
1/26

Lecture 2: Recursion

Last updated: Feb 4, 2021

References:

� Algorithms, Jeff Erickson, Chapter 1

Recursion 2/26

The most important technique used in designing algorithms:

Reduction

Reducing a problem X to another problem Y means that using an
algorithm for Y as a blackbox or subroutine for problem X.

It's important to note that the correctness of algorithm for problem
X cannot depend on how the algorithm for problem Y works.

Example: the peasant multiplication algorithm reduces the multi-
plication problem to three simpler problems: addition, halving, and
parity checking (which we know how to solve).

Recursion 3/26

Recursion is a particularly powerful kind of reduction:

� If the given instance of the problem can be solved directly (e.g.
it's really small), solve it directly;

� Otherwise, reduce it to one or more simpler instances of the
same problem.

The most important thing to note about recursion is that, we can
solve the simpler instances, by calling the algorithm itself!

The trick is to not go into the details of the solution of the sub-
problem; rather, consider it somebody else's problem and it's solved.

Stop thinking about the solution of the subproblem!

Example: Peasant Multiply 4/26

peasantmultiply(x ; y):
if x =0 #base case

return 0
else

x 0 floor(x /2)
y 0 y + y
prod peasantmutiply(x '; y ') #recurse!
if x is odd

prod prod+y
return prod

Example: Tower of Hanoi 5/26

� Objective: move 64 disks from 1st peg to 3rd peg

� Rule: bigger disk must always be below smaller ones

Figure 1. Tower of Hanoi. Image source: Wikipedia

First step: generalize the problem size from 64 to n!

More general problem might be easier to solve than an instance!

Example: Tower of Hanoi, #2 6/26

Rephrased problem:

Move n disks from one peg to another, using a 3rd peg as occasional
placeholder, without placing bigger disk on top of smaller ones.

The secret to solve this problem is

to reduce the problem size, rather than solve it at once!

OK, so now instead of moving a whole n disks, how about we just
move one (say, the biggest one, because everything can be put on
top the biggest one).

Example: Tower of Hanoi, #3 7/26

Recursive solution steps: (suppose we can solve size n¡ 1 problem)

� Move the top n¡ 1 disks to another peg (recurse)

� move the biggest disk to 3rd peg

� move the n¡ 1 disks to the 3rd peg (recurse)

Example: Tower of Hanoi, #4 8/26

Now, if only we know how to solve the size n¡ 1 problem. . .

STOP! Don't go into the subproblem solution.

It's somebody else's problem (maybe yours, but not now).

The only missing part is the base case, which is trivial: when there
is only one disk, we surely know how to move 1 disk from one peg
to another, without violating the rule . . .

In fact, we can reduce the base case even further: moving 0 disk.
We do nothing, which is the correct thing to do.

Oftentimes, using a ridiculously simple base case leads to the most
simple & elegant algorithm, with least edges cases to handle.

Example: Tower of Hanoi, #5 9/26

The formal algorithm:

Hanoi(n, src, dst, tmp):
if n>0

Hanoi(n-1, src, tmp, dst) #recurse!
move disk n from src!dst
Hanoi(n-1, tmp, dst, src) #recurse!

else #base case
do nothing

Do you see how easy to implement, and reason about the correctness
& time complexity of recursive algorithm?

T (n)= 2T (n¡ 1)+1;T (0)=0) T (n)= 2n¡ 1

T (64)� 18.5� 1018

Hanoi Tower: Real Code 10/26

OK let's actually implement the code and see how it works.

#include <stdio.h>

void hanoi(int n, int src, int dst, int tmp)
{

if (n==0) return;
hanoi(n-1, src, tmp, dst);
printf("disk %d: peg %d -> %d\n", n, src, dst);
hanoi(n-1, tmp, dst, src);

}

int main()
{

hanoi(3,0,2,1);
}

Mergesort 11/26

Let's review mergesort algorithm. It's recursive:

1. Divide the array into two subarrays of equal size

2. Recursively mergesort the two subarrays

3. Merge the two sorted subarrays.

The first step is simple. The second step is just two recursive calls.
The third step is non-trivial.

The correctness of the mergesort algorithm depends on the correct
merge (3rd step).

The merge() algorithm 12/26

The merge algorithm takes two sorted arrays, and merge them
into a single sorted array. We can recurse! Remember in designing
recursion, we try to reduce problem, rather than solving it directly.
In merge, we consider the last element of result C.

merge(A[1..m],B[1..n],C[1..(m+n)]): # merge A,B into C
if m=0 or n=0, do the obvious thing. #base case
if A[m] > B[n]:

C[m+n] A[m]
merge(A[1..m-1],B[1..n], C[1..(m+n-1)] #recurse

else
C[m+n] B[n]
merge(A[1..m],B[1..n-1], C[1..(m+n-1)] #recurse

Proof of correctness of merge() 13/26

Proof of the merge algorithm:

1. The base cases. It's trivial to see that the base case is correct.

2. Induction. Assuming that, merge() can merge two sorted array
into a single sorted array with size up to m+n-1, we show that
merge() also works for size m+n.

i. C[m+n] is larger than all C[1..(m+n-1)]

ii. C[1..(m+n-1)] will be sorted (induction hypothesis)

iii. C[1..(m+n)] merges A[1..m] and B[1..n].

By proof of induction, we show that the merge() algorithm works
for any input of any size. Similarly, we can prove the correctness of
mergesort() with induction on the problem size n.

Mergesort() time complexity 14/26

The time complexity of merge() is

S(m+ n)= 1+S(m+ n¡ 1); S(0)=0 (1)

We solve it: S(n)= n (how? The best approach is to take a guess,
and prove it by induction!)

The time complexity of mergesort() is

T (n)=T (bn/2c)+T (dn/2e)|| |{z}} }
recursion on two subarrays

+ n||{z}}
merge()

(2)

How to solve? Again, we can take a guess of T (n) = n log n and
prove it by induction. But how do we guess? By looking at recursion
tree. (later)

Design Pattern 15/26

Divide and Conquer:

1. Divide the problem into several indepenent smaller instances
of the same problem.

2. Delegate each smaller instances to the recursion fairy (the
blackbox solver, subroutine)

3. Combine the solutions for the smaller instances into the solu-
tion for the given instance.

If the problem is of sufficient trivial size, we directly solve by brute
force, in constant time.

Proof of the correctness of D&C recursion is based on induction.

Analysis of the complexity is based on recurrence equation.

Recursion Tree: Solving Reccurence 16/26

How to solve recurrence equation like this:

T (n)= r T (n/c)+ f (n) (3)

Recursion Tree 17/26

Now the cost of the whole tree is the summation of all the levels:

T (n)=
X
i=0

L

r i � f (n/c i)

L= logcn is the number of levels of the tree. We can assume T (1)=
1. How many leaves in the tree? rL= r logcn= nlogcr.

Three cases of level-by-level series (
P

).

1. Decreasing: if the series decays exponentially, then T (n) =
�(f (n))

2. Equal: we have T (n)=O(L f (n))=�(f (n) log n)

3. Increasing: if the series grows exponentially, then T (n)=�(nlogcr)

This level-by-level analysis works not only for the regular recurrence
form:

T (n)= rT (n/c)+ f (n)

It also works (with some adaptions) for irregular ones such as:

T (n)=T (n/a)+T (n/b)+ f (n)

We can expand the recursion tree and observe the level-by-level
series:

� Decreasing exponentially: cost dominated by first level;
T (n)=�(f (n))

� Equal: T (n)=�(f (n) log n)

� Increasing exponentially: (different from regular case!) We
know that T (n)=n�, we need to determine �. How? Substitute
it back to recurrence and solve for �.

Example: Recurrence

T (n)=T (3n/4)+T (2n/3)+ n2 (4)

The level-by-level series are:

n2; 145n2/144; (145n)2/1442; :::

This is an exponentially increasing (geometric) series, with ratio
145/144. The third case (increasing) applies. Suppose: T (n)=n�

Substitute it back to the recurrence (4) gives us equation:

n�=(3n/4)�+(2n/3)�+ n2

We must have �> 2 (why? look at the series). Dividing both sides
by n� and taking n!1, we have equation:

1= (3/4)�+(2/3)�

This solves to �� 2.0203, which is a root to the previous equation.

(You can solve it via wolframalpha: http://bit.ly/39P3D7i)

So the solution is:

T (n)=�(n2.0203)

Mergesort recursion tree 18/26

In mergesort(), f (n)=n, c= r =2, the series is equal in every level,
so the second case:

T (n)=O(f (n) log n)=O(n log n)

Exercises.

1. T (n)= 2T (n/3)+ 1

2. T (n)=T (n/3)+T (2n/3)+1

3. T (n)= 3T (n¡ 1)+2

QuickSort 19/26

Similar to MergeSort, QuickSort is another recursive sorting algo-
rithm, and it's one of the fastest and most practical.

Different from MergeSort, QuickSort partitions the array into a
smaller (value) array, and a bigger (value) array, and a pivot.

Once the two sub-arrays are sorted, there is no need to merge.

Figure 2.

Analysis

Similar to MergeSort, the time complexity of QuickSort is deter-
mined by a recurrence equation:

T (n)=T (r ¡ 1)+T (n¡ r)+O(n) (5)

where r is the rank of pivot, also the size of the smaller array. How
does r affect T (n)?

If r is very small like 2, or very large?

If r is exactly half of n, r = bn/2c?

What if r = bn/3c?

What if r = bn/10c?

Fast Multiplication 20/26

We have seen two algorithms for multiplying two n-digits number in O(n2) time:
grade-school lattice algorithm, and Egyption peasant algorithm.

Can we get a bit more efficient algorithm by splitting the digit arrays into half,
and exploit the following identity:

(10ma+ b)(10mc + d)= 102mac + 10m(bc + ad)+ bd

SplitMultiply(x ; y ; n):
if n=1 return x � y
m dn/2e
a bx /10mc; b x mod 10m

c by /10mc; d y mod 10m

e SplitMultiply(a; c ;m); f SplitMultiply(b; d ;m);
g SplitMultiply(b; c ;m); h SplitMultiply(a; d ;m);
return 102me+ 10m(g + h)+ f

SplitMultiply analysis 21/26

Correctness is easy to show using induction. The run time is

T (n)= 4T (n/2)+O(n)

This results in an increasing geometric series, which implies:

T (n)=O(nlog24)=O(n2)

This did not improve on the efficiency of previous two algorithms.
The culprit is the 4 subproblems (multiplication). If we can reduce...

ac + bd ¡ (a¡ b)(c ¡ d)= bc+ad

that to 3?

FastMultiply 22/26

FastMultiply(x ; y ; n):
if n=1 return x � y
m dn/2e
a bx /10mc; b x mod 10m

c by /10mc; d y mod 10m

e FastMultiply(a; c ;m);
f FastMultiply(b; d ;m);
g FastMultiply(a¡ b; c ¡ d ;m);
return 102me+ 10m(e+ f ¡ g)+ f

OK, now the time complexity is

T (n)= 3T (n/2)+O(n)

which is still increasing series, and gives us: T (n) = O(nlog23) �
=O(n1.58496), a significant improvement!

Expontiation 23/26

Given a number a and positive integer n, compute an

Naive algorithm that just perform n ¡ 1 multiplications will cost
linear time.

Is there a faster algorithm?

More Hanoi Tower Variants 24/26

Variant of Hanoi Tower: move n disks from peg 0 to peg 2, with the
restriction that you cannot move disk between peg 1 and 2; every
move must come from or to peg 0.

Hanoi1(n,src,dst,tmp): #peg 0->1, 0->2
Hanoi1(n-1,src,tmp,dst)
move disk n to dst
Hanoi2(n-1,tmp,src,tmp)
Hanoi1(n-1,src,dst,tmp)

Hanoi2(n,src,dst,tmp): #peg 1->0, 2->0
Hanoi2(n-1,src,dst,tmp)
Hanoi1(n-1,dst,tmp,src)
move disk n to dst
Hanoi2(n-1,tmp,dst,src)

Recurrence? Time complexity?

Example: Tiling Problem 25/26

Ex 26. Suppose you are given a 2n�2n checkerboard with one (arbitrarily chosen)
square removed. Describe and analyze an algorithm to compute a tiling of the
board by without gaps or overlaps by L-shaped tiles, each composed of 3 squares.
Your input is the integer n and two n-bit integers representing the row and column
of the missing square. The output is a list of the positions and orientations of
(4n¡ 1)/3 tiles. Your algorithm should run in O(4n) time. [Hint: First prove that
such a tiling always exists.]

Example: Rotated Sorted Array 26/26

