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The most important technique used in designing algorithms:

Reduction

Reducing a problem X to another problem Y means that using an
algorithm for Y as a blackbox or subroutine for problem X.

It's important to note that the correctness of algorithm for problem
X cannot depend on how the algorithm for problem Y works.

Example: the peasant multiplication algorithm reduces the multi-
plication problem to three simpler problems: addition, halving, and
parity checking (which we know how to solve).
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Recursion is a particularly powerful kind of reduction:

� If the given instance of the problem can be solved directly (e.g.
it's really small), solve it directly;

� Otherwise, reduce it to one or more simpler instances of the
same problem.

The most important thing to note about recursion is that, we can
solve the simpler instances, by calling the algorithm itself!

The trick is to not go into the details of the solution of the sub-
problem; rather, consider it somebody else's problem and it's solved.

Stop thinking about the solution of the subproblem!
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def PeasantMultiply(x,y): # x,y>=0, returns x*y
if x == 0:

return 0
t = PeasantMultiply(x//2,y+y)
if x%2 == 0:

return t
if x%2 == 1:

return y+t



Proof: [prove the claim in the function comment].

By (math) induction on the input x (its integer value, or rather its
number of digits/bits). The claim is obviously correct for x==0 (or
that can be represented by 1 bit).

Let x has n bits. (induction hypothesis) Assume the claim works
for all x that has less than n bits. Now let's prove that the claim
is correct for any x,y with x having n bits. In the function we
are invoking t=PeasantMultiply(x//2,y+y). By the induction
hypothesis (because x//2 will have less than n bits), t=bx/2c(2y).
It's clear that

x y =

(
bx /2c (2y) if x is even
bx /2c (2y)+ y if x is odd

The x odd case is because bx /2c (2y)=(x /2¡ 0.5)(2y)= xy ¡ y .

By induction, the claim holds for all positive integer pairs of x,y.
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� Objective: move 64 disks from 1st peg to 3rd peg

� Rule: bigger disk must always be below smaller ones

Figure 1. Tower of Hanoi. Image source: Wikipedia

First step: generalize the problem size from 64 to n!

More general problem might be easier to solve than an instance!
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Rephrased problem:

Move n disks from one peg to another, using a 3rd peg as occasional
placeholder, without placing bigger disk on top of smaller ones.

The secret to solve this problem is

to reduce the problem size, rather than solve it at once!

OK, so now instead of moving a whole n disks, how about we just
move one (say, the biggest one, because everything can be put on
top the biggest one).
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Recursive solution steps: (suppose we can solve size n¡ 1 problem)

� Move the top n¡ 1 disks to another peg (recurse)

� move the biggest disk to 3rd peg

� move the n¡ 1 disks to the 3rd peg (recurse)
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Now, if only we know how to solve the size n¡ 1 problem. . .

STOP! Don't go into the subproblem solution.

It's somebody else's problem (maybe yours, but not now).

The only missing part is the base case, which is trivial: when there
is only one disk, we surely know how to move 1 disk from one peg
to another, without violating the rule . . .

In fact, we can reduce the base case even further: moving 0 disk.
We do nothing, which is the correct thing to do.

Oftentimes, using a ridiculously simple base case leads to the most
simple & elegant algorithm, with least edges cases to handle.
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The formal algorithm:

# move n disks from src peg to dst peg using tmp peg as temporary
holder. no violation of rule that smaller disk must always be on top
of bigger disk. Print out the movement of each disk.
def hanoi(n, src, dst, tmp):

if n == 0: # base case
return

if n > 0: # recursive case
hanoi(n-1, src, tmp, dst)
print(f"Move disk {n} from peg {src} to peg {dst}")
hanoi(n-1, tmp, dst, src)

Proof of correctness of the claim [what exactly is the claim?] by
induction. When n=0 the function correctly does nothing.



Suppose the claim is true for all k disks with k<n (induction hypoth-
esis). We now prove the claim is also true for n disks. There are
three steps in the function. First step is to move (the first) n ¡
1 disks from src peg to tmp peg using dst peg as temporary holder.
This move can be done because 1) induction hypothesis 2) biggest
disk (disk n) is not moved and it's always at the bottom, no rule
violation. Second step: move disk n to dst peg (legal move?) Third
step: similar to first step; all legal.

Therefore by mathematical induction, the recursive function cor-
rectly prints out movements that move n disks with all legal moves.

Commentary: Is the design of recursive algorithm that different
from the induction proof of it?



Time complexity

T (n)= 2T (n¡ 1)+1;T (0)= 0 ) T (n)= 2n¡ 1

T (64)� 18.5� 1018
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To solve the original �move 64 disks from 1st peg to 3rd peg�, call

#def hanoi(n, src, dst, tmp):
hanoi(64,0,2,1) # takes long long long time
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Let's review mergesort algorithm. It's recursive:

1. Divide the array into two subarrays of equal size

2. Recursively mergesort the two subarrays

3. Merge the two sorted subarrays.

def mergesort(A): # return the sorted A
if len(A)==0:

return []
n = len(A)
X = mergesort(A[:n])
Y = mergesort(A[n:])
B = [0]*n
merge(X,Y,B)
return B



The first step is simple. The second step is just two recursive calls.
The third step is non-trivial.

The correctness of the mergesort algorithm depends on the correct
merge (3rd step).
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Problem: Given a positive real number x>1, compute its square root
x

p
within error bound of 0.001. (i.e. your computed result jsqrt(x)¡

x
p
j<0.001). The elementary instruction is double precision floating

point IEEE754 (almost certainly your everyday computer/phone).

Put in other words, we seek a floating point number a such that
f (a)= a2¡ x =0, namely the root of the function f (a).

We know that f (a) is monotonic increasing function.

We know f (0)=¡x < 0, and f (x)= x2¡ x > 0. Therefore the root
of f (a) must be in the interval (0; x), but which one number inside
the interval is the root?

Think divide and conquer�can we reduce the �search space�?
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The merge algorithm takes two sorted arrays, and merge them
into a single sorted array. We can recurse! Remember in designing
recursion, we try to reduce problem, rather than solving it directly.

In merge, we consider the last element of result C.



# given two sorted array A,B, merge them into a single sorted array C
def merge(A, B, C):

m = len(A)
n = len(B)

# Base case: If either A or B is empty, do the obvious thing
if m == 0:

C[:n] = B
return

elif n == 0:
C[:m] = A
return

# Recursive case: where would last element of C (i.e. C[m+n-1])
# come from? Either last element of A (A[m-1]) or of B (B[n-1]).
if A[m-1] > B[n-1]:

C[m+n-1] = A[m-1]
merge(A[:m-1], B, C[:m+n-1])

else:
C[m+n-1] = B[n-1]
merge(A, B[:n-1], C[:m+n-1])



How to formally prove that the merge(A,B,C) algorithm is correct?

Note that the algorithm looks like a induction proof!

Base case in merge(A,B,C) => base cases in induction proof

Recursive calls merge(A[:m-1], B, C[:m+n-1]), and
merge(A, B[:n-1], C[:m+n-1]) => invoking induction
hypothesis (assuming for all A,B,C with size(C) < m+n the
merge(A,B,C) works).

The main argument in induction proof is in the branch: set C[m+n-
1] to either A[m-1] or B[n-1] depending which one is bigger: if
C[:m+n-1] is sorted, then C[:m+n] must be sorted as well.

Recursive algorithm is no different than an induction proof!
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Note that we have seen several example proofs of recursive algo-
rithm/function.

The proof is mathematical induction with almost the same boiler-
plate: setting up induction hypothesis, argue that recursive step is
correct by invoking the induction hypothesis, argue base case work,
and that's about it.

Now we are familiar with it, the proof of recursive algorithm/function
can be done without the boilerplate, by arguing only the essential
part�why the recursive case is correct? Put in other words, how
to solve the big problem with the help of solutions of the smaller
problem?

In this course when you have a recursive algorithm as your solution,
your proof can consists of the Pythonic pseudocode, the # com-



ment on the claim of the algorithm/function (what exactly does the
function accomplish?), and the argument of solving current problem
with help of solutions of small problems. No need to spell out the
whole induction proof.

Isn't that nice? Recursive algorithms are very easy to prove! (And
design and proof are the same thing).
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The time complexity of merge() is

S(m+ n)= 1+S(m+ n¡ 1); S(0)= 0 (1)

We solve it: S(n)= n (how? The best approach is to take a guess,
and prove it by induction!)

The time complexity of mergesort() is

T (n)=T (bn/2c)+T (dn/2e)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
recursion on two subarrays

+ n||{z}}
merge()

(2)

How to solve? Again, we can take a guess of T (n) = n log n and
prove it by induction. But how do we guess? By looking at recursion
tree. (later)
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Divide and Conquer:

1. Divide the problem into several indepenent smaller instances
of the same problem.

2. Delegate each smaller instances to the recursion fairy (the
blackbox solver, subroutine)

3. Combine the solutions for the smaller instances into the solu-
tion for the given instance.

If the problem is of sufficient trivial size, we directly solve by brute
force, in constant time.

Proof of the correctness of D&C recursion is based on induction.

Analysis of the complexity is based on recurrence equation.
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How to solve recurrence equation like this:

T (n)= r T (n/c)+ f (n) (3)
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Now the cost of the whole tree is the summation of all the levels:

T (n)=
X
i=0

L

r i � f (n/c i)

L= logcn is the number of levels of the tree. We can assume T (1)=
1. How many leaves in the tree? rL= r logcn= nlogcr.

Three cases of level-by-level series (
P

).

1. Decreasing: if the series decays exponentially, then T (n) =
�(f (n))

2. Equal: we have T (n)=O(L f (n))=�(f (n) log n)



3. Increasing: if the series grows exponentially, then T (n)=�(nlogcr)

This level-by-level analysis works not only for the regular recurrence
form:

T (n)= rT (n/c)+ f (n)

It also works (with some adaptions) for irregular ones such as:

T (n)=T (n/a)+T (n/b)+ f (n)

We can expand the recursion tree and observe the level-by-level
series:

� Decreasing exponentially: cost dominated by first level;
T (n)=�(f (n))

� Equal: T (n)=�(f (n) log n)



� Increasing exponentially: (different from regular case!) We
know that T (n)=n�, we need to determine �. How? Substitute
it back to recurrence and solve for �.

Example: Recurrence

T (n)=T (3n/4)+T (2n/3)+ n2 (4)

The level-by-level series are:

n2; 145n2/144; (145n)2/1442; : : :

This is an exponentially increasing (geometric) series, with ratio
145/144. The third case (increasing) applies. Suppose: T (n)=n�

Substitute it back to the recurrence (4) gives us equation:

n�=(3n/4)�+(2n/3)�+ n2



We must have �> 2 (why? look at the series). Dividing both sides
by n� and taking n!1, we have equation:

1= (3/4)�+(2/3)�

This solves to �� 2.0203, which is a root to the previous equation.

(You can solve it via wolframalpha: http://bit.ly/39P3D7i)

So the solution is:

T (n)=�(n2.0203)



Reference on solving recurrences: http://
jeffe.cs.illinois.edu/teaching/algorithms/notes/99-
recurrences.pdf

The Master Theorem

The recurrence T (n)= aT(n/b)+f (n) can be solved as follows.

� If af (n/b)=�f (n) for some constant �<1,thenT (n)=�(f (n)).

� If a f (n /b) = Kf (n) forsomeconstant K > 1,then T (n) =
�(n logba).

� If af (n/b)= f (n),thenT (n)=�(f (n)logbn).

� If None of these three cases apply, you are on your own

Proof. Recursion tree? �



Examples:

� Mergesort: T (n)= 2T (n/2)+ n

� Randomized selection: T (n)=T (3n/4)+ n

� SplitMultiplication: T (n)= 4T (n/2)+ n

� FastMultiplication: T (n)= 3T (n/2)+ n

� Randomized quicksort: T (n)=T (3n/4)+T (n/4)+ n

� Deterministic selection: T (n)=T (n/5)+T (7n/10)+ n
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In mergesort(), f (n)=n, c= r =2, the series is equal in every level,
so the second case:

T (n)=O(f (n) log n)=O(n log n)



Exercises.

1. T (n)= 2T (n/3)+1

2. T (n)=T (n/3)+T (2n/3)+1

3. T (n)= 3T (n¡ 1)+2
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We have seen two algorithms for multiplying two n-digits number in O(n2) time:
grade-school lattice algorithm, and Egyption peasant algorithm.

Now let's think of a divide and conquer way of solving multiplication.

Can we get a bit more efficient algorithm by splitting the digit arrays into half,
and exploit the following identity:

(10ma+ b)(10mc + d)= 102mac + 10m(bc + ad)+ bd



# given two n digits integer x, y, return x*y
def split_multiply(x, y, n):

# Base case: if n is 1, return the product of x and y
if n == 1:

return x * y # single digit multiplication

# Calculate m as the ceiling of n/2
m = ceil(n / 2)

# Split x into two parts: a and b
a = x // (10 ** m)
b = x % (10 ** m)

# Split y into two parts: c and d
c = y // (10 ** m)
d = y % (10 ** m)

# Recursively calculate e, f, g, and h
e = split_multiply(a, c, m)
f = split_multiply(b, d, m)
g = split_multiply(b, c, m)
h = split_multiply(a, d, m)

# Combine the results and return the final product
return (10 ** (2 * m)) * e + (10 ** m) * (g + h) + f
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Correctness is easy to show using induction. The run time is

T (n)= 4T (n/2)+O(n)

This results in an increasing geometric series, which implies:

T (n)=O(nlog24)=O(n2)

This did not improve on the efficiency of previous two algorithms.
The culprit is the 4 subproblems (multiplication). If we can reduce...

ac + bd ¡ (a¡ b)(c ¡ d)= bc+ad

that to 3?
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def fast_multiply(x, y, n):
# Base case: if n is 1, return the product of x and y
if n == 1:

return x * y

# Calculate m as the ceiling of n/2
m = ceil(n / 2)

# Split x into two parts: a and b
a = x // (10 ** m)
b = x % (10 ** m)

# Split y into two parts: c and d
c = y // (10 ** m)
d = y % (10 ** m)

# Recursively calculate e, f, and g
e = fast_multiply(a, c, m)
f = fast_multiply(b, d, m)
g = fast_multiply(a - b, c - d, m)

# Combine the results and return the final product
return (10 ** (2 * m)) * e + (10 ** m) * (e + f - g) + f



OK, now the time complexity is

T (n)= 3T (n/2)+O(n)

which is still increasing series, and gives us: T (n) = O(nlog23) �
=O(n1.58496), a significant improvement!
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Variant of Hanoi Tower: move n disks from peg 0 to peg 2, with the
restriction that you cannot move disk between peg 1 and 2; every
move must come from or to peg 0.

Hanoi1(n,src,dst,tmp): #peg 0->1, 0->2
Hanoi1(n-1,src,tmp,dst)
move disk n to dst
Hanoi2(n-1,tmp,src,tmp)
Hanoi1(n-1,src,dst,tmp)

Hanoi2(n,src,dst,tmp): #peg 1->0, 2->0
Hanoi2(n-1,src,dst,tmp)
Hanoi1(n-1,dst,tmp,src)
move disk n to dst
Hanoi2(n-1,tmp,dst,src)

Recurrence? Time complexity?
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Ex 26. Suppose you are given a 2n�2n checkerboard with one (arbitrarily chosen)
square removed. Describe and analyze an algorithm to compute a tiling of the
board by without gaps or overlaps by L-shaped tiles, each composed of 3 squares.
Your input is the integer n and two n-bit integers representing the row and column
of the missing square. The output is a list of the positions and orientations of
(4n¡ 1)/3 tiles. Your algorithm should run in O(4n) time. [Hint: First prove that
such a tiling always exists.]
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Problem: Given a sorted array of n integers L[0: n] and a target
number x , find x in the array if exsits and return its index, or -1 if
x does not exist in the array.

# find x in a sorted array slice L[s:e]
# return i if L[i]==x and s <= i < e; otherwise return -1
def bisection_find(L,s,e,x):

if e-s == 0:
return -1

if e-s == 1:
return s if L[s] == x else -1

m = (s+e)//2 # divide interval [s,e) into two halves
if x < L[m]:

return bisection_find(L,s,m,x)
if x > L[m]:

return bisection_find(L,m,e,x)
if x == L[m]:

return m
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Your VC backed bank (fintech) provides an API as the only way to
query your account balance. On some day you deposit money. You
do not withdraw money. The API is getBalance(day) where day
is an integer (0,1,2, . . . ) indicating the days since you opened the
account. getBalance(day) returns balance at the end of that day.
You forgot which days you deposited money and you want to find
out via querying the API. Do so with as few API calls as possible:

1) assume you only deposited once during days [a,b]

2) assume you deposited twice during days [a,b].

3) assume you deposited k times during days [a,b].



1) do you find it somewhat similar to bisection search?

# find the one changepoint between days [a,b]
def find_one_cp(a,b):

bal_a = getBalance(a)
bal_b = getBalance(b)
if b-a == 1:

assert bal_b > bal_a
return b

m = (a+b)//2 # mid point of a,b
bal_m = getBalance(m)
if bal_a < bal_m:

return find_one_cp(a,m)
if bal_m < bal_b:

return find_one_cp(m,b)
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Assuming a function of single variable x . Assume the function con-
sists of exponentials, inverse, sin and cos, log, and +,-,*,/

Derivative rules: (f ; g are functions of x, greek letters are constants)

� Constant rule: if f is constant e.g. f (x)=�, then f 0(x)= 0

� Sum rule: (�f + �g)0=�f 0+ �g 0

� Product rule: (fg)0= f 0 g + fg 0

� Quotient rule:
�

f
g

�0
=

f 0g ¡ fg 0

g2

� Chain rule: if f (x)= h(g(x)), then f 0(x)= h0(g(x)) g 0(x)



� Special function derivatives: sin0(x) = cos(x); cos0(x) = sin(x);
ln0(x)= 1/x, (x�)0=�x�¡1, (ex)0= ex

Using these five rules plus derivatives of common functions, it's
possible to compute the derivatives of an arbitrary function of x that
consists of the arithmetics and composite function.

What is a function that we can differentiate? Like

f (x)= x
p

/sin(1/x)+ln(1+ ex)

How do we define and represent these functions (let's call them
cool functions)? Basic functions like sin(x); cos(x); ln(x); const(x ;
�); pow(x ; �); exp(x), and arithmetic between them, and also com-
positions of cool functions are cool.



Note that definition of cool functions are recursive. Definition and
reprentation is closed related as representation is also recursive.

Here's one way to represent cool functions in Pythonic code:

� All Cool function is represnted as a list.

� The identify function I (x)= x is a cool function, represented as
[�I�] (a list of a single string). It's the only cool function as a
list with one element, the function name.

� Basic functions are cool: ["sin", ["I"]]. (this means sin(x)=
sin(I (x)): Functions except the identity has at least one argu-
ment: the parameter of the function.

� ["const",["I"], a] represents a constant function
f (x)= a.

� ["pow", ["I"], a] represents a power function f (x)=xa



� Arithmetic operators are represented as basic functions:

� [�add�, [�I�], ["const", 5]] means f (x)= x +5

� Composition of cool functions are also cool:

� ["ln", ["add", ["pow", ["I"], -1], ["const",

2]]] means ln
¡ 1

x
+2

�
According to this representation, the aforementioned function

f (x)= x
p

sin(1/x)+ln(1+ ex)

["add",
["mul",

["pow", ["I"], 0.5],
["sin", ["pow", ["I"], -1]]

],
["ln",

["add", ["const", 1], ["exp", ["I"]]]
]

]



OK, now we can start writing a function to auto-diff a cool function.

def diff(F):
if F[0] == "const":

return 0
if F[0] == "I":

return ["const", 1]

if F[0] == "add":
return ["add", diff(F[1]), diff(F[2])]

if F[0] == "sub":
return ["sub", diff(F[1]), diff(F[2])]

if F[0] == "mul":
return ["add", ["mul", diff(F[1]), F[2]], ["mul", F[1], diff(F[2])]]

if F[0] == "div":
return ["div", ["sub", ["mul", diff(F[1]), F[2]], ["mul", F[1], diff(F[2])]],

["pow", F[2], 2]]

if F[0] == "ln":
return ["mul", ["pow", F[1], -1], diff(F[1])]

if F[0] == "exp":
return ["mul", ["exp", F[1]], diff(F[1])]

if F[0] == "sin":
return ["cos", diff(F[1])]

if F[0] == "cos":
return ["sin", diff(F[1])]

After applying to the above function:



diff(["Add",
["mul",
["pow", ["I"], 0.5],
["sin", ["pow", ["I"], -1]]
],

["ln",
["add", ["const", 1], ["exp", ["I"]]]
]

])
=> ['add', ['add', ['mul', ['mul', ['mul', ['const', 0.5], ['pow',
['I'], -0.5]], ['const', 1]], ['sin', ['pow', ['I'], -1]]], ['mul',
['pow', ['I'], 0.5], ['cos', ['mul', ['mul', ['const', -1], ['pow',
['I'], -2]], ['const', 1]]]]], ['mul', ['pow', ['add', ['const', 1],
['exp', ['I']]], -1], ['add', 0, ['mul', ['exp', ['I']], ['const',
1]]]]]

Hmm, it's kind of hard to verify it..I'm being a bit lazy here so how
about we also write a function to evaluate a cool function, so that
we can evaluate at a certain x and compare to Mathematica:



Exercise1: the output of diff can be very verbose, with a lot f(x)*0
kind of terms. Write a function to simplify a cool function.

Exercise2: The list representation of cool function is quite convenient
to handle in the program, but no so much to read or write. Write
translation routines to convert list formt to regular math formula
style like ln(1+1/x) * sin(e^x)


