
NP-Hardness

References:

• Algorithms, Jeff Erickson, Chapter 12

• The Algorithm Design Manual, Chapter 9

CircuitSat 2/10

Here's a simple looking problem: circuit satisfiability.

Given a boolean circuit (consist of inputs and an output,
AND, OR, NOT gates), determine whether there's a set of
inputs that make the circuit output TRUE, or there isn't
such inputs.

It is not too hard to solve the presented problem in figure,
but how to solve it in general, for any given circuits?

For a given set of inputs {x1, . . . , xn} it's easy to compute the
output (how?). We can test all the possible inputs (in total 2n

distinct ones) and see if one of them can make output TRUE.

It turns out that noboby has come up a way of solving this
problem faster than basically trying all 2n possible inputs,
which would be exponential time complexity.

This is a hard problem!

P vs. NP 3/10

Efficient algorithm: polynomial time O (n c), where c is a con-
stant, and n is the problem size.

Problems like the CircuitSat make people think what kind of
problems admit efficient algorithm.

We consider decision problems, whose outputs are boolean
yes/no. We classify them into three categories:

• P: easy problem; can be solved in polynomial time

• NP: maybe hard, but if the answer is YES, then there is
a proof of this fact that can be checked in polynomial
time. E.g. CircuitSat.

• co-NP: maybe hard, we can check NO answer in polyno-
mial time.

CircuitSat belongs to NP. It's widely believed that it does
not belong to P (but it's an open question).

From the definition, PB---NP, and also PB---co-NP.

P vs. NP problem: are P and NP really different?

If you can prove this, you can claim $1,000,000 from the Clay
Mathematics Institute.

Question 1: Why only consider decision problems though?

Most algorithms can be phrased as decision problems which
captures the essence of the computation. Example:

The Max Independent Set (MaxIndSet) problem: Given a
graph, what's the size of largest independent set of nodes?
Independent set of nodes do not have edges between them.

It can be rephrased as decision problem:

Given a graph G and integer k, does there exist an indepen-
dent set of size k?

If we can solve this yes/no problem efficiently, we can use
binary search to find the optimal solution to general TSP.

Question 2: Why study NP-completeness?

Well, suppose your boss asks you to solve a problem but you
fail to find a fast algorithm.

What can you say?

1. I am dumb. . . (your job might be in danger)

2. There is NO fast algorithm! (How do you know? Do you
have a lower bound?)

3. I can't solve it, but nobody else can either . . . (by NP-
completeness reduction, intellectual gynmastics).

Obviously, answer 3 makes you look smarter. We will study
how to do NP-completeness reduction, which will help us spot
and prove hardness of algorithmic problems.

NP-hard/NP-complete 4/10

A problem HHHHHHis NP-hard if a polynomial algorithm of HHHHHHwould
imply a polynomial time algorithm for every problem in NP.

HHHHHHis NP-hard= =‹ = == == =›if HHHHHHcan be solved in polyn time, then P=NP.

By this definition, NP-hard problems are at least as hard as
NP.

If a problem is NP-complete, if it's both NP-hard and NP. So
NP-complete problems are the hardest in NP.

(we could probably call NP by NP-easy, in contrast to NP-
hard).

This is how we think they look like.

There are thousands of problems in the NP-complete set.
Solving one of them implies solving all of them. So far not a
single one is solved, which gives strong suggestion that NP≠P.

NP-hard problem are pretty strong; do we have any problem
that is NP-hard?

Well, we just discussed one: CircuitSat is NP-hard. This is
a theorem by Cook in 1971 and Levin in 1973, which is by no
means trivial to prove.

The Cook-Levin Theorem: Circuit satisfiability is NP-hard.

Reductions and SAT 5/10

We have one problem that is shown to be NP-hard so far.

From there, showing other problems to be NP-hard is much
easier:

Just reduce one of the NP-hard problem (e.g., CircuitSat)
to your problem. (not the other way around!)

(alternatively, ask yourself, if I can solve my problem effi-
ciently, can it be used to solve on of the NP-hard problems
efficiently?)

This technique is called reduction.

As an example, let's say we face a new problem: formula
satisfiability problem (SAT). The input to SAT is a boolean
formula like:

a (b (c (d̄ = =‹= =› ((b (c̄) ((ā = =› d) ((c ≠ a (b))

the question is: isthere a set of boolean values for the vari-
ables to make the formula TRUE.
To prove that SAT is NP-hard, we reduce one NP-hard problem
to it. We only know one NP-hard problem, that is CircuitSat.
So our plan is: suppose we can solve arbitrary SAT problem
efficiently. How can we solve CircuitSat efficiently, using our
magic, fast SAT solver, as black-box/subroutine?

We start with an arbitrary boolean circuit. We turn the
circuit K into a boolean formula � as follows:

Each inner wire is assigned a variable y i , output is assigned z.
Each gate becomes an equation. Then AND them altogether.

Claim: the circuit is satisfiable iff the boolean formula is
satisfiable.

=>: Given a set of inputs that satisfy the circuit, assign vari-
ables according the gates. The formula satisfies.
<=: given a satisfied formula, ignoring y i and z. x i are the
inputs to the circuit that satisfies. --

- -

Additionally we must prove the transformation of the problem
is efficient: it can be done in O (n) time, and the resulting
problem has (essentially) the same input size (up to con-
stant time larger).

3SAT 6/10

A special case of SAT which is very useful in proving NP-
hardness is called 3SAT.

A boolean formula is conjunctive normal form (CNF) if it's con-
junction (and) of several clauses , each of which is the disjunc-
tion (or) of several literals , each of which is either a variable
of a negated variable.

(a (b (c)
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {3-literalclause

) (b (c̄ (d̄)) (ā (c (d)) (b̄ (c (d̄)

If each clause has exactly 3 literals, then it's call 3CNF.
This appears to a special case of SAT problem. Is it actually
easier?

It turns our it's as hard as SAT (they are equivalent).
It's easier to prove that 3SAT problem is NP-hard, by again,
reducing CircuitSat problem to 3SAT.
Plan: reducing arbitrary circuit K into equivalent 3CNF for-
mulas! Four steps:
1. Make sure every AND and OR gate in K has exactly two

inputs. If not, replacing multi-input AND/OR gate with
binary tree of more gates. K - -› K'

2. Transcribe K' into boolean formulat �1 with one clause
per gate: (the same as CircuitSat->SAT)

3. Replace each clause in �1 with a CNF formula: �1 - >�2

a = b) c - -› (a (b̄ (c̄)) (ā (b)) (ā (c)
a = b (c - -› (ā (b (c)) (a (b̄)) (a (c̄)

a = b̄ - -› (a (b)) (ā (b̄)

4. Replace each clause in �2 with a 3CNF formula �3

a) b - -› (a (b (x)) (a (b (x̄)
z - -› (z (x (y)) (z (x̄ (y)) (z (x (ȳ)) (z (x̄ (ȳ)

�1 is equivalent to �2. Every assignment that satisfies �2 will
also satisfy �3, by assigning arbitrary x,y,z. Conversely, every
assignment that satisfies �3 also satisfies �2, by ignoring
x,y,z.

The problem �3 is only constant factor larger than K1, and
the transformation ca be done in linear time (polynomial time
would be enough). Thus we proved 3SAT is NP-hard. --

- -

Example: Reducing to 3CNF-SAT problem (the previous Cir-
cuitSat example). Looks much larger, but it's only constant
factor larger.

Reduction: Genereal Pattern 7/10

All NP-Hardness proofs — polynomial time reductions — follow
the same general outline:

1. Describe a polynomial time algorithm to transform an
arbitrary instance of x of X into a special instance y
of Y.

2. Prove that if x is “good” instance of X, then y is “good”
instance of Y

3. Prove that if y is “good” instance of Y, then x is “good”
instance of X (!)

What does “good” mean? It means there's certificate. E.g.

To reduce problem X to Y, we actually need to design 3
algorithms:

1. Transform arbitrary instance x of X to a special instance
y of Y in polynomial time.

2. Transform an arbitrary certificate for x into certificate of
y.

3. Transform an arbitrary certificate for y into certificate of
x.

Notes:

• Asymmetry: only convert x to y; not y to x. Key point!
We need not think about arbitrary y of Y, only the speical
y (probably highly structured)!

• Symmetry: we must convert certificates from x to y and
from y to x.

3SAT->Maximum Independence Set 8/10

Given a undirected graph. An independent set is a subset of
the nodes with no edges between them.
Maximum Independent Set (MaxIndSet) problem is to find
the size of largest independent set.
We prove MaxIndSet is NP-hard by reducing 3SAT to
MaxIndSet. Plan:

Suppose we can solve MaxIndSet. Can we solve 3SAT?

From any 3SAT problem instance, we can construct a graph
like this:

1. Every variable in every clause is a node.

2. Edges between nodes iff a) they are in the same clause;
b) they are the negation of the same variable.

It's clear that the graph has MaxIndSet of size at most k
(the number of clauses).

Further we claim: the graph has MaxIndSet of size exactly
k, if and only if the original formula � is satifiable.

• (=>) Suppose � is satifiable. Fix any satisfiable assign-
ment. Every clause must have at 1 TRUE literal. We can
then pick 1 node corresponding to the TRUE literal from
each triangle. Is there any edge between the nodes we
pick?

• (<=) Suppose G contains Independent Set S of size k . Each
node in the independent set must be in different triangle.
Suppose we assign TRUE to the literal corresponding to
the node in S (why is this assignment consistent? Because
contradicting literals are connected by edges). S must
contain one node in every triangle (clause). There each

clause is TRUE. The formula � is therefore satisfiable.

Transforming 3SAT formula � to the graph G costs polyno-
mial time.

MaxIndSet->MaxClique 9/10

A clique , aka complete graph, is a graph where every pair of
nodes is connected by an edge.

The MaxClique problem asks the number of nodes in its
largest complete subgraph in a given graph.

A vertex cover of a graph is the set of vertices that touch
every edge in the graph. The MinVertexCover problem asks
the minimum number of nodes that touch every edge.

(fig: example of MaxIndSet, MaxClique, MinVertexCover).

MaxClique and MinVertexCover are both NP-hard. Plan:

Edge complement of G : Ḡ has the same nodes as G , but com-
plementary edge set.

• MaxClique: An independent set S in G is a clique in Ḡ .

S is MaxIndSet in Ḡ <=> S is MaxClique in G .

• MinVertexCover: Let S be an independent set in G . Then
V - S is a vertex cover. Therefore :

S is MaxIndSet <=> V-S is MinVertexCover

10/10

