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Recursion 2/18

The most important technique used in designing algorithms:

Reduction

Reducing a problem X to another problem Y means that using an
algorithm for Y as a blackbox or subroutine for problem X.

It's important to note that the correctness of algorithm for problem
X cannot depend on how the algorithm for problem Y works.

Example: the peasant multiplication algorithm reduces the multi-
plication problem to three simpler problems: addition, halving, and
parity checking (which we know how to solve).



Recursion is a particularly powerful kind of reduction:

� If the given instance of the problem can be solved directly (e.g.
it's really small), solve it directly;

� Otherwise, reduce it to one or more simpler instances of the
same problem.

The most important thing to note about recursion is that, we can
solve the simpler instances, by calling the algorithm itself!

The trick is to not go into the details of the solution of the sub-
problem; rather, consider it somebody else's problem and it's solved.

Stop thinking about the solution of the subproblem!



Example: Peasant Multiply 3/18

The peasant multiple (recursive version)



Proof of correctness: [prove the claim in the function comment].

By (math) induction on the input x (its integer value, or rather its
number of digits/bits). The claim is obviously correct for x==0 (or
that can be represented by 1 bit).

Let x has n bits. (induction hypothesis) Assume the claim works
for all x that has less than n bits. Now let's prove that the claim
is correct for any x,y with x having n bits. In the function we
are invoking t=PeasantMultiply(x//2,y+y). By the induction
hypothesis (because x//2 will have less than n bits), t=bx/2c(2y).
It's clear that

x y =

(
bx /2c (2y) if x is even
bx /2c (2y)+ y if x is odd

The x odd case is because bx /2c (2y)=(x /2¡ 0.5)(2y)= xy ¡ y .

By induction, the claim holds for all positive integer pairs of x,y.



Time complexity:

Let problem size be the number of bits in x: n= log2x and T(n)
denotes work. Let m be the maximum bits of original x and y.

Then we have recurrence:

T(n) = T(n-1) + m

This easily solves to T (n)=O(nm). The original problem time com-
plexity would be T (m)=O(mm)=O(m2).



Bisection: Search in Sorted Array 4/18

In a sorted array A[0:n] of numbers, and a target number t, find t
in the array if it exists, or correctly report t does not exist in A[0:n].
Design a fast algorithm.

Thinking: Try divide and conquer. Maybe we divide the array into
two halves; then t can be in either half. We can recursively search for
each half (two potential subproblems! Are they the same problem,
just smaller?).

Since A[0:n] is sorted, we don't have to search in both halves; one
would suffice. Which half? Well we look at A[n/2] and compare to t.
If t<A[n/2] then t is only possible in A[0:n/2]. If t>A[n/2] then
t is only possible in A[n/2:n]. By only a few comparison we reduce
search space into half. Now our fast divide and conquer recursive
solution is in sight.



Description: (omitting textual descrpition; same as thinking)



correctness proof: (full version; later we can drop some of the
induction setup for brevity).

Goal: this function/algorithm bisection(A, t, i, j) correctly finds the
index of t in sorted A[i:j], or report false if t is not in A[i:j].

Use mathematical induction on the problem size n = j-i.
Base cases: for n = 0 or 1, the bisection algorithm obviously works
(see bisection algorithm base cases).
Induction hypothesis: for any j-i < n, bisection(A, t, i, j) correctly
finds the index of t or report false.
Now we prove bisection(A, t, i, j) also works for n = j-i, and n >= 2.

Take the middle index of A[i:j]: m=(i+j)/2.
Case 1: If A[m] == t then we found it and return m.
Case 2: A[m] < t, because A is sorted, t cannot be in the first
half A[i:m]; according to induction hypotheis, bisection(A, t, m, j)
correctly tells us whether t is in second half A[m:j] which tells us



whether t is in A[i:j]
case 3: A[m] > t, likewise t cannot be in the second half A[m:j];
according to induction hypotheis, bisection(A, t, i, m) correctly tells
us whether t is in the first half A[i:m]

There are no other cases. QED.

Time complexity:

For problem size n (n=j-i), say the time complexity of bisection() is
T(n).
Because bisection does constant amount of work, in addition may
go to exactly one recursive call
on half size problem (either m-i, or j-m), we derive recurrence:

T(n) = 1 + T(n/2)

This solves to T(n) = O( log n)



Example: Tower of Hanoi 5/18

� Objective: move 64 disks from 1st peg to 3rd peg

� Rule: bigger disk must always be below smaller ones

Figure 1. Tower of Hanoi. Image source: Wikipedia

First step: generalize the problem size from 64 to n!

More general problem might be easier to solve than an instance!



Rephrased problem:

Move n disks from one peg to another, using a 3rd peg as occasional
placeholder, without placing bigger disk on top of smaller ones.

The secret to solve this problem is

to reduce the problem size, rather than solve it at once!

OK, so now instead of moving a whole n disks, how about we just
move one (say, the biggest one, because everything can be put on
top the biggest one).



Recursive solution steps: (suppose we can solve size n¡ 1 problem)

� Move the top n¡ 1 disks to another peg (recurse)

� move the biggest disk to 3rd peg

� move the n¡ 1 disks to the 3rd peg (recurse)



Now, if only we know how to solve the size n¡ 1 problem. . .

STOP! Don't go into the subproblem solution.

It's somebody else's problem (maybe yours, but not now).

The only missing part is the base case, which is trivial: when there
is only one disk, we surely know how to move 1 disk from one peg
to another, without violating the rule . . .

In fact, we can reduce the base case even further: moving 0 disk.
We do nothing, which is the correct thing to do.

Oftentimes, using a ridiculously simple base case leads to the most
simple & elegant algorithm, with least edges cases to handle.



The formal algorithm:



Proof of correctness of the claim [what exactly is the claim?] by
induction. When n=0 the function correctly does nothing.

Suppose the claim is true for all k disks with k<n (induction hypoth-
esis). We now prove the claim is also true for n disks. There are
three steps in the function. First step is to move (the first) n ¡
1 disks from src peg to tmp peg using dst peg as temporary holder.
This move can be done because 1) induction hypothesis 2) biggest
disk (disk n) is not moved and it's always at the bottom, no rule
violation. Second step: move disk n to dst peg (legal move?) Third
step: similar to first step; all legal.

Therefore by mathematical induction, the recursive function cor-
rectly prints out movements that move n disks with all legal moves.

Commentary: Is the design of recursive algorithm that different
from the induction proof of it?



Time complexity

T (n)= 2T (n¡ 1)+1;T (0)= 0 ) T (n)= 2n¡ 1

T (64)� 18.5� 1018



QuickSort 6/18

Let's review quicksort (Hoare version) algorithm. It's recursive:

1. Partition the array into two subarrays with a pivot; left subarray
is less than pivot and right subarray is larger than pivot



2. Recursively qsort the two subarrays

3. done

Proof is as every other recursive algorihtm case: mathematically
induction on the size of the subarray. Assuming the said algorithm
works for all instances of subarray size (hi-lo) < n. Prove that it also
works for any instance of subarray of size = n. (details omitted)�

Now the partition() needs to shuffle the array a bit, moving all
elements less than pivot to the left, larger elements to the right. And



also return the pivot position.

This particular partition uses a variant of Hoare's proposal.
There is a nice animation on the wikipedia page: https://
en.wikipedia.org/wiki/Quicksort



Time complexity:

From qsort() body we can see that it calls itself 2x, and non-
recursive work is in partition which is O(n). Let T (n) denote the
work that qsort() does on size n array. Then we have recurrence:

T (n)=T (n1)+T (n2)+ n

Where n1;n2 are the subproblem sizes determined by the partition
function. We have n1+ n2= n, but there is no guaranttee that n is
divided between n1; n2.

What's the worst case? What's the best case?



Worst case: T (n)=T (1)+T (n¡ 1)+ n) T (n)=O(n2)

Best case: T (n)=T (n/2)+T (n/2)+ n)T (n)=O(n log n)

It all depends on partition()! If partition always uses median as
pivot then we have best case. But that could be expensive.



How about we have a linear time, relatively cheap partition that does
not guaranttee even division n1= n2, but rather it guaranttees that

n/36 n1; n26 2n/3

I.e. almost even, the bigger part is no bigger than 2x the smaller
part? Then we have worst case time complexity

T (n)=T (n/3)+T (2n/3)+ n

How do you solve this? Does master theorem cover this?

(Spoiler alert: at the end of this slides we'll know how to solve it; and
it solves to T (n)=O(n log n) still, the same as perfect partition!)

Further more what if a weaker partition:

T (n)=T (n/10)+T (9n/10)+ n

?



Further considerations.

We can apply the same idea of qsort to the problem of selection,
namely given a (unsorted) array, find the k-th smallest element.
Trivial solution would be to sort in O(n logn) and pick the k-th. We
want faster selection algorithm in O(n).

How about we do similar trick to qsort: partition then recurse?

It's recursive alright, and it looks almost like qsort. Its correctness
is not in doubt (proof omitted here).



What about its time complexity? Like qsort, depends on the pivot.
The closer pivot is being the median, the better. Worst case for
qsel is T (n)=T (n¡ 1)+ n )T (n)=O(n2).

With a good pivot, we can reduce it to linear! In fact here is one,
call MoMSelect1, (MoM is median of medians).

1. full rhythm implementation: https://github.com/robbwu/rhythm/blob/main/
examples/mom_select.rhy



Note that we use momsel itself to find a good pivot.



What's the quality of the MoM pivot? In fact at least 3n/10 ele-
ments are smaller than it and at most 7n/10 elements are bigger
than it.

By using this MoMo as pivot our second recursive call has size no
larger than T (7n/10). Now the time complexity:

T (n)= T (n/5)||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
MoMrecursive

+ T (7n/10)||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
onesideofpartitionrecursive

+�(n)



This solves to T (n)=�(n)!

(How? For now you can just try prove it by showing T (n)=O(n),
and T (n)=
 (n) by induction).

Later at the end of these slides, we can use the tree recursion trick
to derive the solution directly.



Bisection: Square Root 7/18

Problem: Given a positive real number x>1, compute its square root
x

p
within error bound of 0.001. (i.e. your computed result jsqrt(x)¡

x
p
j<0.001). The elementary instruction is double precision floating

point IEEE754 (almost certainly your everyday computer/phone).

Put in other words, we seek a floating point number a such that
f (a)= a2¡ x =0, namely the root of the function f (a).

We know that f (a) is monotonic increasing function.

We know f (0)=¡x < 0, and f (x)= x2¡ x > 0. Therefore the root
of f (a) must be in the interval (0; x), but which one number inside
the interval is the root?

Think divide and conquer�can we reduce the �search space�?



This looks like a �continuous� version of besection in sorted array?



Correctness proof: This is different than usual as the problem
size (the interval size (t1-t0)) is not an integer so mathematical
induction does not work out of box. Instead we can do induction on
the depth of recursive calls k. (details omitted; almost the same as
bisection in sorted array)

Time complexity: This is also involved; essentially how many
�halving� until a close enough solution is found, which depends on
the eps is set.

But intuitively, each halving gains us 1-bit of accuracy; so this algo-
rithm is very fast; within the practical floating point representation
like float64, roughly at most 64 recursive steps (plus a few that
depends on the initial interval t0,t1).



Writing the Proof of Recursive Algorithm 8/18

Note that we have seen several example proofs of recursive algo-
rithm/function.

The proof is mathematical induction with almost the same boiler-
plate: setting up induction hypothesis, argue that recursive step is
correct by invoking the induction hypothesis, argue base case work,
and that's about it.

Now we are familiar with it, the proof of recursive algorithm/function
can be done without the boilerplate, by arguing only the essential
part�why the recursive case is correct? Put in other words, how
to solve the big problem with the help of solutions of the smaller
problem?

In this course when you have a recursive algorithm as your solution,
your proof can consists of the Rhythmic pseudocode, the # com-



ment on the claim of the algorithm/function (what exactly does the
function accomplish?), and the argument of solving current problem
with help of solutions of small problems. No need to spell out the
whole induction proof. You must state the claim that you
are proving clearly! (namely, the purpose of the recursive
function)

Isn't that nice? Recursive algorithms are very easy to prove! (And
design and proof are the same thing).



Design Pattern 9/18

Divide and Conquer:

1. Divide the problem into several indepenent smaller instances
of the same problem.

2. Delegate each smaller instances to the recursion fairy (the
blackbox solver, subroutine)

3. Combine the solutions for the smaller instances into the solu-
tion for the given instance.

If the problem is of sufficient trivial size, we directly solve by brute
force, in constant time.

Proof of the correctness of D&C recursion is based on induction.

Analysis of the complexity is based on recurrence equation.



Time Complexity of Recursive Algos 10/18

(Here we briefly talk about time complexity of recursive algorithms,
and at the end we'll discuss at length and in more general form.)

What's the time complexity of recursive algo? Look at the (recursive
function using divide and conquer); say time complexity of size n
problem is T(n), then:

T (n)=f (n)+T (n1)+ : : : +T (nk)

where n1; : : : ;na are the k-subproblem sizes; f(n) is the non-recursive
work, also called per-frame work. Often n1=n2= � � �=na=n/b, so
it's

T (n)=f (n)+aT (
n
b
)

For now we just recall the master theorem:



� If af (n/b)=�f (n) for some constant �<1,thenT (n)=�(f (n)).

� If a f (n /b) = Kf (n) forsomeconstant K > 1,then T (n) =
�(n logba).

� If af (n/b)= f (n),thenT (n)=�(f (n)logbn).

� If None of these three cases apply, you are on your own

Typical example:

(Mergesort) T(n)=2T(n/2)+n ) T(n)=O(n log n)

(Bisection) T(n)=T(n/2)+1 ) T(n)=O(log n)

T (n)= 4T (n/2)+ n) T (n)=O(n2)



Another seeming cheating way to solve recurrence is

Guess and verify.

Which is very powerful! Try it out on the previous examples.

Like this one:

Solve T (n)=T (n/2)+�(n)



Fast Multiplication 11/18

We have seen two algorithms for multiplying two n-digits number in
O(n2) time: grade-school lattice algorithm, and Egyption peasant
algorithm.

Now let's think of a divide and conquer way of solving multiplication.

Can we get a bit more efficient algorithm by splitting the digit arrays
into half (m = n/2), and exploit the following identity:

(10ma+ b)(10mc + d)= 102mac + 10m(bc + ad)+ bd



# given two n digits integer x, y, return x*y
def split_multiply(x, y, n):

# Base case: if n is 1, return the product of x and y
if n == 1:

return x * y # single digit multiplication

# Calculate m as the ceiling of n/2
m = ceil(n / 2)

# Split x into two parts: a and b
a = x // (10 ** m)
b = x % (10 ** m)

# Split y into two parts: c and d
c = y // (10 ** m)
d = y % (10 ** m)

# Recursively calculate e, f, g, and h
e = split_multiply(a, c, m)
f = split_multiply(b, d, m)
g = split_multiply(b, c, m)
h = split_multiply(a, d, m)

# Combine the results and return the final product
return (10 ** (2 * m)) * e + (10 ** m) * (g + h) + f



Correctness is easy to show using induction and the equation. The
run time is

T (n)= 4T (n/2)+O(n)

This results in an increasing geometric series, which implies:

T (n)=O(nlog24)=O(n2)

This did not improve on the efficiency of previous two algorithms.
The culprit is the 4 subproblems (multiplication). If we can reduce...

ac + bd ¡ (a¡ b)(c ¡ d)= bc+ad

that to 3?



def fast_multiply(x, y, n):
# Base case: if n is 1, return the product of x and y
if n == 1:

return x * y

# Calculate m as the ceiling of n/2
m = ceil(n / 2)

# Split x into two parts: a and b
a = x // (10 ** m)
b = x % (10 ** m)

# Split y into two parts: c and d
c = y // (10 ** m)
d = y % (10 ** m)

# Recursively calculate e, f, and g
e = fast_multiply(a, c, m)
f = fast_multiply(b, d, m)
g = fast_multiply(a - b, c - d, m)

# Combine the results and return the final product
return (10 ** (2 * m)) * e + (10 ** m) * (e + f - g) + f



OK, now the time complexity is

T (n)= 3T (n/2)+O(n)

which is still increasing series, and gives us: T (n) = O(nlog23) �
=O(n1.58496), a significant improvement!



Example: Tiling Problem 12/18

Ex 26. Suppose you are given a 2n�2n checkerboard with one (arbitrarily chosen)
square removed. Describe and analyze an algorithm to compute a tiling of the
board by without gaps or overlaps by L-shaped tiles, each composed of 3 squares.
Your input is the integer n and two n-bit integers representing the row and column
of the missing square. The output is a list of the positions and orientations of
(4n¡ 1)/3 tiles. Your algorithm should run in O(4n) time. [Hint: First prove that
such a tiling always exists.]





Working with Trees 13/18

Trees are recursive structure and are mostly time most conveniently
and efficiently dealt with recursive algorithms.

Take binary search tree. Let's create a binary search tree by adding
a list of numbers one by one to the binary search tree:



we can then add numbers to form the binary search tree:

Hmm, it would be great to print out the tree . . .



The resulting tree prints to

var values = [5, 3, 7, 1, 9, 4, 6, 2, 8];

Now we can do a in-order traversal of the binary search tree to
validate that it's in fact a search tree:



It prints out:

Hooray!

Pretty much everything you do with binary tree, you do with recur-
sion.



Traversal of binary tree: in-order, pre-order, post-order



Example: Rotated Sorted Array 14/18





Exercise: Finding Changepoint 15/18

Your VC backed bank (fintech) provides an API as the only way to
query your account balance. On some day you deposit money. You
do not withdraw money. The API is getBalance(day) where day
is an integer (0,1,2, . . . ) indicating the days since you opened the
account. getBalance(day) returns balance at the end of that day.
You forgot which days you deposited money and you want to find
out via querying the API. Do so with as few API calls as possible:

1) assume you only deposited once during days [a,b]

2) assume you deposited twice during days [a,b].

3) assume you deposited k times during days [a,b].



1) do you find it somewhat similar to bisection search?

# find the one changepoint between days [a,b]
def find_one_cp(a,b):

bal_a = getBalance(a)
bal_b = getBalance(b)
if b-a == 1:

assert bal_b > bal_a
return b

m = (a+b)//2 # mid point of a,b
bal_m = getBalance(m)
if bal_a < bal_m:

return find_one_cp(a,m)
if bal_m < bal_b:

return find_one_cp(m,b)



Example: Symbolic Differentiation 16/18

Assuming a function of single variable x . Assume the function con-
sists of exponentials, inverse, sin and cos, log, and +,-,*,/

Derivative rules: (f ; g are functions of x, greek letters are constants)

� Constant rule: if f is constant e.g. f (x)=�, then f 0(x)= 0

� Sum rule: (�f + �g)0=�f 0+ �g 0

� Product rule: (fg)0= f 0 g + fg 0

� Quotient rule:
�

f
g

�0
=

f 0g ¡ fg 0

g2

� Chain rule: if f (x)= h(g(x)), then f 0(x)= h0(g(x)) g 0(x)



� Special function derivatives: sin0(x) = cos(x); cos0(x) = sin(x);
ln0(x)= 1/x, (x�)0=�x�¡1, (ex)0= ex

Using these five rules plus derivatives of common functions, it's
possible to compute the derivatives of an arbitrary function of x that
consists of the arithmetics and composite function.

What is a function that we can differentiate? Like

f (x)= x
p

/sin(1/x)+ln(1+ ex)

How do we define and represent these functions (let's call them
cool functions)? Basic functions like sin(x); cos(x); ln(x); const(x ;
�); pow(x ; �); exp(x), and arithmetic between them, and also com-
positions of cool functions are cool.



Note that definition of cool functions are recursive. Definition and
reprentation is closed related as representation is also recursive.

Here's one way to represent cool functions in Pythonic code:

� All Cool function is represnted as a list.

� The identify function I (x)= x is a cool function, represented as
[�I�] (a list of a single string). It's the only cool function as a
list with one element, the function name.

� Basic functions are cool: ["sin", ["I"]]. (this means sin(x)=
sin(I (x)): Functions except the identity has at least one argu-
ment: the parameter of the function.

� ["const",["I"], a] represents a constant function
f (x)= a.

� ["pow", ["I"], a] represents a power function f (x)=xa



� Arithmetic operators are represented as basic functions:

� [�add�, [�I�], ["const", 5]] means f (x)= x +5

� Composition of cool functions are also cool:

� ["ln", ["add", ["pow", ["I"], -1], ["const",

2]]] means ln
¡ 1

x
+2

�
According to this representation, the aforementioned function

f (x)= x
p

sin(1/x)+ln(1+ ex)

["add",
["mul",

["pow", ["I"], 0.5],
["sin", ["pow", ["I"], -1]]

],
["ln",

["add", ["const", 1], ["exp", ["I"]]]
]

]



OK, now we can start writing a function to auto-diff a cool function.

def diff(F):
if F[0] == "const":

return 0
if F[0] == "I":

return ["const", 1]

if F[0] == "add":
return ["add", diff(F[1]), diff(F[2])]

if F[0] == "sub":
return ["sub", diff(F[1]), diff(F[2])]

if F[0] == "mul":
return ["add", ["mul", diff(F[1]), F[2]], ["mul", F[1], diff(F[2])]]

if F[0] == "div":
return ["div", ["sub", ["mul", diff(F[1]), F[2]], ["mul", F[1], diff(F[2])]],

["pow", F[2], 2]]

if F[0] == "ln":
return ["mul", ["pow", F[1], -1], diff(F[1])]

if F[0] == "exp":
return ["mul", ["exp", F[1]], diff(F[1])]

if F[0] == "sin":
return ["cos", diff(F[1])]

if F[0] == "cos":
return ["sin", diff(F[1])]

After applying to the above function:



diff(["Add",
["mul",
["pow", ["I"], 0.5],
["sin", ["pow", ["I"], -1]]
],

["ln",
["add", ["const", 1], ["exp", ["I"]]]
]

])
=> ['add', ['add', ['mul', ['mul', ['mul', ['const', 0.5], ['pow',
['I'], -0.5]], ['const', 1]], ['sin', ['pow', ['I'], -1]]], ['mul',
['pow', ['I'], 0.5], ['cos', ['mul', ['mul', ['const', -1], ['pow',
['I'], -2]], ['const', 1]]]]], ['mul', ['pow', ['add', ['const', 1],
['exp', ['I']]], -1], ['add', 0, ['mul', ['exp', ['I']], ['const',
1]]]]]

Hmm, it's kind of hard to verify it..I'm being a bit lazy here so how
about we also write a function to evaluate a cool function, so that
we can evaluate at a certain x and compare to Mathematica:



Exercise1: the output of diff can be very verbose, with a lot f(x)*0
kind of terms. Write a function to simplify a cool function.

Exercise2: The list representation of cool function is quite convenient
to handle in the program, but no so much to read or write. Write
translation routines to convert list formt to regular math formula
style like ln(1+1/x) * sin(e^x)



Parsing: Recursive Descent 17/18

Parsing is the process of turning a sequence of tokens into an
abstract syntax tree (AST) of a given (context-free) grammar.

The simplest algorithm for parsing is called recursive descent; As
the name suggest it's a (very) recursive algorithm. Beat uses it to
parse a tokenized Rhythm program to an Abstracted Syntax Tree
(AST) 2. It's also used in GCC, Chrome V8, etc.

We won't go into details; but check the nice illustration in Crafting
Intepreter3. Here we just note that both grammar, program, and
AST are recursive structures.

2. https://github.com/robbwu/rhythm/blob/main/src/parser.hpp

3. https://craftinginterpreters.com/parsing-expressions.html



Solving Recurrence 18/18

How to solve recurrence equation like this:

T (n)= r T (n/c)+ f (n) (1)



Example: mergesort recurrence

In mergesort we have T (n)= 2T (n)+ n

f (n)= n, c = r =2, the series is equal in every level, so the second
case:

T (n)=O(f (n) log n)=O(n log n)





Now the cost of the whole tree is the summation of all the levels:

T (n)=
X
i=0

L

r i � f (n/c i)

L= logcn is the number of levels of the tree. We can assume T (1)=
1. How many leaves in the tree? rL= r logcn= nlogcr.

Three cases of level-by-level series (
P

).

1. Decreasing: if the series decays exponentially, then T (n) =
�(f (n))

2. Equal: we have T (n)=O(L f (n))=�(f (n) log n)

3. Increasing: if the series grows exponentially, then T (n)=�(nlogcr)

This level-by-level analysis works not only for the regular recurrence
form:

T (n)= rT (n/c)+ f (n)



It also works (with some adaptions) for irregular ones such as:

T (n)=T (n/a)+T (n/b)+ f (n)

We can expand the recursion tree and observe the level-by-level
series:

� Decreasing exponentially: cost dominated by first level;
T (n)=�(f (n))

� Equal: T (n)=�(f (n) log n)

� Increasing exponentially: (different from regular case!) We
know that T (n)=n�, we need to determine �. How? Substitute
it back to recurrence and solve for �.

Example: Recurrence

T (n)=T (3n/4)+T (2n/3)+ n2 (2)



The level-by-level series are:

n2; 145n2/144; (145n)2/1442; : : :

This is an exponentially increasing (geometric) series, with ratio
145/144. The third case (increasing) applies. Suppose: T (n)=n�

Substitute it back to the recurrence (4) gives us equation:

n�=(3n/4)�+(2n/3)�+ n2

We must have �> 2 (why? look at the series). Dividing both sides
by n� and taking n!1, we have equation:

1= (3/4)�+(2/3)�

This solves to �� 2.0203, which is a root to the previous equation.

(You can solve it via wolframalpha: http://bit.ly/39P3D7i)



So the solution is:

T (n)=�(n2.0203)



Reference on solving recurrences: http://
jeffe.cs.illinois.edu/teaching/algorithms/notes/99-
recurrences.pdf

The Master Theorem

The recurrence T (n)= aT(n/b)+f (n) can be solved as follows.

� If af (n/b)=�f (n) for some constant �<1,thenT (n)=�(f (n)).

� If a f (n /b) = Kf (n) forsomeconstant K > 1,then T (n) =
�(n logba).

� If af (n/b)= f (n),thenT (n)=�(f (n)logbn).

� If None of these three cases apply, you are on your own

Proof. Recursion tree? �



Examples:

� Mergesort: T (n)= 2T (n/2)+ n

� Randomized selection: T (n)=T (3n/4)+ n

� SplitMultiplication: T (n)= 4T (n/2)+ n

� FastMultiplication: T (n)= 3T (n/2)+ n

� Randomized quicksort: T (n)=T (3n/4)+T (n/4)+ n

� Deterministic selection: T (n)=T (n/5)+T (7n/10)+ n


