
Copyright © 2022 Elsevier

Wen-mei Hwu, David Kirk, Izzat El HajjProgramming Massively Parallel Processors
A Hands-on Approach

z

Copyright © 2022 Elsevier

CHAPTER 15 Graph Traversal
(PART 1)

Copyright © 2022 Elsevier

Representing Graphs

• Graphs can be represented with adjacency matrices
• Adjacency matrix is usually very sparse

• Can use the same storage formats for sparse matrices

• We will assume unweighted graphs
• Nonzeros all ones so no need to store their values

0

1

2 3

Graph

0 1 2 3

0 1

1 1 1

2 1

3 1

Adjacency Matrix

So
u

rc
e

V
er

te
x

Destination Vertex

Copyright © 2022 Elsevier

COO, CSR, and CSC Representation

src 0 1 1 2 3

dst 2 0 2 3 1

srcPtrs 0 1 3 4 5

dst 2 0 2 3 1

COO

CSR
dstPtrs 0 1 2 4 5

src 1 3 0 1 2
CSC

0

1

2 3

Graph

0 1 2 3

0 1

1 1 1

2 1

3 1

Adjacency Matrix

So
u

rc
e

V
er

te
x

Destination Vertex

Copyright © 2022 Elsevier

Approaches to Parallelizing Graph Traversal

• Vertex-centric
• Assign a thread to do something for each vertex

• Typically use CSR/CSC

• Given a vertex, easy to find all its incoming or outgoing edges

• Might also use other formats (e.g., ELL, JDS) as optimization

• Edge-centric
• Assign a thread to do something for each edge

• Typically use COO

• Given an edge, easy to find its source and destination vertices

• Hybrid
• Example: Given an edge, need neighbors of the source vertices and neighbors of

the destination vertices

• Use both COO and CSR/CSC

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Level 0

0

∞ ∞

∞

∞

∞

∞ ∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Level 1

0

1 1

1

1

∞

∞ ∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Level 2

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Level 3

0

1 1

1

1

2

2 2 2

23

3

3

∞

∞

∞

∞

Copyright © 2022 Elsevier

Breadth First Search (BFS)

Objective: find the distance (level) of each vertex from some source vertex

Unreachable

0

1 1

1

1

2

2 2 2

23

3

3

∞

∞

∞

∞

Copyright © 2022 Elsevier

Approaches to Parallelizing BFS

• Vertex-centric (two versions)
• Push: For every vertex, if it was in the previous level, add all its unvisited

outgoing neighbors to the current level
• i.e., a vertex pushes information to its outgoing neighbors

Copyright © 2022 Elsevier

Vertex-Centric BFS (Push)

Level 1 => Level 2

Threads whose vertices are in level 1 mark their unvisited neighbors as being in level 2

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric BFS Code (Push)

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* level, unsigned int* newVertexVisited,
 unsigned int currLevel) {
 unsigned int vertex = blockIdx.x*blockDim.x + threadIdx.x;
 if(vertex < csrGraph.numVertices) {
 if(level[vertex] == currLevel - 1) {
 for(unsigned int edge = csrGraph.srcPtrs[vertex]; edge < csrGraph.srcPtrs[vertex + 1]; ++edge) {
 unsigned int neighbor = csrGraph.dst[edge];
 if(level[neighbor] == UINT_MAX) { // Neighbor not previously visited
 level[neighbor] = currLevel;
 *newVertexVisited = 1;
 }
 }
 }
 }
}

Copyright © 2022 Elsevier

Approaches to Parallelizing BFS

• Vertex-centric (two versions)
• Push: For every vertex, if it was in the previous level, add all its unvisited

outgoing neighbors to the current level
• i.e., a vertex pushes information to its outgoing neighbors

• Pull: For every vertex, if it has not been visited, if any of its incoming
neighbors are in the previous level, add it to the current level

• i.e., a vertex pulls information from its incoming neighbors

Copyright © 2022 Elsevier

Vertex-Centric BFS (Pull)

Level 1 => Level 2

Threads whose vertices are unvisited mark their vertices as being in level 2
if any of their neighbors are in level 1

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric BFS Code (Pull)

__global__ void bfs_kernel(CSCGraph cscGraph, unsigned int* level, unsigned int* newVertexVisited,
 unsigned int currLevel) {
 unsigned int vertex = blockIdx.x*blockDim.x + threadIdx.x;
 if(vertex < cscGraph.numVertices) {
 if(level[vertex] == UINT_MAX) { // Vertex not previously visited
 for(unsigned int edge = cscGraph.dstPtrs[vertex]; edge < cscGraph.dstPtrs[vertex + 1]; ++edge) {
 unsigned int neighbor = cscGraph.src[edge];
 if(level[neighbor] == currLevel - 1) {
 level[vertex] = currLevel;
 *newVertexVisited = 1;
 break;
 }
 }
 }
 }
}

Copyright © 2022 Elsevier

Approaches to Parallelizing BFS

• Vertex-centric (two versions)
• Push: For every vertex, if it was in the previous level, add all its unvisited

outgoing neighbors to the current level
• i.e., a vertex pushes information to its outgoing neighbors

• Pull: For every vertex, if it has not been visited, if any of its incoming
neighbors are in the previous level, add it to the current level

• i.e., a vertex pulls information from its incoming neighbors

• Direction-optimized: Start with push then switch to pull
• Pull is inefficient at the beginning because most vertices will search all

neighbors and not find any that are in the previous level

Copyright © 2022 Elsevier

Approaches to Parallelizing BFS

• Vertex-centric (two versions)
• Push: For every vertex, if it was in the previous level, add all its unvisited

outgoing neighbors to the current level
• i.e., a vertex pushes information to its outgoing neighbors

• Pull: For every vertex, if it has not been visited, if any of its incoming
neighbors are in the previous level, add it to the current level

• i.e., a vertex pulls information from its incoming neighbors

• Direction-optimized: Start with push then switch to pull
• Pull is inefficient at the beginning because most vertices will search all

neighbors and not find any that are in the previous level

• Edge-centric
• For every edge, if its source vertex was in the previous level, add its

destination vertex to the current level

Copyright © 2022 Elsevier

Edge-Centric BFS

Level 1 => Level 2

Threads whose edge’s source vertex is in level 1 and whose edge’s destination
vertex is unvisited mark their edge’s destination vertex as being in level 2

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Edge-Centric BFS Code

__global__ void bfs_kernel(COOGraph cooGraph, unsigned int* level, unsigned int* newVertexVisited,
 unsigned int currLevel) {
 unsigned int edge = blockIdx.x*blockDim.x + threadIdx.x;
 if(edge < cooGraph.numEdges) {
 unsigned int vertex = cooGraph.src[edge];
 unsigned int neighbor = cooGraph.dst[edge];
 if(level[vertex] == currLevel - 1) {
 if(level[neighbor] == UINT_MAX) { // Destination vertex not previously visited
 level[neighbor] = currLevel;
 *newVertexVisited = 1;
 }
 }
 }
}

Copyright © 2022 Elsevier

Dataset Implications

• The best parallelization approach depends on the structure of the graph

• The vertex-centric pull and the edge-centric approaches are better on high-
degree graphs

• e.g., social network graphs with celebrities

• Better at dealing with load imbalance

• The vertex-centric push approach is better on low-degree graphs
• e.g., map of roads in a geographical area

• Only promising threads will iterate through neighbors

Copyright © 2022 Elsevier

Similarity Between BFS and SpMV

× =

0 1 2 3

0

1

2

3

Row

Column

0 1 2 3

0

1

2

3

Destination

Source

Vectorin Vectorout

Levelsold Levelsnew

for every row
 for every nonzero in the row
 lookup in Vectorin at column
 update to Vectorout at row

SpMV

for every dst
 for every edge to the dst
 lookup in Levelsold at src
 update to Levelsnew at dst

BFS
(vertex-centric pull)

Vertex-centric push and edge-centric also correspond to other ways of performing SpMV

(transposed adjacency matrix)

Copyright © 2022 Elsevier

Linear Algebraic Formulation of Graph Problems

• With a few tweaks, BFS can be formulated exactly as SpMV

• Many graph problems can be formulated in terms of sparse linear algebra
computations

• Advantage: leverage mature and well-optimized parallel libraries for high
performance sparse linear algebra

• Disadvantage: not always the most efficient way to solve the problem

Copyright © 2022 Elsevier

References

• Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2022.

Copyright © 2022 Elsevier

Wen-mei Hwu, David Kirk, Izzat El HajjProgramming Massively Parallel Processors
A Hands-on Approach

z

Copyright © 2022 Elsevier

CHAPTER 15 Graph Traversal
(PART 2)

Copyright © 2022 Elsevier

Redundant Work

• Approaches discussed so far check every vertex or edge on every iteration for
relevance

• Strengths: easy to implement, highly parallel, no synchronization across threads

• Weaknesses: a lot of unnecessary threads/work

• Many threads will find that their vertex or edge are not relevant for this iteration and
just exit

• Alternative for reducing redundancy:
• Objective: only check the vertices that are part of the previous level

• Approach: each level adds the vertices it visits to a list for the next level to
process

• Vertices added at each level form that level’s frontier

• Overhead: synchronization across threads to add to a shared list

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

Previous Frontier:

0

∞ ∞

∞

∞

∞

∞ ∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

Level 0 => Level 1

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

Level 0 => Level 1

Next Frontier:Previous Frontier:

0

1 1

1

1

∞

∞ ∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

0

1 1

1

1

∞

∞ ∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

Previous Frontier:

Level 1 => Level 2

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

Level 1 => Level 2

Next Frontier:Previous Frontier:

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

0

1 1

1

1

2

2 2 2

2∞

∞

∞

∞

∞

∞

∞

Level 2 => Level 3

Previous Frontier:

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

Level 2 => Level 3

Next Frontier:Previous Frontier:

0

1 1

1

1

2

2 2 2

23

3

3

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

0

1 1

1

1

2

2 2 2

23

3

3

∞

∞

∞

∞

Level 3 => Level 4

Previous Frontier:

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS

Level 3 => Level 4

Next Frontier:Previous Frontier:

0

1 1

1

1

2

2 2 2

23

3

3

∞

∞

∞

∞

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS Code

__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* level, unsigned int* prevFrontier,
 unsigned int* currFrontier, unsigned int numPrevFrontier,

 unsigned int* numCurrFrontier, unsigned int currLevel) {
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 if(i < numPrevFrontier) {
 unsigned int vertex = prevFrontier[i];
 for(unsigned int edge = csrGraph.srcPtrs[vertex]; edge < csrGraph.srcPtrs[vertex + 1];

 ++edge) {
 unsigned int neighbor = csrGraph.dst[edge];
 if(atomicCAS(&level[neighbor], UINT_MAX, currLevel) == UINT_MAX) {
 unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
 currFrontier[currFrontierIdx] = neighbor;

 }
 }
 }
}

Ensure only one thread visits
the neighbor to avoid adding it
to the frontier multiple times

Avoid race conditions when
adding to the frontier

Copyright © 2022 Elsevier

Adding Frontier Vertices

race condition!

Copyright © 2022 Elsevier

Adding Frontier Vertices

write conflict!

Copyright © 2022 Elsevier

Adding Frontier Vertices

use atomics
operations

Copyright © 2022 Elsevier

Frontier Privatization

• All threads atomically increment the same global counter to add elements to
the frontier

• High latency due to global memory access and serialization due to high
contention

• Optimization: privatization and shared memory

• Each thread block maintains a private frontier in shared memory and commits
entries to the global frontier upon completion

Copyright © 2022 Elsevier

Frontier Privatization

Copyright © 2022 Elsevier

Frontier Privatization

Copyright © 2022 Elsevier

Frontier Privatization

Copyright © 2022 Elsevier

Vertex-Centric Frontier-Based BFS Code with Privatization
__global__ void bfs_kernel(CSRGraph csrGraph, unsigned int* level, unsigned int* prevFrontier,
 unsigned int* currFrontier, unsigned int numPrevFrontier, unsigned int* numCurrFrontier, unsigned int currLevel) {

 // Initialize privatized frontier
 __shared__ unsigned int currFrontier_s[LOCAL_FRONTIER_CAPACITY];

 __shared__ unsigned int numCurrFrontier_s;
 if(threadIdx.x == 0) {

 numCurrFrontier_s = 0;

 }
 __syncthreads();

 // Perform BFS

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i < numPrevFrontier) {
 unsigned int vertex = prevFrontier[i];

 for(unsigned int edge = csrGraph.srcPtrs[vertex]; edge < csrGraph.srcPtrs[vertex + 1]; ++edge) {
 unsigned int neighbor = csrGraph.dst[edge];

 if(atomicCAS(&level[neighbor], UINT_MAX, currLevel) == UINT_MAX) { // Vertex not previously visited

 unsigned int currFrontierIdx_s = atomicAdd(&numCurrFrontier_s, 1);
 if(currFrontierIdx_s < LOCAL_FRONTIER_CAPACITY) {

 currFrontier_s[currFrontierIdx_s] = neighbor;
 } else {

 numCurrFrontier_s = LOCAL_FRONTIER_CAPACITY;

 unsigned int currFrontierIdx = atomicAdd(numCurrFrontier, 1);
 currFrontier[currFrontierIdx] = neighbor;

 }
 }

 }

 }
 __syncthreads();

 // Allocate in global frontier

 __shared__ unsigned int currFrontierStartIdx;
 if(threadIdx.x == 0) {

 currFrontierStartIdx = atomicAdd(numCurrFrontier, numCurrFrontier_s);
 }

 __syncthreads();

 // Commit to global frontier

 for(unsigned int currFrontierIdx_s = threadIdx.x; currFrontierIdx_s < numCurrFrontier_s;
 currFrontierIdx_s += blockDim.x) {

 unsigned int currFrontierIdx = currFrontierStartIdx + currFrontierIdx_s;

 currFrontier[currFrontierIdx] = currFrontier_s[currFrontierIdx_s];
 }

}

Copyright © 2022 Elsevier

Minimizing Launch Overhead

• Need to synchronize between levels
• Wait for all threads to add all vertices in the current level to the frontier before

proceeding to the next level

• So far, we have launched a new grid for each level
• Overhead of launching new grid and copying counter

• Optimization: If consecutive levels have few enough vertices that can be
executed by one thread block:

• Execute multiple levels in one single-block grid and synchronize between levels
using __syncthreads()

• Reduces total number of number of grid launches

Copyright © 2022 Elsevier

Minimizing Launch Overhead

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Launching a new grid for each level

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Consecutive small levels in one grid

Copyright © 2022 Elsevier

References

• Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2022.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

