
Lec11: Sorting



Two parallel sorting algorithms

• Non-comparison based: Radix sort
• Comparison based: merge sort



Radix sort algorithm

• Non comparison based; limited to certain keys (mostly integers)
• Sorting algorithms proceeds position by position, sorting from Least 

Significant Bit (LSB) to Most Significant Bit (MSB)
• Invariant property: after round k, the array is sorted according to the 

last k-bits. 
• After m rounds (m is the max # bits of elements in the array), the whole 

array is completely sorted. 
Time complexity? O(m*n) (with fixed sized integers like 64 bit, it’s 
effective O(n) linear time)

• We can use binary representation for radix sort, so that sorting by 1 
position is simply putting 0s before 1s





Parallel Radix Sort

• There is sequential dependencies between rounds, so that can’t 
be parallelized

• We must do parallelization within each round
• How? Let’s try input decompositions: each thread takes one input 

element and determine its output position. 
• OK, let’s say thread i takes input[i] which has 0 bit for the round. 

Where should we put it? 



Parallel Radix-sort

• What if input[i] has value of 1 in the round bit? 

• OK, it seems if we can get 
#ones before (every index i) 
then we can simply calculate the destination of input[i] 

• How to compute #ones_before_index(i) for all i=0, 1, …, n-1?
Does it look related to scan?







Performance Considerations

• First thing first, what would be the performance metric? 
• Sorting – O(n log n) operations, minimum data from/to global memory is 

O(n)
• Memory bandwidth is likely the hard bottleneck; 
• Therefore achieved global memory throughput GB/s

2*(bytes_of_input)/run_time
• Issues of the previous parallel Radix sort algorithm

• Memory Coalesced? 
• # passes to read/write the whole array? 

• What would be the expected performance of previous Radix sort 
in terms of global memory GB/s? 



PerfOpt1: Write coalescing

• The previous radix sort algorithm, when threads write key back to 
their sorted positions, they are essentially “scattered” around
• Not coalesced
• Is this a big deal? Well the main cost of sorting seems to be (several 

passes) reading and shuffling/writing the whole array from/to global 
memory. 

• Half of the memory access (write) is not coalesced; we could have up to 
<2x speedup if we can make it coalesced

• How to make write coalescing? 
• Shared memory? 
• Locally sort in each thread block and store results in shared memory
• And then write back to memory in coalescing. 







PerfOpt2: Reducing #pass

• With 1-bit radix sort, to sort 64-bit integer arrays, there are 64 
passes, one pass per bit. 

• Each pass will require at least one read pass and write pass of the 
whole array. 

• So achieved GB/s would be 1/64 of peak hardware GB/s 
• Big impact (potentially proportionally) to reduce the #passes
• How? Use multi-bit radix sort

• Each pass, sort not by a single bit, but rather a few grouped bits. 





2-bit Radix sort

• How to sort keys into 4 buckets (00, 01, 10, 11) instead of 2 
buckets (0, 1) in the 1-bit radix sort? 

• Well, we can internally do a 1-bit radix sort within each thread 
block!

• This plays well with the shared-memory idea where results are 
first cached in shared memory and then at the end written back to 
global memory. 

• OK next question, once each thread blocks finishes 4 buckets 
radix sort, how to assemble them in global memory? 





Pros and Cons of k-bit Radix sort

• Pros
• Fewer #passes!

• Cons
• Scan got bigger!
• More complicated code
• Write coalescing becomes 

worse

• Tradeoffs need to be regarding 
the best k-bit radix sort. 



Parallel MergeSort



References and Further Reading

• CUB MergeSort : 
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceMergeS
ort.html

• CUB RadixSort:
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceRadixSo
rt.html

https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceMergeSort.html
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceMergeSort.html
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceRadixSort.html
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceRadixSort.html

	Slide 1: Lec11: Sorting
	Slide 2: Two parallel sorting algorithms
	Slide 3: Radix sort algorithm
	Slide 4
	Slide 5: Parallel Radix Sort
	Slide 6: Parallel Radix-sort
	Slide 7
	Slide 8
	Slide 9: Performance Considerations
	Slide 10: PerfOpt1: Write coalescing
	Slide 11
	Slide 12
	Slide 13: PerfOpt2: Reducing #pass
	Slide 14
	Slide 15: 2-bit Radix sort
	Slide 16
	Slide 17: Pros and Cons of k-bit Radix sort
	Slide 18: Parallel MergeSort
	Slide 19: References and Further Reading

