahalanobis distance) tests. Class imbalance is also assessed
from the empirical distribution of y; across classes.

D. Data Protection (C411)

Data protection is a critical component of responsible
dataset use in research and clinical practice and is closely tied
to regulatory compliance. In our method, this dimension is
assessed through a structured rule-based module that reviews
uploaded dataset documentation against predefined validation
checks. The module examines six criteria: institutional review
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Fig. 1. Evaluation workflow and subcard evaluation. Uploaded datasets are assessed across four criteria (Data Quality, Fairness, Privacy, and Protection). The
process outputs both a visual card and a structured JSON report, providing actionable insights for dataset accountability and transparency.

board approval, informed consent, data use agreements, secu-
rity measures, data provenance, and data subject rights. For
each criterion, the system verifies the presence and validity of
the required information (for example, the correct IRB number
format or the inclusion of a data use clause) and assigns
a binary score of 1 if the requirement is satisfied or zero
if not. The overall data protection score is computed as the
proportion of criteria met, and the results are presented in a
compliance card that reports individual scores together with
recommendations for addressing any gaps.

E. Model-Based Assessment

After the data-level evaluation, users who seek additional
diagnostic insights can train a predictive model to evaluate the
dataset from a modeling perspective. The method includes an
integrated preprocessing module that addresses common data
quality issues, such as missing values, incorrect data types,
and categorical encoding, to ensure the dataset is ready for
training. It supports several interpretable diagnostic models,
including XGBoost, LightGBM, and logistic regression. Users
can evaluate and compare model performance, select the most
suitable model for their dataset, and configure key hyperpa-
rameters, such as the learning rate, number of estimators, and
maximum tree depth. Once trained, the selected model serves
as a diagnostic instrument to identify mislabeled records,
unstable feature behavior, and potential biases associated with
sensitive attributes.

Label consistency is evaluated by comparing the model’s
predictions with the actual labels, allowing the identification
of mislabels or ambiguous entries. Feature relevance is mea-
sured using model-derived importance scores to identify which
variables consistently contribute to accurate predictions and
to flag those with unstable influence across different training
subsets. Fairness is assessed using group-based performance
metrics, including demographic disparity, equalized opportu-
nity deviation, and the influence of sensitive attributes on
model decisions.

a) Demographic Disparity [23]: Demographic disparity
is measured by comparing the model’s predicted positive rates

across different groups defined by a sensitive attribute s. For
each group g and class ¢, we compute:

PPR,.=P(Y =c|s=g).
The Demographic Disparity (DD) for sensitive attribute s
is defined as:

DD, = ma/x’PPRg’c —PPRy |
9,9 ;¢

b) Equalized Opportunity Deviation [24]: We evaluate
the model’s consistency in identifying true positive cases
across groups. For each group ¢ and class ¢, we compute the
true positive rate:

TPR.y = P(Y =c|Y =¢, s = g).
The Equalized Opportunity Deviation (EOD) for sensitive
attribute s is:
EOD, = max|TPR.4 — TPR. ¢
9:9'5¢
c) Sensitive Feature Influence: To understand how sen-
sitive attributes influence model predictions, we utilize SHAP
values [25]. For each sensitive attribute s, we compute:

1 n
SIS = 5Z’¢i7s’-
=1

Here ¢; s is the SHAP value of attribute s for sample ¢. Higher
SI; values indicate stronger dependence on the sensitive
attribute.

F. Data Subcard

The Data Subcard is the primary outcome of the eval-
uation, consolidating results from quality, fairness, privacy,
and protection assessments into a single, interpretable report.
Each criterion is represented by a numerical score, a color-
coded rating, explanatory remarks, and targeted improvement
suggestions. Scores are normalized to the interval [0, 1], where
higher values indicate stronger alignment with responsible
data practices. Fig. 2 (L) illustrates how the System Cards
framework employs this color scheme across all accountability
dimensions, while Fig. 2 (R) presents the Data Subcard
template, which applies the same scoring logic to dataset
evaluation.
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Basic Metadata
Dataset Name:

Version: [Version of the dataset]
Creation Date: [Date created]
Source: [Origin of the dataset]

[Name of the dataset]

Dataset Evaluation
Data Privacy (C211) :
Data Fairness (C212):
Data Quality (C213):
Data Protection (C411):

Score [X.XX] — Color: Remark
Score [X.XX] — Color: Remark
Score [X.XX] — Color: Remark
Score [X.XX] — Color: Remark

Improvement Suggestions
Data Privacy (C211):
Data Fairness (C212):
Data Quality (C213):
Data Protection (C411):

[Suggestion]
[Suggestion]
[Suggestion]
[Suggestion]

Fig. 2. System cards and their subcard implementation. (L) System Cards framework visualization [15] with four concentric circles; criteria shown as arcs
colored from red (worst) to green (best). (R) Data Subcard template for the four data assessment criteria.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The evaluation method was implemented in Python using
pandas for data handling, NumPy for numerical operations,
scikit-learn for model training and evaluation, and
Matplotlib and Seaborn for visualization. The pipeline
begins with direct data-level assessments of privacy, fairness,
quality, and protection, and compiles the results into a struc-
tured subcard that integrates quantitative metrics with concise
visual summaries. For model-based diagnostics, we adopted
XGBoost after preliminary comparisons showed it consis-
tently outperformed alternative algorithms in both predictive
accuracy and interpretability. The final output of the evaluation
is a structured card that visualizes the dataset status with color-
coded scores and explanatory remarks. Scoring follows the
Likert-style method defined in the System Cards framework:
t; > 0.80 appears in green to indicate strong alignment,
0.60 < t; < 0.80 appears in yellow to indicate adequacy
with room for improvement, and ¢; < 0.60 appears in red
to highlight deficiencies that compromise transparency, repro-
ducibility, or overall quality. These thresholds were calibrated
through pilot evaluations.

B. Datasets

We evaluated the subcard using two medical datasets
from the UCI Machine Learning Repository. First, the
Diabetes readmission dataset (https://archive.ics.uci.edu/ml/
datasets/Diabetes+) includes over 100K inpatient records with
demographic, laboratory, medication, and discharge details.
Second, the Heart disease dataset (https://archive.ics.uci.edu/
ml/datasets/Heart+Disease) comprises four sources in one
repository, with experiments typically focusing on the Cleve-
land subset of 303 records and 13 features. The UCI datasets
used here are suitable for prototyping, but are simpler than
real hospital datasets, which are inaccessible, poorly curated,
and fragmented across multiple data dictionaries.

C. Results

The privacy of the datasets was assessed by scanning
for protected health information; no direct identifiers were
detected in the Diabetes or Heart Disease files. Attribute-level
inspection then showed virtually no single-field risk: gender
and race values are never unique, and age is unique in only
0.3% of Heart Disease records. When common demographic
fields are combined, the chance of isolating an individual
increases. The mean re-identification probability is 0.08 in
Diabetes and 0.25 in Heart Disease, and each dataset contains
at least one record that can be singled out, as indicated
by a maximum risk of 1.0. Table I summarizes the risks
of re-identification, showing that most records are protected;
however, rare combinations of attributes pose an exposure risk.

TABLE I
PRIVACY RISK METRICS SUMMARIZING ATTRIBUTE-LEVEL UNIQUENESS
AND GROUP-LEVEL RE-IDENTIFICATION PROBABILITIES.

Metric Attribute | Diabetes | Heart Disease
Gender 0.000 0.000

Attribute-Level Risk | Race 0.000 0.000
Age 0.000 0.003
Mean 0.082 0.245

Group-Level Risk Std Dev 0.216 0.304
Max 1.000 1.000

Fairness assessment of the two medical datasets reveals
distinct demographic patterns. The outcome distributions in
the Heart Disease dataset reveal apparent disparities by gender
and age. Female records concentrate in the no disease category,
while male records are more evenly spread across all severity
levels, and patients older than sixty appear in every severity
class. The intersection matrix in Fig. 3 shows that young
women form the healthiest group, whereas older men experi-
ence the broadest range of outcomes. Complementary model-
based metrics provide a broader context for these findings.
Table II shows that age drives the largest demographic gap in
both datasets, with race and gender gaps minimal in Diabetes
but a pronounced gender effect in Heart. Shapley attributions
explain this contrast by showing that the Diabetes model
derives most of its predictive power from age. In contrast,



the Heart model relies more heavily on gender, mirroring the
distributional imbalances highlighted in the data-level analysis.

TABLE I
FAIRNESS METRICS AND SHAP-BASED INFLUENCE SCORES FOR
SENSITIVE ATTRIBUTES.

Metric Attribute | Diabetes Heart Disease
Race 0.112 -
Demographic Disparity Gender 0.011 0.521
Age 0.388 0.609
Race 0.360 -
Equalized Opportunity Gender 0.037 0.307
Age 0.434 0.182
Race 0.143 -
SHAP Sensitive Influence | Gender 0.221 0.671
Age 0.636 0.329
10 Outcome Rate by Age Group
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Fig. 3. Outcome distribution in the Heart Disease dataset by age (top) and
sex—age groups (bottom), showing disparities across demographic subgroups.

The quality of the datasets is evaluated using the metrics
defined in Section III (C). As Fig.4 shows, the Heart Disease
data are almost complete, with missing values concentrated in
fluoroscopy vessel count, thalassemia type, and ST-segment
slope. The label distribution is moderately skewed toward
the “Disease” class, while the “very Severe” class represents
fewer than 5% of the records. Cholesterol has the highest
outlier fraction, followed by resting blood pressure and vessel
count. Correlation analysis reveals only modest associations,
with the largest being a positive correlation between age and
vessel count. Fig.5 presents the class imbalance and anomaly
profile for Diabetes encounters. Readmissions marked “O”
exceed 50% of cases, whereas readmissions at 30 days account
for approximately one in ten. Outliers cluster in encounter-
frequency variables, with outpatient visits showing the highest
anomaly rate, and emergency and inpatient visits contributing
smaller shares. Laboratory tests, diagnoses, and medication
counts show fewer extremes.
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Fig. 4. Data quality metrics for the Heart Disease dataset, including

completeness, class imbalance, outlier scores, and feature correlation.
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Fig. 5. Class imbalance and outlier rates in the Diabetes dataset, with skewed
distributions and high anomaly concentrations in visit-related features.

D. Discussion

The evaluation results indicate that the datasets examined
here provide a strong foundation for analysis, with most
variables well-defined and complete. However, missing values
in attributes such as vessel count and thalassemia, imbalanced
outcome distributions, and outliers in clinical measures such
as cholesterol and blood pressure indicate areas that require
targeted preprocessing before model development. Fairness
assessments reveal measurable differences across demographic
groups, particularly in the Heart Disease dataset, where model
output shows a higher sensitivity to gender and age. Privacy
evaluations indicate the absence of direct identifiers and low
uniqueness at the attribute level. Yet, the combination of quasi-
identifiers still results in moderate re-identification risks in



some instances. These results suggest that, while the datasets
are broadly suitable for analytical use, addressing the identified
gaps will improve both reliability and trustworthiness.

V. CONCLUSION

We presented the Data Subcard, a locally executable method
that applies the System Cards framework to audit tabular
datasets across privacy, fairness, quality, and protection. The
approach integrates structured data-level checks with model-
based diagnostics, yielding interpretable artifacts that support
pre-model risk assessment. Empirical evidence from public
clinical datasets reveals that subcard surfaces, re-identification
exposure, demographic disparities, and data defects can erode
downstream validity, thereby improving dataset accountability
before model training and evaluation.

Future work will complete the protection dimension with
operational compliance checks and document verification,
refine scoring through calibration and uncertainty quantifica-
tion, and expand evaluation to longitudinal and heterogeneous
settings to strengthen external validity. We also plan to conduct
sensitivity analyses under alternative threat models and sub-
group definitions, as well as multi-institution benchmarking to
assess generalizability. Additionally, we aim to integrate the
framework more tightly with institutional governance work-
flows through a reproducible local package and programmatic
interfaces. These steps will advance the subcard from a practi-
cal auditing tool to a validated component of data stewardship
and assurance.
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