
1/17

Lecture 4 Dynamic Programming

Last update: Jan 19, 2021

References:

� Algorithms, Jeff Erickson, Chapter 3.

� Algorithms, Gopal Pandurangan, Chapter 6.

Dynamic Programming 2/17

Backtracking is incredible powerful in solving all kinds of hard prob-
lems, but it can often be very slow; usually exponential.

Example: Fibonacci numbers is defined as recurrence:

Fn=

8>><>>:
0 if n=0

1 if n=1

Fn¡1+Fn¡2 otherwise

A direct translation into recursive program to compute Fibonacci
number is

RecFib(n):
if n=0 return 0

if n=1 return 1
return RecFib(n-1) + RecFib(n-2)

Fibonacci Number 3/17

The recursive program has horrible time complexity. How bad? Let's
try to compute. Denote T (n) as the time complexity of computing
RecFib(n). Based on the recursion, we have the recurrence:

T (n)=T (n¡ 1)+T (n¡ 2)+1; T (0)=T (1)=1

Solving this recurrence, we get

T (n)=O(�n); �=
5
p

+1

2
� 1.618

So the RecFib(n) program runs at exponential time complexity.

RecFib Recursion Tree 4/17

Intuitively, why RecFib() runs exponentially slow. Problem: redun-
dant computation! How about memorize the intermediate computa-
tion result to avoid recomputation?

Fib: Memoization 5/17

To optimize the performance of RecFib, we can memorize the inter-
mediate Fn into some kind of cache, and look it up when we need
it again.

MemFib(n):
if n=0 jj n=1

return n
if F[n] is undefined

F[n] MemFib(n-1)+MemFib(n-2)
return F[n]

How much does it improve upon RecFib()? Assuming accessing F[n]
takes constant time, then at most n additions will be performed (we
never recompute).

So the time complexity is O(n), a huge improvement.

MemFib Recursion Tree 6/17

Dynamic Programming 7/17

Once we see how the array F[1..n] is filled, we can intentionally
fill the array in order, instead of relying on the recursion.

IterFib(n):
F[0] 0
F[1] 1
for i 1 to n

F[i] F[i-1] + F[i-2]
return F[n]

This is a dynamic programming (DP) algorithm: basically recursion,
but with intentional evaluation order, usually filling out a table sys-
tematically.

Text Segmentation Again 8/17

In backtracking lecture we have developed recursive algorithm to
solve the text segmentation problem, which has worst case time
complexity of O(2n). Let's review the recursion. The key idea is to
define:

Splittable(i) is true iff A[i..n] can be segmented into words.

Following this definition, we have the recursion:

Splittable(i)=

(
true if i > nW

j=i
n (IsWord(i ; j)^ Splittable(j +1)) otherwise

where IsWord(i ; j) is short for IsWord(A[i..j]).

The directly translated recursive algorithm has worst case time com-
plexity of O(2n).

But note that,

� there are only n possible distinct way of calling Splittable(i);

� there are only n2 possible distinct way of calling IsWord(i ; j)

(All the work is actually done in IsWord()).

How come we have worst case time complexity of O(2n)? We must
be calling the same Splittable(i) (and as a result, the same IsWord(i ;
j)) over and over again.

What if we save the results of computed Splittable(i) in a table, so
that we can do lookup instead of recomputation?

Let's make a table SplitTable[1..n+1].Each SplitTable[i] only
depends on the elements SplitTable[j] with j > i .

So we can fill up the table from right to left, or end to beginning.

FastSplittable(A[1::n]):
SplitTable[n+1] true
for i n down to 1

SplitTable[i] false
for j i to n

if IsWord(i ; j) and SplitTable[j +1]
SplitTable[i] true

return SplitTable[1]

Now what's the time complexity?

To summarize, we did achieve tremendous speedup over the naive
recursive algorithm, by intentionally evaluate the recursive calls
in-order.

We turn recursive function calls into filling tables!

Let's see how the implemented TextSegment works.

I've taken the text of the story Cinderalla and remove all space, os
it looks something like:

SnowWhiteandtheSevenDwarfsOnceuponatimeinagreat-
castleaPrincesdaughtergrewuphappyandcontentedinspiteofajeal-
ousstepmother . . .

In total 10647 characters.

� Backtracking takes 8442 milliseconds

� DP takes 29 milliseconds

See code and associated dictionary/text files at course webpage.

The Pattern: Smart Recursion 9/17

Dynamic programming is not about filling in tables; it's about
smart recursion!

(although it does end up being filling tables . . .)

How to develop dynamic programming algorithms? Two steps:

1. Formulate the problem recursively. Write down a recur-
sive formula of the whole problem, in terms of the answers of
smaller sub-problems. This is the hard part

i. Specification. Describe the problem that you want to solve
in coherent and precise English�now how to solve, but what
to solve; without this step, it's impossible to determine the
correctness of your solution

ii. Solution. Give a clear recursive formula for the whole
problem in terms of the answers to smaller instances of the
exact same problem.

2. Build solutions to your recurrence from the bottom
up. Write an algorithm that starts with base case, and works
its way up to final solution, by considering the intermediate sub-
problems in correct order.

i. Identify the subproblems. How can the recursive algo-
rithms call itself, with what parameters?

ii. Choose a memoization data structure. Usually a ta-
ble (multi-dimensional array) that contains the solutions to
every sub-problems identified.

iii. Find a good evaluation order. Order the subproblems
so that each one comes after all the subproblems it depends
on.

iv. Analyze space and running time.

v. Write down the algorithm.

Longest Increasing Subsequence 10/17

We consider another problem we solved via backtracking, the Longest
Increasing Subsequence (LIS) problem.

Problem. Given an array of numbers A[1: : :n], compute the length of its
longest increasing subsequence.

Our backtracking solution is based on the recursion:

L(i ; j) denotes the length of LIS of array A[j : : :n], with every
element bigger than A[i].

L(i ; j)=

8>><>>:
0 if j > n
L(i ; j +1) if A[i]>A[j]
max fL(i ; j +1); 1+L(j ; j +1)g otherwise

Naive recursion algorithm has worst case time complexity of O(2n),
but note that we have only n2 distinct L(i ; j) to begin with.

We can fillup the L(i ; j) table in some order. What order do we
follow? We look at the dependencies. It seems L(i ; j) depends on
possibly L(i ; j +1);L(j ; j +1). To illustrate:

From the left figure, we immediately see that all the dependencies
are on the right. So if we fill the table from right to left, column by
column, we would satisfy all the dependencies.

To put it into algorithm:

FastLIS(A[1::n]):
A[0] ¡1
for i 0 to n

L[i ; n+1] 0
for j n down to 1

for i 0 to j ¡ 1
keep 1+L[j ; j +1]
skip L[i ; j +1]
if A[i]>A[j]

L[i ; j] skip
else

L[i ; j] max fkeep; skipg
return L[0; 1]

What's the time/space complexity?

That's not the only possible recursion or solution. Let's consider the
following definition:

L[i] denotes the length of Longest Increasing Subsequence (LIS)
of A[i : : :n] that starts with A[i]

Let's try reducing the problem of L[i]. By definition, the LIS starts
with A[i]. What about the rest of the sequence? The rest must
starts with some A[j] (which is bigger than A[i]), and must be LIS
of A[j : : :n] (otherwise, A[i]+ rest wouldn't be longest). So we have
the following recursion:

L[i] = 1+max fL[j]: j > i and A[j]>A[i]g

Now we only need to fill a one-dimensional array L[i]. The order is
simple: we just fill it from right to left.

OK, let's consider a variant. What if we want to know the the
Longest Increasing Subsquence itself?

Our recursion array L[i] only encodes the length. We need another
data structure to record the subsequence itself.

We need somekind of breadcrumb to signal path toward optimal
length, so that we can trace back the subsequence itself.

Let's introduce array B[i], which gives us:

B[i] = argmaxjfL[j]: j > i and A[j]>A[i]g

basically B[i] records the optimal j in the recursion. From B[i] we can
traceback the optimal solution corresponding to the length in L[1]:

Let's look at an example how this works.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A[i] 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9
T[i]
B[i]

Edit Distance 11/17

The edit distance between two strings is the minimum number
of letter insertion, letter deletion, and letter substitution required to
transform one string into the other.

E.g., the edit distance between FOOD and MONEY is at most 4:

FOOD ! MOOD ! MON^D ! MONED ! MONEY

Four steps (subst, subst, insert, and subst) transforms FOOD to
MONEY. It's sometimes useful to align the two words:

F O O D

M O N E Y

Different letters in the same column means subst; gap in the first
word means insertion; gap in second means deletion.

It's easy to see in this case, no less than 4 steps are needed, so the
edit distance between FOOD and MONEY is 4.

In longer string pairs, it's not obvious what the edit distance is. For
example:

A L G O R I T H M

A L T R U I S T I C

This has 6 steps. Is this the minimum number of transformation
that is needed? It's hard to say. Let's come up with an algorithm
to tell us the edit distance (the minimum number of transformation
needed to between any two strings).

How to approach this problem (finding optimal solution)? Let's try
reduction, which means we take a small step and defer to a smaller
problem.

Suppose the gap representation (last page) represents the shortest
edit distance, then we have:

optimal substructure: if we remove the last column, then the
remaining columns (prefixes) must represent the shortest edit dis-
tance between them too.

It can be easily proved by contradiction; namely, if there are shorted
edit distance representation for the prefixes, we add the last column,
then we would get a shorter edit distance than we have. This con-
tradicts the assumption.

If we can figure out what to do with the last column, then we can
let the �recursion fairy� to solve the prefixes. Recursion!

Define E [i ; j]: the edit distance between A[1: : :i] and B[1: : : j]:

We want to compute E [m;n], for the given strings A[1:::m];B[1:::n].

We consider the last column in the gap representation of the shortest
edit distance. There are three possibilities:

� Insertion:

ALGORITHM
ALTRUISTI C

in which case: E [i ; j] =E [i ; j ¡ 1]+ 1

� Deletion

ALGORITH M
ALTRUISTIC

in which case E [i ; j] =E [i ¡ 1; j] + 1

� Substitution:

ALGORITH M
ALTRUISTI C

in which case E [i ; j] =E [i ¡ 1; j ¡ 1]+ 1

(or E [i ; j] =E [i ¡ 1; j ¡ 1]; if the last characters are the same)

The base cases are simple: E [0; j] = j ;E [i ; 0]= i .

To summarize the Edit function has the recurrence:

E [i ; j] =min

8>><>>:
E [i ; j ¡ 1]+ 1

E [i ; j ¡ 1]+ 1
E [i ¡ 1; j ¡ 1]+ [A[i] =/ B[j]]

Let's turn this recursion into dynamic program, using our mechanical
recipe.

� Subproblem: each recursive subproblem is identified by two
indices 06 i 6m; 06 j 6 n.

� Memoization: we can put all possible E [i ; j] into a two dimen-
sional array E [0: : :m; 0: : :n]:

� Dependencies & evaluation order:

each E [i ; j] depends on its north, west, and north-west neigh-
bors. So we can evaluate left to right, top to bottom.

� Space and Time: Space and time complexity is O(mn)

The memoization table for the input string ALGORITHM and
ALRUISTIC is shown below:

Arrow: operations. Horizontal=dele-
tion, vertical=insertion,
diagonal=substitution.

Bold red arrow is free substitution.

Any path from the top-left corner to
bottom-right corner is a optimal edit
sequence.

How to reconstruct?

Subset Sum 12/17

We developed recursive algorithm for subset sum problem, which
can be formulated like this:

S [i ; t]=true iff some subset of A[i ::n] sums to t

We need to compute S [i ; t]. This function satisfies the following
recurrence:

S [i ; t] =

8>>>>>><>>>>>>:
true if t =0
false if i > n
S [i +1; t] if t <X [i]
S [i +1; t]_S [i +1; t ¡A[i]] otherwise

Let's follow the mechanical recipe to turn this recursion into dynamic
program:

� Subproblem:

� Data structure:

� Dependency & Evaluation order

� Space and Time

Story: Text Compression for Bar Codes 13/17

(Algorithm Design Manual, Skiener, Chapter 8.9)

Symbol Technology invents a new bar code scheme PDF-417 that
can encode around 1kb text, and it looks something like this:

Figure 1. Gettysburg Address in PDF-417

To maximize the texts stored in the bar code, Symbol Techology
groups characters into four modes, and in each mode only 5 bits
are needed to encode a character. To switch to a different mode, a
5 bits command is needed to change the mode. There are two mode
change command: shift and latch. Shift changes mode temporarily
for the next character only, and will immediately change back to
original mode. Latch will permanently change mode, until next mode
command.

Now, because there are two mode change command, there are mul-
tiple possible encodings for the same text string. The problem is

What's the shortest encoding for a given text string? In other
words, the least amount of mode change commands.

Some heuristics and greedy algorithm: if a single punctuation is
between text, then maybe shift is the best; otherwise maybe latch
is better.

Can we find the optimal encoding?

We could try backtracking to emumerate all encodings, but that
costs exponential.

Is it possible to devise a dynamic programming algorithm then?

The key insight is the definition:

Let M[i ; j];16 j64;16 i6n denote the shortest encoding of first
i characters ending in mode j

Coming up with the �first i characters� is common in dynamic pro-
graming, but the additional constraint �ending in mode j� is creative,
and necessary for recursion.

Following the definition, we can easily find the recurrence:

M[i ; j] = min
16m64

fM[i ¡ 1;m] + c(Si ;m; j)g

where c(Si ;m; j) is the cost of encoding the i-th character Si with
mode changing from m to j.

This solves the optimal encoding in linear time! It turns out that the
optimal encoding saves on average 8% space compared to greedy.

Parsing Context-Free Grammar 14/17

Problem: given a string, parse it into a parse tree according to a
given context-free grammar.

Context free grammar and parse tree:

each rule/production defines an interpretation for the named symbol
on the left, as a sequence of symbols on the right. Symbols could
be terminal or non-terminal.

Some simplifying assumptions:

� the string is length n and grammar is constant size

� the string is already tokenized; i.e. each character is a token. (so
it has n tokens)

� Each rule is of Chomsky normal form: either two nonterminals
X!YZ , or one terminal symbol X!�.

Stop and think. How to construct the parse tree? Let's try recur-
sion.

Key: The root of parse tree (X!YZ) splits S at position i , then
Y must generate the left substring S [1: : :i], and Z must generate
right substring S [i +1: : :n].

This motivates the following definition:

BooleanM[i ; j ; X] is true iff substring S [i : : : j] is generated by
nonterminal X .

Immediately following this definition we find the recurrence:

M[i ; j ;X] =
_

(X!YZ)2G

 _
i=k

j

M[i ; k ;Y]M[k +1; j ;Z]

!

Space complexity?

Time complexity?

Parsimonius Parserization. Programs often contain minor syntax
errors. Given context free grammar G and string S , find the min-
imal number of character substitutions to make S acceptable by
grammer G .

This seems quite hard. However, just by changing the definition of
the M[i ; j ;X] a bit:

Integer N[i ; j ; X] is minimum number of changes to substring
S [i : : : j] such that it is generated by nonterminal X .

The recurrence?

N[i ; j ;X] = min
(X!YZ)2G

�
min
i=k

j

N[i ; k ;Y] +N[k +1; j ;Z]
�

Regular Expression Matching 15/17

(Leetcode 10) Given an input string (s) and a pattern (p), implement
regular expression matching with support for '.' and '*' where:

� '.' Matches any single character.

� '*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).
E.g.

IIIIIIIIInnnnnnnnnpppppppppuuuuuuuuuttttttttt:::::::::
s = "aab", p = "c*a*b"
OOOOOOOOOuuuuuuuuutttttttttpppppppppuuuuuuuuuttttttttt:::::::::
true
EEEEEEEEExxxxxxxxxppppppppplllllllllaaaaaaaaannnnnnnnnaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn::::::::: c can be repeated 0 times, a can be
repeated 1 time. Therefore, it matches "aab".

At this point, seeing the left-right structure we should immediately
think in terms of dynamic programming, and set out to find a recur-
rence. First try:

Let T [i ; j] denotes whether substring s[1 : : : i] matches pattern
p[1: : : j].

Now reducing the problem T [i ; j] to a smaller one. Look at the
last character of string, s[i]. For T [i ; j] to be true, there are three
scenarios:

1. T [i ¡ 1; j ¡ 1]= true, and s[i] matches p[j].

2. T [i ; j ¡ 1]= true, and p[j] is some * which matches empty.

3. T [i ¡ 1; j]= true, and p[j] continues to match s[i]. (how do we
check this?)

What are the base cases?

Exercise: Wild Card Matching (leetcode 44)

Given an input string (s) and a pattern (p), implement wildcard
pattern matching with support for '?' and '*' where:

� '?' Matches any single character.

� '*' Matches any sequence of characters (including the empty
sequence).

The matching should cover the entire input string (not partial).

The Ordered Partition Problem 16/17

Problem: integer partition without rearragement
Input: An arrangement S of non-negative numbers s1; : : : ; sn and
integer k
Output: Partition S into k or fewer ranges, to minimize the max-
imum sum over all the ranges, without reordering any of the numbers.

How to solve? If we think in terms of recursion, then we can look
at the last partition.

Matrix Chain Multiplication 17/17

Problem: Given a chain of matrices: (A1;A2; : : : ;An) where matrix
Ai has dimension pi¡1� pi . We are interested in finding the fastest
way to compute the product of the chain of matrices: A1A2: : :An:

� Find a way to parenthesize the product A1A2: : :An to minimize
the number of multiplication.

� Two matrix AiAi+1 costs pi¡1pipi+1 number of multiplications.

� Matrix multiplication is associative: (AB)C =A (BC).

Example: three matrices: A1,A2;A3 are of sizes 10x1000, 1000x100,
100x200 respectively. What's the costs of two ways of parenthesizing
them?

Backtracking solution: how many ways to parenthesize n matrices?
It's at least exponential. In fact, assume that P(k) denotes the
number of different ways to parenthesize product of k matrices, then

P(n)=
X
k=1

n¡1

P(k)P(n¡ k)

We don't know exactly how to solve this recurrence, but we can
easily show that it's at least exponentional (by mathematical induc-
tion)

P(n)=
(2n)

BestMatrixChainMulti(P[1::n]):
for k 1 to n¡ 1

B1 BestMatrixChainMulti(P[1: : :k])
B2 BestMatrixChainMulti(P[k +1: : :n])
Ck B1+B2+ p0 pk pn

return the smallest Ck

This is a recursive algorithm based on divide and conquer. Can
we optimize it with dynamic programming? Do you note a lot of
redundant computations?

