
Lec9: Merge



Introduction: Merge

• Given two sorted array A, and B, merge them into a sorted array C. 
• Useful in say merge sort
• New: in parallelization, the inputs to each thread is dynamically 

determined because they are data dependent. 
Unlikely all previous examples, which are all statically determined 
and only dependent on compute structure but not on data. 



Merge operation: Sequential Algorithm
Sequential merge: 
C[k] = min(A[i],B[j])



Merge: Parallelization

• How to parallelize? 
• Recall previous examples: 

• VectorAdd: input decomposition
• Histogram: input decomposition
• Scan/Reductin: input decomposition
• MatrixMultiplication: output decomposition + owner computes rule
• ImageBlur/Convolution: output decomposition + owner compute rule

• What about merge? 
• Input decomposition: seems difficult: which chunk of A and which chunk of B to 

merge? 
• Output decomposition?: possible, if noting

any chunk of C is a merge of a chunk of A and a chunk of B. 
Q: which chunk of A and which chunk of B? 



• any chunk of C is a merge of a chunk of A and a chunk of B. 
Q: which chunk of A and which chunk of B?

• Or put it more formally: 
for any C[k1:k2] in the merged result, there must exist i1,i2 and 
j1,j2 such that
C[k1:k2] = merge(A[i1:i2], B[j1:j2])

• If we can compute mapping (k1,k2) -> (i1, i2, j1, j2)
then we have an output decomposition: 
Give a C chunk to a thread/block, and owner computes. 



Co-rank

• for any C[k1:k2] in the merged result, there must exist i1,i2 and 
j1,j2 such that
C[k1:k2] = merge(A[i1:i2], B[j1:j2])

• Co-rank is a function that is
co_rank(k, A, m, B, n) -> i
where C[0:k] = merge(A[0:i], B[0:k-i])

• Once we have co_rank() function, for any chunk of C, C[k1:k2] we 
can compute its merge inputs A[i1:i2], B[j1:j2] as
co_rank(k1, A, m, B, n) -> i1
co_rank(k2, A, m, B, n) -> i2
j1 = k1 – i1, j2 = k2 – i2



co_rank() example: 

k=0 i=0
k=1 i=1
k=2 i=2
k=3 i=2
k=4 i=3
k=5 i=4
k=6 i=5
k=7 i=5
k=8 i=5



Co_rank() implementation

• Definition: co_rank(k, A, m, B, n) -> i
where C[0:k] = merge(A[0:i], B[0:k-i])

• How to compute co_rank()? 
Consider a simpler question, given an ii can we test whether ii is the i
that we want, given the parameters k, A, m, B, n? 

• Sufficient and necessary condition for ii = i: 
let jj = k - ii
A[ii] >= B[jj-1]
B[jj] >= A[ii-1]

• There exists at least one such ii
• Now we know how to test ii, next Q: how to find ii? 



Co_rank(k, A, m, B, n)

• How to find i, given that we can test ii for the solution? 
• Naïve method: iterate through all possible i, and test it.

This is very expensive, O(n) time complexity. 
• A better way is to do binary search 

take an interval for search [a,b], and pick any point in it (say mid-
point m = (a+b)/2)
if A[m] < B[k-m-1], then m is too small, search in [m,b] next
if B[k-m] < A[m-1], then m is too large, search in [a,m] next

• Each above condition test reduce the search space by half. 
• After O(log(n)) rounds of search we must be able to find the i. 



Co-rank() implementation



Kernel1:

• Output decomposition: 
each thread gets CHUNK sized chunk in C, and is responsible to 
compute it. 

• How? Say thread tid gets chunk C[k1:k2], it computes
A[i1:i2], B[j1:j2] using co_rank(), and then do a sequential merge: 
C[k1:k2] = merge(A[i1:i2],B[j1:j2])



Kernel1: 



Kernel1

• Performance expectation? 
• Merge must be memory bandwidth bound, so optimizing and 

minimizing global memory access is crucial. 
• Memory access coalesced? 
• How many times are global memory accessed? 
• What’s the expected performance in GB/s?



Kernel2: coalescing via shared memory

• To improve global memory access pattern and also make sure that 
co_rank() does not hit global memory, 

• We can decompose C into bigger chunks and assign chunk to 
thread block

• And each thread block loads the A chunk and B chunk into shared 
memory collaboratively (coalesced)



Kernel2: #1



Kernel2: #2



Benchmarks

• A, B of size 16Million int



How did CUB get so fast? 

• GPU Merge Path –
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&do
i=ff958b54a930bda2ca902f9abd4f0aaf55b21862
Oded Green, Robert McColl, and David A. Bader. 2012. GPU 
merge path: a GPU merging algorithm. In Proceedings of the 26th 
ACM international conference on Supercomputing (ICS '12). 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ff958b54a930bda2ca902f9abd4f0aaf55b21862
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ff958b54a930bda2ca902f9abd4f0aaf55b21862

	Slide 1: Lec9: Merge
	Slide 2: Introduction: Merge
	Slide 3: Merge operation: Sequential Algorithm
	Slide 4: Merge: Parallelization
	Slide 5
	Slide 6: Co-rank
	Slide 7: co_rank() example: 
	Slide 8: Co_rank() implementation
	Slide 9: Co_rank(k, A, m, B, n)
	Slide 10: Co-rank() implementation
	Slide 11: Kernel1:
	Slide 12: Kernel1: 
	Slide 13: Kernel1
	Slide 14: Kernel2: coalescing via shared memory
	Slide 15: Kernel2: #1
	Slide 16: Kernel2: #2
	Slide 17: Benchmarks
	Slide 18: How did CUB get so fast? 

