
1/12

1 2 3 4 5 6 7 8 9 10 11 12

Lecture 1: Introduction

Last updated: Aug 21, 2024

References:

� The Algorithm Design Manual, Skiener, Chapter 1

� Algorithm Design Techniques, Programming Pearls, Jon Bentley,
ACM 1984

� Algorithms, Jeff Erickson. Chapter 0

� Algorithms, Gopal Pandurangan, Chapter 2.1

Algorithm Design & Analysis 2/12

1 2 3 4 5 6 7 8 9 10 11 12

What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechan-
ically executable sequence of elementary instructions,
intended to accomplish a specific purpose.

� Explicit: can be described in words and mathematical notations

� Precise: only one interpretation

� Mechanically executable: only use elementary instructions that
machines support

� Specific purpose: what does it accomplish?

Problem vs Problem Instance 3/12

1 2 3 4 5 6 7 8 9 10 11 12

To be interesting, an algorithm must solve a general problem. An
algorithmic problem is specified by describing the complete set of
instances it must work on and of its output.

The distinction between problem and problem instance is funda-
mental.

For example, the algorithmic problem known as sorting can be
described:

Problem: sorting
Input: A sequence of n keys a1; : : : ; an.
Output: The permutation (reordering) of the input sequence such
that a1

0 6 a2
0 6 � � �6 an

0
.

An instance of the sorting problem might be an array of integers
{2,3,1}.

Consider the following �procedure�:

MagicSort(a[1..3]):
Output {1,2,3}

It correctly �sorts� the problem instance {2,3,1}, but fails on
pretty much every other instances (defined by inputs).

This procedure is not an (correct) algorithm. An algorithm must
solve a general problem (all possible instances), instead of one or
part.

Most of the time, it's not clear whether the algorithm actually does
solve all instances, so we must supply a proof of correctness of
the algorithm to make it useful. The proof is a certification of the
correctness of an algorithm.

Bad Example 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Here's a curious algorithm:

BeAMillionareAndNeverPayTaxes():
Get a million dollars
if the tax man shows up

say �I forgot�

What's the problem with this �algorithm�?

Example: Multiplication 5/12

1 2 3 4 5 6 7 8 9 10 11 12

We would like to multiply two positive integers. First let's figure out
what data representation we use. We mostly use the decimal posi-
tional notation: basically 123 means 1�100+2�10+3. Formally,
we represent an integer x ,y as array of decimal digits X [0: : :m¡ 1],
Y [0: : :n¡ 1]

x =
X
i=0

m¡1

X [i]� 10i ; y =
X
j=0

n¡1

Y [j]� 10j

We would like to compute z = x � y which is represented Z [0: : :m+

n¡ 1]:

z =
X
k=0

m+n¡1

Z [k]� 10k

I heard that Americans are most familiar with the Lattice algorithm,
which is illustrated as

Why is it correct? Can we give a proof of the Lattice multiplication

algorithm? Hint:

z =
X
i=0

m¡1 X
j=0

n¡1

X [i]Y [j]� 10i+ j

The algorithm is based on elementary operations: single digit
multiplication (can be done by looking up in a table, from memory
of a computer, etc) and addition.

Now we know it's correct, the next question is: is it efficient?

First we derive the time complexity in terms of the elementray oper-
ations. By some accounting, we see that the Lattice multiplication
algorithm takes O(mn) steps (single digit multiplication/addition).

There's an even older and maybe simpler algorithm goes by many
names including peasant multiplication which reduces to four
operations; 1) determining parity; 2) addition; 3) duplation (dou-
bling); 4) mediation (halving).

Now why is this algorithm correct? It's based on the following recur-
sive identity:

x y =

8>><>>:
0 if x =0

bx /2c (y + y) if x is even
bx /2c (y + y)+ y if x is odd

This is an recursive algorithm! (implemented as iterations).

Now what's the time complexity of this algorithm?

Without loss of generality, assume x 6 y . Clearly, the algorithm
does log x parity, addition, and mediation. What's the cost of each
operation?

Assuming any reasonable place-value (positional) representation
of numbers (binary, decimal, Roman numeral, bead positions on
abacus, etc)

each operation requires O(log x+log y)=O(log y) (because x has
O(log x) digits). Therefore the total time complexity is O(log x �
log y)=O(mn) time, the same as the Lattice algorithm!

This algorithm is arguably easier for humans to execute, because
the basic operations are simpler (if you can't remember single digit
multiplication table!).

In fact, for binary representation, the peasant algorithm is identical
as lattice mulitplication algorithm.

The recursive formulation of PeasantMultiply:

def PeasantMultiply(x,y): # x,y>=0, returns x*y
if x == 0:

return 0
if x%2 == 0:

return PeasantMultiply(x//2,y+y)
if x%2 == 1:

return y+PeasantMultiply(x//2,y+y)

Euclid's Multiplication: Compass and Straightedge

Ancient Greek geometers as �Computer�; elementary instructions:

� Draw the unique line passing through two distinct points:
LINE(A,B)

� Draw the unique circle centered at a point C and pass through
another point P: CIRCLE(C,P)

� Identify the intersection point of two lines

� Identify the intersection points of a line and a circle

� Identify the intersection points of two circle

How to do multiplication on the Greek computer?

Inputs are represented as two line segments, output is also a line
segment. Very different representation of data!

Scheduling Classes 7/12

1 2 3 4 5 6 7 8 9 10 11 12

Suppose we are given n classes with potentially overlapping lecture
time. Class i starts at time S[i] and finishes at F [i]. Find the max-
imum number of non-overlapping classes.

We can visualize the class as blocks on time axis. The goal is to find
the largest subset of blocks with no vertical overlap.

Think of an algorithm to solve it!

Let's try some ideas. Suppose the inputs are given by a set I of
intervals ([start,finish]).

def earliest_class_first(intervals):
P = []
while intervals:

j = min(intervals, key=lambda x: x[0])
P.append(j)
intervals.remove(j)
intervals = [i for i in intervals if i[0] >= j[1]

or i[1] <= j[0]] # remove intervals that overlap j
return len(P)

Is this correct? If not, can you give an example?

Counterexample

OK, let's try another one . . .

def shortest_class_first(intervals):
P = []
while intervals:

j = min(intervals, key=lambda x: x[1] - x[0])
P.append(j)
intervals.remove(j)
intervals = [i for i in intervals if i[0] >= j[1] or

i[1] <= j[0]]
return len(P)

This is still not correct . . .

How about this one:

def earliest_finish_class_first(intervals):
P = []

while intervals:
j = min(intervals, key=lambda x: x[1])
P.append(j)
intervals.remove(j)
intervals = [i for i in intervals if i[0] >= j[1]

or i[1] <= j[0]]

return len(P)

Can you find any counter example?

But how do you know this algorithm is correct? In later lectures,
we are going to prove that the EarliestFinishClassFirst() algorithm
is guarantteed to give an optimal solution. The proof is non-
trivial. This example shows that algorithms are not obvious to be
correct. Finding counterexample proves the algorithm is incorrect;

but absence of counterexample does not prove it correct. We need
much stronger argument.

Basic proof techniques include:

� Mathematical induction and recursion. They go like this:

1. Basic case is obvious correct: n=0, n=1, for example.

2. If the statement is true for all k 6 n¡ 1, then we show that
the statement is also true for k = n.

3. We proved that the statement is true for any n.

Example: Find the Celebrity 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Problem: A celebrity among a group of n people is someone who
knows no one, but is known by everyone else. Identify a celebrity by
only asking this question to a person: �do you know that person?�.

Think about a solution.

Strategy: reduce (decrease) and conquer. What happens if we ask
if A knows B? Two scenarios:

� A knows B. Then A cannot be celebrity. We reduce the problem
by removing A from our later consideration.

� A does not know B. Then B cannot be celebrity. We reduce the
problem by removing B from our later consideration.

Repeating this process for n¡ 1 times, and we are left with only 1
person. If there is a celebrity, this one person must be it. (There
cannot be more than 1 celebrities. Why?). But we are not sure
whether the last one person is a celebrity or not; we must ask him
n¡1 questions to see if he knows anyone, and also if everyone knows
him. This algorithm costs (n¡ 1)� 3=3n¡ 3 questions.

A rigorous proof can be given by induction. How?

Describing Algorithms 9/12

1 2 3 4 5 6 7 8 9 10 11 12

There are three primary ways to descreibe algorithms:

� English words

� Pseudocode

� Computer programming language

in the order of increasing precision, but in decreasing conciseness and
generality. In this course, we are going to primarily use combination
of English and pseudocode, according to this rule:

Our description of algorithm should include every detail necessary
to fully specify the algorithm, prove its correctness, and analyze
its running time. At the same time, it should execlude any details
that are NOT necessary to fully specify the algorithm, prove its
correcetness, or analyzing its running time.

Practically, never describe repeated operations informally, as in �Do
this first, and do that, and so on . . . �, or �repeat this process until
[something]�.

If it's a loop, write a loop with the initialization, loop body, and
conditions. If it's recursion, write recursive function calls, and the
base case for termination.

Pseudocode for this course: Pythonic

In this course we adopt a pseudocode style that is more or less
python code. It's loosely based on Python programming language.

(No need to be exact valid Python code as long as it's concise and
intentions are clear).

This in my opinion strikes a good balance between precision and
conciseness.

This is the first time that we adopt Pythonic pseudocode style; let's
see how it goes.

Contents of This Course 10/12

1 2 3 4 5 6 7 8 9 10 11 12

This course consists of the following contents:

� Algorithm design techniques: recursion, divide and conquer, back-
tracking, greedy, randomized, . . .

� Algorithm analysis: the proof of correctness, runtime/space com-
plexity

� Selected illustrative or important algorithms & data structures:
combinatoric problems, games, tree, graphs, networks, hash, dis-
joint sets . . .

� Problem solving: how to solve a problem? From distilling a spec-
ification of problem, to designing algorithm, to analyzing its
correctness and performance, and to turn that into computer
programs.

The RAM Model of Computation 11/12

1 2 3 4 5 6 7 8 9 10 11 12

Why can we analyze the performance of algorithms independent of
software systems and the machine? That's because we rely on the
RAM model of computation, a simple abstract machine that
captures the first-order performance characteristics of real machines:

� Each simple operation (+,-,*,/,if,call) takes 1 step. In reality,
not all steps are equal; / is usually much slower than others.

� Loops and subroutine calls are not simple operation.

� Each random memory access takes 1 step. In reality, there's
cache, data locality, and memory is not really random access.

By abstracting the machine, we can simply count the number of
�steps� an algorithm needs. It captures the asymptotic behavior of an

algorithm very well. (faster algorithm is definitely faster on machine
if problem size is sufficiently big).

Worst case Complexity

Unless otherwise stated, we assume in this course that we are always
referring to the worst case complexity. Why prefer worst case than
average case, or best case?

� Worst case complexity is easy to analyze

� It's easy to use�no need to assume any specialness of input

� It's conservative�guaranttee to be working as described, if not
better.

Average case complexity is sometimes more appropriate, especially in
randomized algorithms. But it's more involved in analysis, because it
needs assumptions on input probablistic distribution. We'll consider
average case complexity on as-needed basis.

Asymptotic notations (review):

Big-O: upper bound of the functions, when problem size n is big
(asymptotic behavior of functions).

� g(n) =O(f (n)) means that there exists constant C such that
g(n)6Cf (n), for all sufficiently larege n. Put it in another way,
g(n) grows no faster than f (n).

� Similarly, g(n)=
(f (n)) means lower bound.

� Similarly, g(n)=�(f (n)) means lower and upper bounded.

Asymptotic Dominance: (assuming 1 step takes 1ns)

Dominance Rankings:

� n!

� cn

� n3,

� n log n

� n

� n
p

� log log n

� log 2n

Proof by (Mathematical) Induction 12/12

1 2 3 4 5 6 7 8 9 10 11 12

Reference chapter: http://jeffe.cs.illinois.edu/teaching/
algorithms/notes/98-induction.pdf

Induction (short for mathematical induction) is a method for proving
universally quantified propositions�statements about all elements of
a (usually infinite) set. It's the single most useful tool for reasoning
about, developing, and analyzing algorithms.

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf

� divisor of a positive integer n is a positive integer p such that
n/p is an integer. Trivially, 1, and n are divisors of n.

� A positive integer (>1) is prime if it has exactly two divisors,
1 and itself. Otherwise, it's composite.

Theorem 1. Every integer greater than 1 has a prime divisor.

How to prove? (this is a statement about all integers, which are
infinite). Try proof by contradiction?

Proof. By Induction. (Mathematician can stop right here, but you
are unlikely a professional mathematician, you need to continue).

The claim obviously work for small integers such as 2,3,4,5. Let n
be an arbitrary integer greater than 1. Assume that every integer k
such that 1<k<n has a prime divisor (the claim is true for subset:
induction hypothesis). If n is prime, then n is a divisor and prime,
therefore claim holds for n. If n is composite, then n must have a
proper divisor d < n. Since 1< d < n, by induction hypothesis,
d has a prime divisor p, which must also be a prime divisor of n.

By mathematical induction, the claim holds for all positive integer
n> 1. �

If you think this proof looks like �cheating� in that it references
itself, well it is (not cheating, but rather recursive). A well written
induction proof looks very much like a recursive program.

Theorem 2. Given an unlimmited supply of 5-cents, and 7-cents
stamps, we can make any amount of postage larger than 23 cents.

Proof. By induction. Let n be an integer larger than 23.

Inductive hypothesis: assume for any integer k such that 23<
k < n, we can make k cents postage.

Inductive cases:

� If n>28, then n¡5>23 and n¡5<n. Therefore we can make
n¡ 5 cents postage (invoke induction hypothesis). Add 5 cents
we get n cents postage.

� (base cases) If n< 28, then there are only 6 cases: n= 24; 25;
26; 27; 28. We can just solve them one by one:

24=7+7+5+5; 25=5+5+5+5+5; 26=7+5+5+5; : : :

�

Note a program that prints out the composition of postages:

def postage(n): #print out sum of 5s,7s that add up to n
assert n > 23

if n == 24:
print("7+7+5+5")

elif n == 25:
print("5+5+5+5+5")

elif n == 26:
print("7+7+7+5")

elif n == 27:
print("7+5+5+5+5")

elif n == 28:
print("7+7+7+7")

else:
postage(n - 5)
print("+5")

Is the recursive algorithm in fact . . . an induction proof?

Exercise 1. Prove X
i=0

n

3i =
3n+1¡ 1

2

for every non-negative n.

Exercise 2. Prove X
i=0

n

i

!
2

=
X
i=0

n

i3

