
Lec14: OpenCL

Modified for UH COSC4397

Spring 2025

Hands On OpenCL

Created by

Simon McIntosh-Smith

and Tom Deakin

Includes contributions from:

Timothy G. Mattson (Intel) and Benedict Gaster (Qualcomm) V 1.2 – Nov 2014

Agenda
Lectures Exercises

Setting up OpenCL Platforms Set up OpenCL

An overview of OpenCL Run the platform info command

Important OpenCL concepts Running the Vadd kernel

Overview of OpenCL APIs Chaining Vadd kernels

A hosts view of working with kernels The D = A+B+C problem

Introduction to OpenCL kernel programming Matrix Multiplication

Understanding the OpenCL memory hierarchy Optimize matrix multiplication

Synchronization in OpenCL The Pi program

Heterogeneous computing with OpenCL Run kernels on multiple devices

Optimizing OpenCL performance Profile a program

Enabling portable performance via OpenCL Optimize matrix multiplication for

cross-platform

Debugging OpenCL

Porting CUDA to OpenCL Port CUDA code to OpenCL

Appendices

Course materials

In addition to these slides, C++ API header files, a set of exercises,
and solutions, it is useful to have:

OpenCL 1.1 Reference Card

This card will help you keep track
of the API as you do the exercises:

https://www.khronos.org/files/ope
ncl-1-1-quick-reference-card.pdf

The v1.1 spec is also very readable
and recommended to have on-hand:

https://www.khronos.org/registry/
cl/specs/opencl-1.1.pdf

https://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

AN OVERVIEW OF OPENCL

Lecture 2

It’s a Heterogeneous world

OpenCL lets Programmers write a single portable program

that uses ALL resources in the heterogeneous platform

A modern computing

platform includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15

1.7GHz, Mali T604 GPU

E.g. Intel XXX with IRIS

Microprocessor trends
Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:

 How are we to build a software ecosystem for the
 Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla®

C2090

10 cores

16 wide SIMD

ATI RV770

16 cores

32 wide SIMD

Intel® Xeon Phi

coprocessor

Industry Standards for Programming

Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed

commonality

across products

GPU vendor –

wants to steal

market share

from CPU

CPU vendor –

wants to steal

market share

from GPU

Was tired of recoding for

many core, GPUs.

Pushed vendors to

standardize.

Wrote a rough draft

straw man API

Khronos Compute

group formed

ARM

Nokia

IBM

Sony

Qualcomm

Imagination

TI

Third party names are the property of their owners.

+ many

more

OpenCL Working Group within Khronos

• Diverse industry participation
– Processor vendors, system OEMs, middleware

vendors, application developers.

• OpenCL became an important standard upon
release by virtue of the market coverage of
the companies behind it.

MemberLogo

MemberLogo

Umeå University's
Logotype

Takumi Corporation

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

OpenCL Timeline
• Launched Jun’08 … 6 months from “strawman” to

OpenCL 1.0

• Rapid innovation to match pace of hardware
innovation
– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect
software investments

Khronos publicly
releases OpenCL
1.0 specification

During 2H09
Multiple conformant

implementations ship across a
diverse range of platforms.

Dec08 Jun10

Khronos publicly releases
OpenCL 1.1 specification.

Conformant implementations
available shortly thereafter

Nov11

Release of
OpenCL 1.2

OpenCL Timeline
• Launched Jun’08 … 6 months from “strawman” to

OpenCL 1.0

• Rapid innovation to match pace of hardware
innovation
– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect
software investments

OpenCL 1.0
released.

Conformance tests
released Dec08

Dec08

Jun10

OpenCL 1.1
Specification and
conformance tests

released

Nov11

OpenCL 1.2
Specification and
conformance tests

released

Nov13

OpenCL 2.0
Specification
finalized and

conformance tests
released

Jul13

OpenCL 2.0
Provisional

Specification released
for public review

OpenCL: From cell phone to

supercomputer

• OpenCL Embedded profile for
mobile and embedded silicon
– Relaxes some data type and

precision requirements

– Avoids the need for a separate
“ES” specification

• Khronos APIs provide
computing support for
imaging & graphics
– Enabling advanced applications

in, e.g., Augmented Reality

• OpenCL will enable parallel
computing in new markets
– Mobile phones, cars, avionics

A camera phone with GPS

processes images to

recognize buildings and

landmarks and provides

relevant data from internet

OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

OpenCL Platform Example

(One node, two CPU sockets, two GPUs)

CPUs:

• Treated as one OpenCL

device

– One CU per core

– 1 PE per CU, or if PEs mapped

to SIMD lanes, n PEs per CU,

where n matches the SIMD

width

• Remember:

– the CPU will also have to be

its own host!

GPUs:

• Each GPU is a separate

OpenCL device

• Can use CPU and all GPU

devices concurrently through

OpenCL

CU = Compute Unit; PE = Processing Element

Exercise 1: Platform Information

• Goal:

– Verify that you can run a simple OpenCL program.

• Procedure:
– Take the provided DeviceInfo program, inspect it in

the editor of your choice, build the program and run it.

• Expected output:

– Information about the installed OpenCL platforms and
the devices visible to them.

• Extension:
– Run the command clinfo which comes as part of the

AMD SDK but should run on all OpenCL platforms. This
outputs all the information the OpenCL runtime can find
out about devices and platforms.

IMPORTANT OPENCL CONCEPTS

Lecture 3

OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each

point in a problem domain
– E.g., process a 1024x1024 image with one kernel invocation per

pixel or 1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL

void

mul(const int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i = 0; i < n; i++)

 c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

 __global const float *b,

 __global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel

Analogies to CUDA

OpenCL CUDA Purpose

get_global_id(0)
blockIdx.x * blockDim.x

+ threadIdx.x

Global thread ID in 1D

grid.

get_local_id(0) threadIdx.x
Local ID within a work-

group (block).

get_group_id(0) blockIdx.x Work-group (block) ID.

get_global_size(0) gridDim.x * blockDim.x
Total work-items in

dimension 0.

An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 64x64 (work-group, executes together)

• Choose the dimensions that are “best” for

your algorithm

1024

1
0
2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

OpenCL N Dimensional Range

(NDRange)
• The problem we want to compute should

have some dimensionality;
– For example, compute a kernel on all points in a

cube

• When we execute the kernel we specify up
to 3 dimensions

• We also specify the total problem size in
each dimension – this is called the global
size

• We associate each point in the iteration
space with a work-item

OpenCL N Dimensional Range

(NDRange)

• Work-items are grouped into work-groups;

work-items within a work-group can share

local memory and can synchronize

• We can specify the number of work-items

in a work-group – this is called the local

(work-group) size

• Or the OpenCL run-time can choose the

work-group size for you (usually not

optimally)

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global Memory
/Constant Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

Context and Command-Queues

• Context:
– The environment within which kernels

execute and in which synchronization
and memory management is defined.

• The context includes:
– One or more devices

– Device memory

– One or more command-queues

• All commands for a device (kernel
execution, synchronization, and
memory transfer operations) are
submitted through a command-
queue.

• Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

Execution model (kernels)

• OpenCL execution model … define a problem
domain and execute an instance of a kernel for
each point in the domain

__kernel void times_two(

 __global float* input,

 __global float* output)

{

 int i = get_global_id(0);

 output[i] = 2.0f * input[i];

}

get_global_id(0)

10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void

horizontal_reflect(read_only image2d_t src,

 write_only image2d_t dst)

{

 int x = get_global_id(0); // x-coord

 int y = get_global_id(1); // y-coord

 int width = get_image_width(src);

 float4 src_val = read_imagef(src, sampler,

 (int2)(width-1-x, y));

 write_imagef(dst, (int2)(x, y), src_val);

}

Building Program Objects
• The program object encapsulates:

– A context

– The program kernel source or binary

– List of target devices and build options

• The C API build process to create a
program object:
– clCreateProgramWithSource()

– clCreateProgramWithBinary()

OpenCL uses runtime

compilation … because

in general you don’t

know the details of the
target device when you

ship the program

Compile for

GPU

Compile for

CPU

GPU

code

CPU

code

Example: vector addition

• The “hello world” program of data parallel

programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code

Vector Addition - Kernel

__kernel void vadd(__global const float *a,

 __global const float *b,

 __global float *c)

 {

 int gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

 }

Vector Addition – Host

• The host program is the code that runs on the host to:
– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:
1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute
kernels

As we go over the next set of slides, cross

reference content on the slides to the reference

card. This will help you get used to the reference

card and how to pull information from the card and

express it in code.

The basic platform and runtime APIs

in OpenCL (using C)

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)

{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images

In
Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId,

 &numPlatforms);

• Use the first CPU device the platform provides:
err = clGetDeviceIDs(firstPlatformId,

 CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:
context = clCreateContext(firstPlatformId, 1,

 &device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:

commands = clCreateCommandQueue(context, device_id,

 0, &err);

Command-Queues

• Commands include:
– Kernel executions

– Memory object management

– Synchronization

• The only way to submit
commands to a device is
through a command-queue.

• Each command-queue
points to a single device
within a context.

• Multiple command-queues
can feed a single device.
– Used to define independent

streams of commands that
don’t require synchronization

Queue Queue

Context

GPU CPU

Command-Queue execution details

Command queues can be configured in

different ways to control how commands

execute

• In-order queues:
– Commands are enqueued and complete in the

order they appear in the program (program-order)

• Out-of-order queues:
– Commands are enqueued in program-order but

can execute (and hence complete) in any order.

• Execution of commands in the

command-queue are guaranteed to be

completed at synchronization points
– Discussed later

Queue Queue

Context

GPU CPU

2. Create and Build the program

• Define source code for the kernel-program as a string literal

(great for toy programs) or read from a file (for real

applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

 (const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from

which specific kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

Error messages

• Fetch and print error messages:

if (err != CL_SUCCESS) {

 size_t len;

 char buffer[2048];

 clGetProgramBuildInfo(program, device_id,

 CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

 printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch (see later)

3. Setup Memory Objects
• For vector addition we need 3 memory objects, one each

for input vectors A and B, and one for the output vector C.

• Create input vectors and assign values on the host:
float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

 h_a[i] = rand() / (float)RAND_MAX;

 h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(float)*count, NULL, NULL);

What do we put in device memory?

Memory Objects:

• A handle to a reference-counted region of global
memory.

There are two kinds of memory object

• Buffer object:
– Defines a linear collection of bytes (“just a C array”).

– The contents of buffer objects are fully exposed within
kernels and can be accessed using pointers

• Image object:
– Defines a two- or three-dimensional region of memory.

– Image data can only be accessed with read and write
functions, i.e. these are opaque data structures. The
read functions use a sampler.

Used when interfacing with a graphics API such as

OpenGL. We won’t use image objects in this tutorial.

Creating and manipulating buffers

• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side

data:

float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count

bytes from “h_a” to the buffer and copy it into

device memory:

cl_mem d_a = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 sizeof(float)*count, h_a, NULL);

Conventions for naming buffers

• It can get confusing about whether a host

variable is just a regular C array or an

OpenCL buffer

• A useful convention is to prefix the names

of your regular host C arrays with “h_”

and your OpenCL buffers which will live

on the device with “d_”

Creating and manipulating buffers

• Other common memory flags include:
CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host
memory at “h_c”:
– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,

 sizeof(float)*count, h_c,

 NULL, NULL, NULL);

4. Define the kernel

• Create kernel object from the kernel function

“vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to

memory objects:

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int),

 &count);

5. Enqueue commands

• Write Buffers from host into global memory (as non-

blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

 0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

 0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

 NULL, &global, &local, 0, NULL, NULL);

5. Enqueue commands

• Read back result (as a blocking operation). We have an in-

order queue which assures the previous commands are

completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

 sizeof(float)*count, h_c, 0, NULL, NULL);

Vector Addition – Host Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

 CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

 &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

 sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

 global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

 CL_TRUE, 0,

 n*sizeof(cl_float), dst,

 0, NULL, NULL);

Vector Addition – Host Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

 CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

 &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

 sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

 global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

 CL_TRUE, 0,

 n*sizeof(cl_float), dst,

 0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

Exercise 2: Running the Vadd kernel

• Goal:

– To inspect and verify that you can run an OpenCL kernel

• Procedure:

– Take the provided C Vadd program. It will run a simple
kernel to add two vectors together.

– Look at the host code and identify the API calls in the
host code. Compare them against the API descriptions on
the OpenCL reference card.

– There are some helper files which time the execution,
output device information neatly and check errors.

• Expected output:

– A message verifying that the vector addition completed
successfully

OVERVIEW OF OPENCL APIS

Lecture 4

Host programs can be “ugly”

• OpenCL’s goal is extreme portability, so it
exposes everything

– (i.e. it is quite verbose!).

• But most of the host code is the same from
one application to the next – the re-use
makes the verbosity a non-issue.

• You can package common API combinations
into functions or even C++ or Python classes
to make the reuse more convenient.

The C++ Interface

• Khronos has defined a common C++ header file
containing a high level interface to OpenCL, cl.hpp

• This interface is dramatically easier to work with1

• Key features:

– Uses common defaults for the platform and command-
queue, saving the programmer from extra coding for the
most common use cases

– Simplifies the basic API by bundling key parameters with
the objects rather than requiring verbose and repetitive
argument lists

– Ability to “call” a kernel from the host, like a regular
function

– Error checking can be performed with C++ exceptions
1 especially for C++ programmers…

C++ Interface:

setting up the host program

• Enable OpenCL API Exceptions. Do this before

including the header file

#define __CL_ENABLE_EXCEPTIONS

• Include key header files … both standard and custom
#include <CL/cl.hpp> // Khronos C++ Wrapper API

#include <cstdio> // For C style

#include <iostream> // For C++ style IO

#include <vector> // For C++ vector types

For information about C++, see

the appendix:

“C++ for C programmers”.

// Create buffers

// True indicates CL_MEM_READ_ONLY

// False indicates CL_MEM_READ_WRITE

d_a = cl::Buffer(context,

 h_a.begin(), h_a.end(), true);

d_b = cl::Buffer(context,

 h_b.begin(), h_b.end(), true);

d_c = cl::Buffer(context,

 CL_MEM_READ_WRITE,

 sizeof(float) * LENGTH);

// Enqueue the kernel

vadd(cl::EnqueueArgs(

 queue,

 cl::NDRange(count)),

 d_a, d_b, d_c, count);

cl::copy(queue,

 d_c, h_c.begin(), h_c.end());

std::vector<float>

 h_a(N), h_b(N), h_c(N);

// initialize host vectors…

cl::Buffer d_a, d_b, d_c;

cl::Context context(

 CL_DEVICE_TYPE_DEFAULT);

cl::CommandQueue

 queue(context);

cl::Program program(

 context,

 loadprogram(“vadd.cl”),

 true);

// Create the kernel functor

cl::make_kernel<cl::Buffer,

 cl::Buffer, cl::Buffer, int>

 vadd(program, “vadd”);

C++ interface: The vadd host program

The C++ Buffer Constructor

• This is the API definition:

– Buffer(startIterator, endIterator, bool readOnly, bool useHostPtr)

• The readOnly boolean specifies whether the memory is
CL_MEM_READ_ONLY (true) or CL_MEM_READ_WRITE (false)

– You must specify a true or false here

• The useHostPtr boolean is default false

– Therefore the array defined by the iterators is implicitly copied
into device memory

– If you specify true:
• The memory specified by the iterators must be contiguous

• The context uses the pointer to the host memory, which becomes
device accessible - this is the same as CL_MEM_USE_HOST_PTR

• The array is not copied to device memory

• We can also specify a context to use as the first argument
in this API call

The C++ Buffer Constructor

• When using the buffer constructor which

uses C++ vector iterators, remember:

– This is a blocking call

– The constructor will enqueue a copy to the first

Device in the context (when useHostPtr == false)

– The OpenCL runtime will automatically ensure

the buffer is copied across to the actual device

you enqueue a kernel on later if you enqueue the

kernel on a different device within this context

The Python Interface

• A python library by Andreas Klockner from
University of Illinois at Urbana-Champaign

• This interface is dramatically easier to work
with1

• Key features:
– Helper functions to choose platform/device at

runtime

– getInfo() methods are class attributes – no need
to call the method itself

– Call a kernel as a method
– Multi-line strings – no need to escape new lines!

1 not just for python programmers…

Setting up the host program

• Import the pyopencl library

import pyopencl as cl

• Import numpy to use arrays etc.

import numpy

• Some of the examples use a helper

library to print out some information

import deviceinfo

N = 1024

create context, queue and program

context = cl.create_some_context()

queue = cl.CommandQueue(context)

kernelsource = open(‘vadd.cl’).read()

program = cl.Program(context, kernelsource).build()

create host arrays

h_a = numpy.random.rand(N).astype(float32)

h_b = numpy.random.rand(N).astype(float32)

h_c = numpy.empty(N).astype(float32)

create device buffers

mf = cl.mem_flags

d_a = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_a)

d_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_b)

d_c = cl.Buffer(context, mf.WRITE_ONLY, h_c.nbytes)

run kernel

vadd = program.vadd

vadd.set_scalar_arg_dtypes([None, None, None, numpy.uint32])

vadd(queue, h_a.shape, None, d_a, d_b, d_c, N)

return results

cl.enqueue_copy(queue, h_c, d_c)

Exercise 3: Running the Vadd kernel

(C++ / Python)

• Goal:

– To learn the C++and/or Python interface to OpenCL’s API

• Procedure:

– Examine the provided program. They will run a simple
kernel to add two vectors together

– Look at the host code and identify the API calls in the
host code. Note how some of the API calls in OpenCL
map onto C++/Python constructs

– Compare the original C with the C++/Python versions

– Look at the simplicity of the common API calls

• Expected output:

– A message verifying that the vector addition completed
successfully

Exercise 4: Chaining vector add kernels

(C++ / Python)
• Goal:

– To verify that you understand manipulating kernel invocations
and buffers in OpenCL

• Procedure:

– Start with a VADD program in C++ or Python

– Add additional buffer objects and assign them to vectors
defined on the host (see the provided vadd programs for
examples of how to do this)

– Chain vadds … e.g. C=A+B; D=C+E; F=D+G.

– Read back the final result and verify that it is correct

– Compare the complexity of your host code to C

• Expected output:

– A message to standard output verifying that the chain of
vector additions produced the correct result

(Sample solution is for C = A + B; D = C + E; F = D + G; return F)

A HOST VIEW OF WORKING

WITH KERNELS

Review

Working with Kernels (C++)

• The kernels are where all the action is in an OpenCL

program.

• Steps to using kernels:

1. Load kernel source code into a program object from a file

2. Make a kernel functor from a function within the program

3. Initialize device memory

4. Call the kernel functor, specifying memory objects and

global/local sizes

5. Read results back from the device

• Note the kernel function argument list must match the

kernel definition on the host.

Create a kernel
• Kernel code can be a string in the host code (toy codes)

• Or the kernel code can be loaded from a file (real codes)

• Compile for the default devices within the default context

program.build();

• Define the kernel functor from a function within the program –
allows us to ‘call’ the kernel to enqueue it

cl::make_kernel

<cl::Buffer, cl::Buffer, cl::Buffer, int>
vadd(program, "vadd");

The build step can be carried out by specifying true

in the program constructor. If you need to specify

build flags you must specify false in the constructor

and use this method instead.

Create a kernel (advanced)

• If you want to query information about a

kernel, you will need to create a kernel

object too:

cl::Kernel ko_vadd(program, “vadd”);

• Get the default size of local dimension (i.e. the size

of a Work-Group)

::size_t local = ko_vadd.getWorkGroupInfo

 <CL_KERNEL_WORK_GROUP_SIZE>(cl::Device::getDefault());

If we set the local dimension

ourselves or accept the OpenCL

runtime’s, we don’t need this step

We can use any work-group-info parameter from table 5.15 in the

OpenCL 1.1 specification. The function will return the appropriate type.

Associate with args and enqueue kernel

• Enqueue the kernel for execution with buffer
objects d_a, d_b and d_c and their length,

count:

vadd(cl::EnqueueArgs(

 queue, cl::NDRange(count), cl::NDRange(local)),

 d_a, d_b, d_c, count);

We can include any arguments from the

clEnqueueNDRangeKernel function including Event wait

lists (to be discussed later) and the command queue

(optional)

Working with Kernels (Python)

• Kernel source string can be defined with three
quote marks – no need to escape new lines:
source = ‘‘‘

 __kernel void func() {}

’’’

• Or in a file and loaded at runtime:
source = open(‘file.cl’).read()

• The program object is created and built:
prg =

pyopencl.Program(context,source).build()

Working with Kernels (Python)

• Kernels can be called as a method of the
built program object; as in

program.kernel(q, t, l, a)

• The basic arguments to this call are:
1. q is the Command Queue

2. t is the Global size as a tuple:
 (x,), (x,y), or (x,y,z)

3. l is the Local size as a tuple or None

4. a is the list of arguments to pass to the kernel
• Scalars must be type cast to numpy types; i.e.

numpy.uint32(var), numpy.float32(var)

Working with Kernels (Python)

• Calling the kernel from within the program object calls
clCreateKernel() from the C API
– I.e. calling program.kernel() creates the kernel object every

time, which is unnecessary

• Can pull out the kernel to stop this:
kernel = program.kernel

• Specify the scalar arguments on the kernel object to save
casting in the kernel execution call:
kernel.set_scalar_arg_dtypes([list, of, arg, types])

– Buffer and local memory arguments should be set as None

– Scalar arguments could be numpy.float32, numpy.uint32, etc.

Exercise 5: The D = A + B + C problem

• Goal:

– To verify that you understand how to control the
argument definitions for a kernel

– To verify that you understand the host/kernel interface

• Procedure:

– Start with a VADD program.

– Modify the kernel so it adds three vectors together

– Modify the host code to define three vectors and
associate them with relevant kernel arguments

– Read back the final result and verify that it is correct

• Expected output:

– Test your result and verify that it is correct. Print a
message to that effect on the screen

We have now covered the basic

platform runtime APIs in OpenCL

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)

{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images

In
Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

INTRODUCTION TO OPENCL

KERNEL PROGRAMMING

Lecture 5

OpenCL C for Compute Kernels

• Derived from ISO C99

– A few restrictions: no recursion, function
pointers, functions in C99 standard headers ...

– Preprocessing directives defined by C99 are
supported (#include etc.)

• Built-in data types
– Scalar and vector data types, pointers

– Data-type conversion functions:
• convert_type<_sat><_roundingmode>

– Image types:

• image2d_t, image3d_t and sampler_t

OpenCL C for Compute Kernels

• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image

– Relational, geometric functions, synchronization
functions

– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called

“extensions”)

– Double precision, atomics to global and local

memory

– Selection of rounding mode, writes to image3d_t

surface

OpenCL C Language Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel
• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers
– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address
space qualifier

• Work-item functions
– get_work_dim(), get_global_id(), get_local_id(),

get_group_id()

• Synchronization functions
– Barriers - all work-items within a work-group must execute

the barrier function before any work-item can continue

– Memory fences - provides ordering between memory
operations

OpenCL C Language Restrictions

• Pointers to functions are not allowed

• Pointers to pointers allowed within a kernel,
but not as an argument to a kernel invocation

• Bit-fields are not supported

• Variable length arrays and structures are not
supported

• Recursion is not supported (yet!)

• Double types are optional in OpenCL v1.1, but
the key word is reserved

 (note: most implementations support double)

1 2 1 x 1

1 3 3 y = 2

1 1 4 z 6

Worked example: Linear Algebra

• Definition:
– The branch of mathematics concerned with the study of

vectors, vector spaces, linear transformations and systems of
linear equations.

• Example: Consider the following system of linear
equations

 x + 2y + z = 1

 x + 3y + 3z = 2

 x + y + 4z = 6
– This system can be represented in terms of vectors and a

matrix as the classic “Ax = b” problem.

1 0 0 1 2 1 1 2 1

1 1 0 0 1 2 = 1 3 3

1 -1 1 0 0 5 1 2 4

Solving Ax=b
• LU Decomposition:

– transform a matrix into the product of a lower triangular
and upper triangular matrix. It is used to solve a linear
system of equations.

L AU =
• We solve for x, given a problem Ax=b

– Ax=b LUx=b

– Ux=(L-1)b x = (U-1)(L-1)b

So we need to be able to do matrix multiplication

void mat_mul(int N, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 C[i*N+j] = 0.0f;

 for (k = 0; k < N; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

}

Matrix multiplication: sequential code
We calculate C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication performance

• Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 C[i*N+j] = 0.0f;

 for (k = 0; k < N; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

} We turn this into an OpenCL kernel!

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < N; k++) {

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

}

__kernel void mat_mul(

 const int N,

__global float *A, __global float *B, __global float *C)

Mark as a kernel function and

specify memory qualifiers

__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set

work-item co-ordinates

__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 i = get_global_id(0);

 j = get_global_id(1);

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < N; k++) {

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

}

Matrix multiplication: OpenCL kernel

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: OpenCL kernel improved

{

 int k;

 int i = get_global_id(0);

 int j = get_global_id(1);

 float tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += A[i*N+k]*B[k*N+j];

 }

 C[i*N+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element

values (a common optimization in Matrix Multiplication functions)

Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])

{

 std::vector<float> h_A, h_B, h_C; // matrices

 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

 int i, err;

 int szA, szB, szC; // num elements in each matrix

 double start_time, run_time; // timing data

 cl::Program program;

 Ndim = Pdim = Mdim = ORDER;

 szA = Ndim*Pdim;

 szB = Pdim*Mdim;

 szC = Ndim*Mdim;

 h_A = std::vector<float>(szA);

 h_B = std::vector<float>(szB);

 h_C = std::vector<float>(szC);

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 // Compile for first kernel to setup program

 program = cl::Program(C_elem_KernelSource, true);

 Context context(CL_DEVICE_TYPE_DEFAULT);

 cl::CommandQueue queue(context);

 std::vector<Device> devices =

 context.getInfo<CL_CONTEXT_DEVICES>();

 cl::Device device = devices[0];

 std::string s =

 device.getInfo<CL_DEVICE_NAME>();

 std::cout << "\nUsing OpenCL Device ”

 << s << "\n";

// Setup the buffers, initialize matrices,

 // and write them into global memory

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

 cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

 cl::Buffer d_c = cl::Buffer(context,

 CL_MEM_WRITE_ONLY,

 sizeof(float) * szC);

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer>

naive(program, "mmul");

 zero_mat(Ndim, Mdim, h_C);

 start_time = wtime();

 naive(cl::EnqueueArgs(queue,

cl::NDRange(Ndim, Mdim)),

Ndim, Mdim, Pdim, d_a, d_b, d_c);

 cl::copy(queue, d_c, h_C.begin(), h_C.end());

 run_time = wtime() - start_time;

 results(Mdim, Ndim, Pdim, h_C, run_time);

}

Declare and

initialize

data

Setup the

platform and

build program

Setup buffers and write

A and B matrices to the

device memory

Create the kernel functor

Run the kernel and

collect results

Note: To use the default context/queue/device, skip this section and

remove the references to context, queue and device.

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Exercise 6: Matrix Multiplication

• Goal:

– To write your first complete OpenCL kernel “from scratch”

– To multiply a pair of matrices

• Procedure:

– Start with the provided matrix multiplication OpenCL host
program including the function to generate matrices and test
results

– Create a kernel to do the multiplication

– Modify the provided OpenCL host program to use your kernel

– Verify the results

• Expected output:

– A message to standard output verifying that the chain of
vector additions produced the correct result

– Report the runtime and the MFLOPS

UNDERSTANDING THE OPENCL

MEMORY HIERARCHY

Lecture 6

Optimizing matrix multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS

– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for

every memory access we execute as many FLOPS as

possible.

• Outer product algorithms are faster, but for pedagogical

reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to

optimize matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for

your algorithm

1024

1
0
2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global/Constant
Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory
– Shared by all WI’s in a work-group

– But not shared between work-
groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory
– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant
memory

• Host memory
– On the CPU - GBytes

Memory management is explicit:

O(1-10) Gbytes/s bandwidth to discrete GPUs for

 Host <-> Global transfers

Private Memory

• Managing the memory hierarchy is one of the
most important things to get right to achieve
good performance

• Private Memory:

– A very scarce resource, only a few tens of 32-bit
words per Work-Item at most

– If you use too much it spills to global memory or
reduces the number of Work-Items that can be run
at the same time, potentially harming performance*

– Think of these like registers on the CPU

* Occupancy on a GPU

Local Memory*

• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this
means only a fraction of the total Local Memory size is
available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between
Local and Global/Constant memories … there are optimized
library functions to help

– E.g. async_work_group_copy(),
async_workgroup_strided_copy(), …

• Use Local Memory to hold data that can be reused by all
the work-items in a work-group

• Access patterns to Local Memory affect performance in a
similar way to accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU

Local Memory

• Local Memory doesn’t always help…

– CPUs don’t have special hardware for it

– This can mean excessive use of Local Memory

might slow down kernels on CPUs

– GPUs now have effective on-chip caches which

can provide much of the benefit of Local

Memory but without programmer intervention

– So, your mileage may vary!

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e.

– The state of memory visible to a work-item is not guaranteed
to be consistent across the collection of work-items at all
times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private
view of memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-
groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization
(barriers, events, in-order queue)

Optimizing matrix multiplication

• There may be significant overhead to manage work-items

and work-groups.

• So let’s have each work-item compute a full row of C

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

• And with an eye towards future optimizations, let’s collect

work-items into work-groups with 64 work-items per work-

group

An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)

 Whole problem space (index space)

• Local Dimensions: 64 (work-items per work-group)

 Only 1024/64 = 16 work-groups in total

• Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

1
0

2
4

6
4

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: One work item per row of C

{

 int j, k;

 int i = get_global_id(0);

 float tmp;

 for (j = 0; j < N; j++) {

 tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += A[i*N+k]*B[k*N+j];

 C[i*N+j] = tmp;

 }

}

// Setup the buffers, initialize matrices,

 // and write them into global memory

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

 cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

 cl::Buffer d_c = cl::Buffer(context,

 CL_MEM_WRITE_ONLY,

 sizeof(float) * szC);

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer>

krow(program, "mmul");

 zero_mat(Ndim, Mdim, h_C);

 start_time = wtime();

 krow(cl::EnqueueArgs(queue,

 cl::NDRange(Ndim),

 cl::NDRange(ORDER/16)),

 Ndim, Mdim, Pdim, d_a, d_b, d_c);

 cl::copy(queue, d_c, h_C.begin(), h_C.end());

 run_time = wtime() - start_time;

 results(Mdim, Ndim, Pdim, h_C, run_time);

}

int main(int argc, char *argv[])

{

 std::vector<float> h_A, h_B, h_C; // matrices

 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

 int i, err;

 int szA, szB, szC; // num elements in each matrix

 double start_time, run_time; // timing data

 cl::Program program;

 Ndim = Pdim = Mdim = ORDER;

 szA = Ndim*Pdim;

 szB = Pdim*Mdim;

 szC = Ndim*Mdim;

 h_A = std::vector<float>(szA);

 h_B = std::vector<float>(szB);

 h_C = std::vector<float>(szC);

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 // Compile for first kernel to setup program

 program = cl::Program(C_elem_KernelSource, true);

 Context context(CL_DEVICE_TYPE_DEFAULT);

 cl::CommandQueue queue(context);

 std::vector<Device> devices =

 context.getInfo<CL_CONTEXT_DEVICES>();

 cl::Device device = devices[0];

 std::string s =

 device.getInfo<CL_DEVICE_NAME>();

 std::cout << "\nUsing OpenCL Device ”

 << s << "\n";

Matrix multiplication host program (C++ API)

Changes to host program:

1. 1D ND Range set to number of rows in the C matrix

2. Local Dimension set to 64 so number of work-groups

match number of compute units (16 in this case) for our

order 1024 matrices

krow(cl::EnqueueArgs(queue

 cl::NDRange(Ndim),

 cl::NDRange(ORDER/16)),

 Ndim, Mdim, Pdim, a_in, b_in, c_out);

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

This has started to help.

Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same

row of A.

• Let’s copy that row of A into private memory of the work-

item that’s (exclusively) using it to avoid the overhead of

loading it from global memory for each C(i,j) computation.

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C)

{

 int j, k;

 int i =
 get_global_id(0);

 float tmp;

 float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < N; k++)

 Awrk[k] = A[i*N+k];

 for (j = 0; j < N; j++) {

 tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += Awrk[k]*B[k*N+j];

 C[i*N+j] += tmp;

 }

}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Copy a row of A into private memory from global memory

before we start with the matrix multiplications.

Setup a work array for A in

private memory*

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from

NVIDIA® with a max of 16

compute units, 512 PEs

Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Big impact!

Why using too much private memory

can be a good thing

• In reality private memory is just hardware
registers, so only dozens of these are available
per work-item

• Many kernels will allocate too many variables to
private memory

• So the compiler already has to be able to deal
with this

• It does so by spilling excess private variables to
(global) memory

• You still told the compiler something useful – that
the data will only be accessed by a single work-
item

• This lets the compiler allocate the data in such as
way as to enable more efficient memory access

Exercise 7: using private memory

• Goal:

– Use private memory to minimize memory movement
costs and optimize performance of your matrix
multiplication program

• Procedure:

– Start with your matrix multiplication solution

– Modify the kernel so that each work-item copies its own
row of A into private memory

– Optimize step by step, saving the intermediate versions
and tracking performance improvements

• Expected output:

– A message to standard output verifying that the matrix
multiplication program is generating the correct results

– Report the runtime and the MFLOPS

Optimizing matrix multiplication

• We already noticed that, in one row of C, each element

uses the same row of A

• Each work-item in a work-group also uses the same columns

of B

• So let’s store the B columns in local memory (which is

shared by the work-items in the work-group)

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item Local memory for each

work-group

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C,

 __local float *Bwrk)

{

 int j, k;

 int i =
 get_global_id(0);

 int iloc =
 get_local_id(0);

 int nloc =
 get_local_size(0);

 float tmp;

 float Awrk[1024];

Matrix multiplication: B column shared between work-items

for (k = 0; k < N; k++)

 Awrk[k] = A[i*N+k];

 for (j = 0; j < N; j++) {

 for (k=iloc; k<N; k+=nloc)

 Bwrk[k] = B[k* N+j];

 barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += Awrk[k]*Bwrk[k];

 C[i*N+j] = tmp;

 barrier(CLK_LOCAL_MEM_FENCE);

 }

}
Pass a work array in local memory to hold a

column of B. All the work-items do the copy

“in parallel” using a cyclic loop distribution

(hence why we need iloc and nloc)

// Setup the buffers, initialize matrices,

 // and write them into global memory

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

 cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

 cl::Buffer d_c = cl::Buffer(context,

 CL_MEM_WRITE_ONLY,

 sizeof(float) * szC);

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer>

rowcol(program, "mmul");

 zero_mat(Ndim, Mdim, h_C);

 start_time = wtime();

 rowcol(cl::EnqueueArgs(queue,

 cl::NDRange(Ndim),

 cl::NDRange(ORDER/16)),

 Ndim, Mdim, Pdim, d_a, d_b, d_c);

 cl::copy(queue, d_c, h_C.begin(), h_C.end());

 run_time = wtime() - start_time;

 results(Mdim, Ndim, Pdim, h_C, run_time);

}

int main(int argc, char *argv[])

{

 std::vector<float> h_A, h_B, h_C; // matrices

 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

 int i, err;

 int szA, szB, szC; // num elements in each matrix

 double start_time, run_time; // timing data

 cl::Program program;

 Ndim = Pdim = Mdim = ORDER;

 szA = Ndim*Pdim;

 szB = Pdim*Mdim;

 szC = Ndim*Mdim;

 h_A = std::vector<float>(szA);

 h_B = std::vector<float>(szB);

 h_C = std::vector<float>(szC);

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 // Compile for first kernel to setup program

 program = cl::Program(C_elem_KernelSource, true);

 Context context(CL_DEVICE_TYPE_DEFAULT);

 cl::CommandQueue queue(context);

 std::vector<Device> devices =

 context.getInfo<CL_CONTEXT_DEVICES>();

 cl::Device device = devices[0];

 std::string s =

 device.getInfo<CL_DEVICE_NAME>();

 std::cout << "\nUsing OpenCL Device ”

 << s << "\n";

Matrix multiplication host program (C++ API)

cl::LocalSpaceArg localmem =

 cl::Local(sizeof(float) * Pdim);

rowcol(cl::EnqueueArgs(queue,

 cl::NDRange(Ndim),

 cl::NDRange(ORDER/16)),

 Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);

Changes to host program:

1. Pass local memory to kernels.

1. This requires a change to the kernel argument lists … an

arg of type LocalSpaceArg is needed.

2. Allocate the size of local memory

3. Update argument list in kernel functor

cl::make_kernel<int, int, int,

 cl::Buffer, cl::Buffer, cl:::Buffer,

 cl::LocalSpaceArg>

 rowcol(program, “mmul”);

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Making matrix multiplication really fast

• Our goal has been to describe how to work with private,
local and global memory. We’ve ignored many well-known
techniques for making matrix multiplication fast

– The number of work items must be a multiple of the
fundamental machine “vector width”. This is the wavefront on
AMD, warp on NVIDIA, and the number of SIMD lanes exposed
by vector units on a CPU

– To optimize reuse of data, you need to use blocking techniques
• Decompose matrices into tiles such that three tiles just fit in the

fastest (private) memory

• Copy tiles into local memory

• Do the multiplication over the tiles

– We modified the matrix multiplication program provided with
the NVIDIA OpenCL SDK to work with our test suite to produce
the blocked results on the following slide. This used register
blocking with block sizes mapped onto the GPU’s warp size

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Block oriented approach using local 1,534.0 230,416.7

Device is Tesla® M2090 GPU from

NVIDIA® with a max of 16

compute units, 512 PEs

Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Biggest impact so far!

Exercise 8: using local memory

• Goal:
– Use local memory to minimize memory movement costs and

optimize performance of your matrix multiplication program

• Procedure:
– Start with your matrix multiplication solution that already

uses private memory from Exercise 7

– Modify the kernel so that each work-group collaboratively
copies its own column of B into local memory

– Optimize step by step, saving the intermediate versions and
tracking performance improvements

• Expected output:
– A message to standard output verifying that the matrix

multiplication program is generating the correct results

– Report the runtime and the MFLOPS

• Extra:
– Look at the fast, blocked implementation from the NVIDIA

OpenCL SDK example. Try running it and compare to yours

SYNCHRONIZATION IN OPENCL

Lecture 7

Consider N-dimensional domain of work-items

• Global Dimensions:
– 1024x1024 (whole problem space)

• Local Dimensions:
– 64x64 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are
brought to a known point in their execution. Most common example is a
barrier … i.e. all units of execution “in scope” arrive at the barrier before
any proceed.

1024

1
0
2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

Work-Item Synchronization

• Within a work-group

void barrier()

– Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items
in its work-group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:
• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be

executed relative to another work-group

– Cannot exchange data, or have barrier-like synchronization between
two different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory operations to

local or global memory (with flushes or queuing

a memory fence)

Where might we need

synchronization?

• Consider a reduction … reduce a set of

numbers to a single value

– E.g. find sum of all elements in an array

• Sequential code

int reduce(int Ndim, int *A)

{

 int sum = 0;

 for (int i = 0; i < Ndim; i++)

 sum += A[i];

 return sum;

}

Simple parallel reduction

• A reduction can be carried out in three steps:

1. Each work-item sums its private values into a local array
indexed by the work-item’s local id

2. When all the work-items have finished, one work-item sums
the local array into an element of a global array (indexed by
work-group id).

3. When all work-groups have finished the kernel execution,
the global array is summed on the host.

• Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
sums in parallel on the device rather than on the host.
These more scalable reductions are considerably more
complicated to implement.

A simple program that uses a reduction

Numerical Integration

Mathematically, we know that

we can approximate the integral

as a sum of rectangles.

Each rectangle has width and

height at the middle of interval.

4.0

2.0

1.0
X

0.0

Numerical integration source code
The serial Pi program

static long num_steps = 100000;

double step;

void main()

{

 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i = 0; i < num_steps; i++) {

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Exercise 9: The Pi program
• Goal:

– To understand synchronization between work-items
in the OpenCL C kernel programming language

• Procedure:
– Start with the provided serial program to estimate Pi

through numerical integration

– Write a kernel and host program to compute the
numerical integral using OpenCL

– Note: You will need to implement a reduction

• Expected output:
– Output result plus an estimate of the error in the

result
– Report the runtime

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t

create one work-item per loop iteration. To do so would make the reduction so

costly that performance would be terrible.

HETEROGENEOUS COMPUTING

WITH OPENCL

Lecture 8

Running on the CPU and GPU

• Kernels can be run on
multiple devices at the
same time

• We can exploit many
GPUs and the host CPU
for computation

• Simply define a context
with multiple platforms,
devices and queues

• We can even synchronize
between queues using
Events (see appendix)

• Can have more than one
context

Queue Queue

Context

GPU CPU

Running on the CPU and GPU

1. Discover all your platforms and devices

– Look at the API for finding out Platform and Device IDs

2. Set up the cl::Context with a vector of devices

 cl::Context(const VECTOR_CLASS<Device> &devices,

 cl_context_properties *properties = NULL,

 void (CL_CALLBACK *pfn_notify)(

 const char *errorinfo,

 const void *private_info_size,

 ::size_t cb, void *user_data) = NULL,

 void *user_data = NULL, cl_int *err = NULL);

3. Create a Command Queue for each of these devices

– C examples in the NVIDIA (oclSimpleMultiGPU) and AMD
(SimpleMultiDevice) OpenCL SDKs

The steps are the same in C and Python, just the API calls differ as usual

Exercise 10: Heterogeneous Computing

• Goal:
– To experiment with running kernels on multiple devices

• Procedure:
– Take one of your OpenCL programs

– Investigate the Context constructors to include more
than one device

– Modify the program to run a kernel on multiple devices,
each with different input data

– Split your problem across multiple devices if you have
time

– Use the examples from the SDKs to help you

• Expected output:
– Output the results from both devices and see which runs

faster

ENABLING PORTABLE

PERFORMANCE VIA OPENCL

Lecture 9

Portable performance in OpenCL

• Portable performance is always a challenge,
more so when OpenCL devices can be so
varied (CPUs, GPUs, …)

• But OpenCL provides a powerful framework
for writing performance portable code

• The following slides are general advice on
writing code that should work well on most
OpenCL devices

Optimization issues

• Efficient access to memory

– Memory coalescing
• Ideally get work-item i to access data[i] and work-item j to access data[j] at

the same time etc.

– Memory alignment
• Padding arrays to keep everything aligned to multiples of 16, 32 or 64 bytes

• Number of work-items and work-group sizes

– Ideally want at least 4 work-items per PE in a Compute Unit on GPUs

– More is better, but diminishing returns, and there is an upper limit
• Each work item consumes PE finite resources (registers etc)

• Work-item divergence

– What happens when work-items branch?

– Actually a SIMD data parallel model

– Both paths (if-else) may need to be executed (branch divergence),
avoid where possible (non-divergent branches are termed uniform)

Memory layout is critical to

performance
• “Structure of Arrays vs. Array of Structures” problem:

 struct { float x, y, z, a; } Point;

• Structure of Arrays (SoA) suits memory coalescence
on GPUs

• Array of Structures (AoS) may suit cache hierarchies
on CPUs

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items

like to access

adjacent memory

Individual work-

items like to access

adjacent memory

Other optimisation tips

• Use a profiler to see if you’re getting good performance

– Occupancy is a measure of how active you’re keeping each PE

– Occupancy measurements of >0.5 are good (>50% active)

• Other measurements to consider with the profiler:

– Memory bandwidth – should aim for a good fraction of peak

• E.g. 148 GBytes/s to Global Memory on an M2050 GPU

– Work-Item (Thread) divergence – want this to be low

– Registers per Work-Item (Thread) – ideally low and a nice
divisor of the number of hardware registers per Compute Unit
• E.g. 32,768 on M2050 GPUs

• These are statically allocated and shared between all Work-Items
and Work-Groups assigned to each Compute Unit

• Four Work-Groups of 1,024 Work-Items each would result in just 8
registers per Work-Item! Typically aim for 16-32 registers per Work-
Item

Portable performance in OpenCL
• Don’t optimize too hard for any one platform, e.g.

– Don’t write specifically for certain warp/wavefront sizes etc

– Be careful not to rely on specific sizes of local/global memory

– OpenCL’s vector data types have varying degrees of support – faster on some
devices, slower on others

– Some devices have caches in their memory hierarchies, some don’t, and it
can make a big difference to your performance without you realizing

– Choosing the allocation of Work-Items to Work-Groups and dimensions on
your kernel launches

– Performance differences between unified vs. disjoint host/global memories

– Double precision performance varies considerably from device to device

– Some OpenCL SDKs give useful feedback about how well they can compile
your code (but you have to turn on this feedback)

• It is a good idea to try your code on several different platforms to see
what happens (profiling is good!)

– At least two different GPUs (ideally different vendors) and at least one CPU

Advice for performance portability

• Discover what devices you have available at run-

time, e.g.

// Get available platforms

 cl_uint nPlatforms;

 cl_platform_id platforms[MAX_PLATFORMS];

 int ret = clGetPlatformIDs(MAX_PLATFORMS, platforms, &nPlatforms);

 // Loop over all platforms

 for (int p = 0; p < nPlatforms; p++) {

 // Get available devices

 cl_uint nDevices = 0;

 cl_device_id devices[MAX_DEVICES];

 clGetDeviceIDs(platforms[p], deviceType, MAX_DEVICES, devices, &nDevices);

 // Loop over all devices in this platform

 for (int d = 0; d < nDevices; d++)

 getDeviceInformation(devices[d]);

}

C

Advice for performance portability

• Micro-benchmark all your OpenCL devices at run-time to
gauge how to divide your total workload across all the
devices

– Ideally use some real work so you’re not wasting resource

– Keep the microbenchmark very short otherwise slower devices
penalize faster ones

• Once you’ve got a work fraction per device calculated, it
might be worth retesting from time to time

– The behavior of the workload may change

– The host or devices may become busy (or quiet)

• It is most important to keep the fastest devices busy

– Less important if slower devices finish slightly earlier than
faster ones (and thus become idle)

• Avoid overloading the CPU with both OpenCL host code
and OpenCL device code at the same time

Timing microbenchmarks (C)

for (int i = 0; i < numDevices; i++) {

 // Wait for the kernel to finish

 ret = clFinish(oclDevices[i].queue);

 // Update timers

 cl_ulong start, end;

 ret = clGetEventProfilingInfo(oclDevices[i].kernelEvent,

 CL_PROFILING_COMMAND_START,

 sizeof(cl_ulong), &start, NULL);

 ret |= clGetEventProfilingInfo(oclDevices[i].kernelEvent,

 CL_PROFILING_COMMAND_END,

 sizeof(cl_ulong), &end, NULL);

 long timeTaken = (end - start);

 speeds[i] = timeTaken / oclDevices[i].load;

}

Advice for performance portability

• Optimal Work-Group sizes will differ between devices

– E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs
prefer lots of Work-Items per Work-Group (usually a multiple of the
number of PEs per Compute Unit, i.e. 32, 64 etc.)

• From OpenCL v1.1 you can discover the preferred Work-Group
size multiple for a kernel once it’s been built for a specific
device

– Important to pad the total number of Work-Items to an exact
multiple of this

– Again, will be different per device

• The OpenCL run-time will have a go at choosing good
EnqueueNDRangeKernel dimensions for you

– With very variable results

• Your mileage will vary, the best strategy is to write
adaptive code that makes decisions at run-time

Tuning Knobs

some general issues to think about
• Tiling size (work-group sizes, dimensionality etc.)

– For block-based algorithms (e.g. matrix multiplication)

– Different devices might run faster on different block sizes

• Data layout
– Array of Structures or Structure of Arrays (AoS vs. SoA)

– Column or Row major

• Caching and prefetching
– Use of local memory or not

– Extra loads and stores assist hardware cache?

• Work-item / work-group data mapping
– Related to data layout

– Also how you parallelize the work

• Operation-specific tuning
– Specific hardware differences

– Built-in trig / special function hardware

– Double vs. float (vs. half)

From Zhang, Sinclair II and Chien:

Improving Performance Portability

in OpenCL Programs – ISC13

Auto tuning

• Q: How do you know what the best
parameter values for your program are?

– What is the best work-group size, for example

• A: Try them all! (Or a well chosen subset)

• This is where auto tuning comes in
– Run through different combinations of parameter

values and optimize the runtime (or another
measure) of your program.

Auto tuning example - Flamingo

• http://mistymountain.co.uk/flamingo/

• Python program which compiles your code
with different parameter values, and
calculates the “best” combination to use

• Write a simple config file, and Flamingo will
run your program with different values, and
returns the best combination

• Remember: scale down your problem so you
don’t have to wait for “bad” values (less
iterations, etc.)

http://mistymountain.co.uk/flamingo/

Auto tuning - Example

• D2Q9 Lattice-Boltzmann

• What is the best work-group size for a
specific problem size (3000x2000) on a
specific device (NVIDIA Tesla M2050)?

X values

Y values

Runtimes – lower is better

Best: 60x1

Exercise 11: Optimize matrix multiplication

• Goal:
– To understand portable performance in OpenCL

• Procedure:
– Optimize a matrix multiply solution step by step, saving

intermediate versions and tracking performance
improvements

– After you’ve tried to optimize the program on your own, study
the blocked solution optimized for an NVIDIA GPU. Apply
these techniques to your own code to further optimize
performance

– As a final step, go back and make a single program that is
adaptive so it delivers good results on both a CPU and a GPU

• Expected output:
– A message confirming that the matrix multiplication is correct

– Report the runtime and the MFLOPS

OPTIMIZING OPENCL

PERFORMANCE

Lecture 10

Extrae and Paraver

• From Barcelona Supercomputing Center

– http://www.bsc.es/computer-

sciences/performance-tools/trace-generation

– http://www.bsc.es/computer-

sciences/performance-tools/paraver

• Create and analyze traces of OpenCL programs

– Also MPI, OpenMP

• Required versions:

– Extrae v2.3.5rc

– Paraver 4.4.5

http://www.bsc.es/computer-sciences/performance-tools/trace-generation
http://www.bsc.es/computer-sciences/performance-tools/trace-generation
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

Extrae and Paraver

1. Extrae instruments your application and
produces “timestamped events of
runtime calls, performance counters and
source code references”
– Allows you to measure the run times of your

API and kernel calls

2. Paraver provides a way to view and
analyze these traces in a graphical way

Important!

• At the moment NVIDIA® GPUs support up
to OpenCL v1.1 and AMD® and Intel®
support v1.2

• If you want to profile on NVIDIA® devices
you must compile Extrae against the
NVIDIA headers and runtime otherwise
v1.2 code will be used by Extrae
internally which will cause the trace step
to segfault

Installing Extrae and Paraver

• Paraver is easy to install on Linux
– Just download and unpack the binary

• Extrae has some dependencies, some of which you’ll have
to build from source
– libxml2

– binutils-dev

– libunwind

– PAPI

– MPI (optional)

• Use something like the following command line to
configure before “make && make install”:

./configure –-prefix=$HOME/extrae --with-
binutils=$HOME --with-papi=$HOME --with-mpi=$HOME
--without-dyninst --with-unwind=$HOME --with-
opencl=/usr/local/ --with-opencl-libs=/usr/lib64

Step 1 – tracing your code

• Copy the trace.sh script from
extrae/share/example/OPENCL to your project
directory
– This sets up a few environment variables and then runs

your compiled binary

• Copy the extrae.xml file from the same location to
your project directory
– This gives some instructions to Extrae as to how to profile

your code

– Lots of options here – see their user guide

– The default they provide is fine to use to begin with

• Trace!
– ./trace.sh ./a.out

Step 2 – visualize the trace

• Extrae produces a number of files
– .prv, .pcf, .row, etc…

• Run Paraver
– ./wxparaver-<version>/bin/wxparaver

• Load in the trace
– File –> Load Trace -> Select the .prv file

• Load in the provided OpenCL view config file
– File -> Load configuration -> wxparaver-

<version>/cfgs/OpenCL/views/opencl_call.cfg

• The traces appear as three windows
1. OpenCL call in host - timings of API calls

2. Kernel Name – run times of kernel executions

3. OpenCL call in accelerator – information about total
compute vs memory transfer times

Paraver

Usage Tips

• Show what the colours represent

– Right click -> Info Panel

• Zoom in to examine specific areas of interest

– Highlight a section of the trace to populate the timeline
window

• Tabulate the data – numerical timings of API calls

– Select a timeline in the Paraver main window, click on
the ‘New Histogram’ icon and select OK

• Powerful software – can also pick up your MPI
communications

• Perform calculations with the data – see the Paraver
user guide

Platform specific profilers

• More information can be obtained about

your OpenCL program by profiling it using

the hardware vendors dedicated profilers

• OpenCL profiling can be done with Events

in the API itself for specific profiling of

queues and kernel calls

NVIDIA Visual Profiler®

This gives us information
about:

• Device occupancy

• Memory bandwidth(between
host and device)

• Number of registers uses

• Timeline of kernel
executions and memory
copies

• Etc…

Third party names are the property of their owners.

• Start a new session:

• Follow the wizard, selecting the compiled binary in the File box

(you do not need to make any code or compiler modifications). You

can leave the other options as the default.

• The binary is then run and profiled and the results displayed.

Profiling using nvvp

• The timeline says what happened during

the program execution:

• Some things to think about optimising are

displayed in the Analysis tab:

Kernels

Each

invocation of

the kernel is

pictured as a

box

Profiling using nvvp

• The Details tab shows information for each kernel
invocation and memory copy
– number of registers used

– work group sizes

– memory throughput

– amount of memory transferred

• No information about which parts of the kernel are
running slowly, but the figures here might give us a clue
as to where to look

• Best way to learn: experiment with an application
yourself

Profiling from the command line
• NVIDIA® also have nvprof and 'Command Line Profiler’

• nvprof available with CUDA 5.0 onwards, but currently lacks driver

support for OpenCL profiling

• The legacy command-line profiler can be invoked using environment

variables:

 $ export COMPUTE_PROFILE=1

 $ export COMPUTE_PROFILE_LOG=<output file>

 $ export COMPUTE_PROFILE_CONFIG=<config file>

• Config file controls which events to collect (run nvprof --query-

events for a comprehensive list)

• Run your application to collect event information and then inspect

output file with text editor

• Can also output CSV information (COMPUTE_PROFILE_CSV=1) for

inspection with a spreadsheet or import into nvvp (limited support)

Third party names are the property of their owners.

AMD® CodeXL

• AMD provide a graphical Profiler and
Debugger for AMD Radeon GPUs

• Can give information on:
– API and kernel timings

– Memory transfer information

– Register use

– Local memory use

– Wavefront usage

– Hints at limiting performance factors

Third party names are the property of their owners.

CodeXL

• Create a new project, inserting the

binary location in the window

• Click on the Profiling button, and hit the

green arrow to run your program

• Select the different traces to view

associated information

CodeXL

• GPU: Performance
Counters

– Information on kernels
including work group
sizes, registers, etc.

– View the kernel
instruction code
• Click on the kernel name in

the left most column

– View some graphs and
hints about the kernel
• Click on the Occupancy

result

CodeXL

• GPU: Application

Trace

– See timing

information about

API calls

– Timings of memory

movements

– Timings of kernel

executions

Exercise 12: Profiling OpenCL programs

• Goal:

– To experiment with profiling tools

• Procedure:

– Take one of your OpenCL programs, such as matrix

multiply

– Run the program in the profiler and explore the results

– Modify the program to change the performance in some

way and observe the effect with the profiler

– Repeat with other programs if you have time

• Expected output:

– Timings reported by the host code and via the profiling

interfaces should roughly match

DEBUGGING OPENCL

Lecture 11

Debugging OpenCL

• Parallel programs can be challenging to debug

• Luckily there are some tools to help

• Firstly, if your device can run OpenCL 1.2, you can printf
straight from the kernel.

• Here, each work-item will print to stdout

• Note: there is some buffering between the device and the
output, but will be flushed by calling clFinish (or equivalent)

__kernel void func(void)

{

 int i = get_global_id(0);

 printf(" %d\n ", i);

}

Debugging OpenCL 1.1

• Top tip:

– Write data to a global buffer from within the

kernel

result[get_global_id(0)] = … ;

– Copy back to the host and print out from

there or debug as a normal serial application

• Works with any OpenCL device and

platform

Debugging OpenCL – more tips

• Check your error messages!

– If you enable Exceptions in C++ as we have
here, make sure you print out the errors.

• Don’t forget, use the err_code.c from the
tutorial to print out errors as strings
(instead of numbers), or check in the cl.h
file in the include directory of your
OpenCL provider for error messages

• Check your work-group sizes and indexing

Debugging OpenCL - GDB

• Can also use GDB to debug your programs
on the CPU

– This will also leverage the memory system
• Might catch illegal memory dereferences more

accurately

– But it does behave differently to accelerator
devices so bugs may show up in different
ways

• As with debugging, compile your C or C++
programs with the –g flag

Debugging OpenCL - GDB

• Require platform specific instructions depending
on if you are using the AMD® or Intel® OpenCL
platform

– This is in part due to the ICD (Installable Client
Driver) ensuring that the correct OpenCL runtime is
loaded for the chosen platform

– Also different kernel compile flags are
accepted/required by different OpenCL
implementations

• Remember: your CPU may be listed under each
platform – ensure you choose the right debugging
method for the platform

Third party names are the property of their owners.

Using GDB with AMD®

• Ensure you select the CPU device from the AMD® platform

• Must use the –g flag and turn off all optimizations when
building the kernels:

program.build(" –g –O0")

• The symbolic name of a kernel function “__kernel void
foo(args)” is “__OpenCL_foo_kernel”

– To set a breakpoint on kernel entry enter at the GDB prompt:

 break __OpenCL_foo_kernel

• Note: the debug symbol for the kernel will not show up until
the kernel has been built by your host code

• AMD® recommend setting the environment variable
CPU_MAX_COMPUTE_UNITS=1 to ensure deterministic
kernel behaviour

Third party names are the property of their owners.

Using GDB with Intel®

• Ensure you select the CPU device from the Intel®
platform

• Must use the –g flag and specify the kernel source file
when building the kernels:
program.build(" –g –s
/full/path/to/kernel.cl")

• The symbolic name of a kernel function “__kernel
void foo(args)” is “foo”
– To set a breakpoint on kernel entry enter at the GDB

prompt:

 break foo

• Note: the debug symbol for the kernel will not show
up until the kernel has been built by your host code

Third party names are the property of their owners.

Debugging OpenCL – Using GDB

• Use n to move to the next line of execution

• Use s to step into the function

• If you reach a segmentation fault, backtrace

lists the previous few execution frames

– Type frame 5 to examine the 5th frame

• Use print varname to output the current

value of a variable

Oclgrind

• A SPIR interpreter and OpenCL simulator

• Developed at the University of Bristol

• Runs OpenCL kernels in a simulated environment to
catch various bugs:
– oclgrind ./application

– Invalid memory accesses

– Data-races (--data-races)

– Work-group divergence

– Runtime API errors (--check-api)

• Also has a GDB-style interactive debugger
– oclgrind –i ./application

• More information on the Oclgrind Website

https://github.com/jrprice/Oclgrind

GPUVerify

• A useful tool for detecting data-races in
OpenCL programs

• Developed at Imperial College as part of the
CARP project

• Uses static analysis to try to prove that
kernels are free from races

• Can also detect issues with work-group
divergence

• More information on the GPUVerify Website

gpuverify --local_size=64,64 --num_groups=256,256 kernel.cl

http://multicore.doc.ic.ac.uk/tools/GPUVerify/

Other debugging tools

• AMD® CodeXL

– For AMD® APUs, CPUs and GPUs

• Graphical Profiler and Debugger

• NVIDIA® Nsight Development Platform

– For NVIDIA® GPUs

• IDE, including Profiler and Debugger

• GPUVerify

– Formal analysis of kernels

– http://multicore.doc.ic.ac.uk/tools/GPUVerify/

Third party names are the property of their owners.

Note: Debugging OpenCL is still changing rapidly - your

mileage may vary when using GDB and these tools

http://multicore.doc.ic.ac.uk/tools/GPUVerify/

PORTING CUDA TO OPENCL

Lecture 12

Introduction to OpenCL

• If you have CUDA code, you’ve already
done the hard work!

– I.e. working out how to split up the problem
to run effectively on a many-core device

• Switching between CUDA and OpenCL is
mainly changing the host code syntax
– Apart from indexing and naming conventions

in the kernel code (simple to change!)

Memory Hierarchy Terminology

CUDA OpenCL

Private – within a work-itemLocal – within a thread

Local – shared between

work-items in a work-group

Shared – shared between

threads in a thread block

Constant – a cache for

constant memory

Constant – a cache for

constant memory

Device – shared between

all thread blocks

Global – shared

between all work-

groups

Allocating and copying memory

CUDA C OpenCL C

Allocate float* d_x;

cudaMalloc(&d_x,

sizeof(float)*size);

cl_mem d_x =

 clCreateBuffer(context,

 CL_MEM_READ_WRITE,

 sizeof(float)*size,

 NULL, NULL);

Host to Device cudaMemcpy(d_x, h_x,

 sizeof(float)*size,

 cudaMemcpyHostToDevice);

clEnqueueWriteBuffer(queue, d_x,

 CL_TRUE, 0,

 sizeof(float)*size,

 h_x, 0, NULL, NULL);

Device to Host cudaMemcpy(h_x, d_x,

 sizeof(float)*size,

 cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

 CL_TRUE, 0,

 sizeof(float)*size,

 h_x, 0, NULL, NULL);

Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;

cudaMalloc(&d_x,

 sizeof(float)*size);

cl::Buffer

 d_x(begin(h_x), end(h_x), true);

Host to Device cudaMemcpy(d_x, h_x,

 sizeof(float)*size,

 cudaMemcpyHostToDevice);

cl::copy(begin(h_x), end(h_x),

 d_x);

Device to Host cudaMemcpy(h_x, d_x,

 sizeof(float)*size,

 cudaMemcpyDeviceToHost);

cl::copy(d_x,

 begin(h_x), end(h_x));

Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel

source as extern

 __shared__ int array[];

2. When executing the kernel,

specify the third parameter as

size in bytes of shared memory

func<<<num_blocks,

 num_threads_per_block,

 shared_mem_size>>>(args);

OpenCL C++

1. Have the kernel accept a local

array as an argument

 __kernel void func(

 __local int *array)

 {}

2. Define a local memory kernel

kernel argument of the right size

cl::LocalSpaceArg localmem =

 cl::Local(shared_mem_size);

3. Pass the argument to the kernel

invocation

func(EnqueueArgs(…),localmem);

Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel

source as extern

 __shared__ int array[];

2. When executing the kernel,

specify the third parameter as

size in bytes of shared memory

func<<<num_blocks,

 num_threads_per_block,

 shared_mem_size>>>(args);

OpenCL C

1. Have the kernel accept a local

array as an argument

 __kernel void func(

 __local int *array)

{}

2. Specify the size by setting the

kernel argument

 clSetKernelArg(kernel, 0,

 sizeof(int)*num_elements,

 NULL);

Dividing up the work

• To enqueue the kernel

– CUDA – specify the number of thread blocks and
threads per block

– OpenCL – specify the problem size and
(optionally) number of work-items per work-
group

Problem size

CUDA OpenCL

Work-itemThread

Thread block Work-group

Enqueue a kernel (C)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

threads_per_block>>>();

OpenCL C

const size_t global[2] =

 {300, 200};

const size_t local[2] =

 {30, 20};

clEnqueueNDRangeKernel(

 queue, &kernel,

 2, 0, &global, &local,

 0, NULL, NULL);

Enqueue a kernel (C++)

CUDA C

dim3

threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

 threads_per_block>>>(…);

OpenCL C++

const cl::NDRange

 global(300, 200);

const cl::NDRange

 local(30, 20);

kernel(

 EnqueueArgs(global, local),

 …);

Indexing work

CUDA

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim + threadIdx

OpenCL

get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()

Differences in kernels

• Where do you find the kernel?

– OpenCL - either a string (const char *), or
read from a file

– CUDA – a function in the host code

• Denoting a kernel

– OpenCL - __kernel

– CUDA - __global__

• When are my kernels compiled?

– OpenCL – at runtime

– CUDA – with compilation of host code

Host code

• By default, CUDA initializes the GPU

automatically

– If you needed anything more complicated

(multi-device etc.) you must do so manually

• OpenCL always requires explicit device

initialization

– It runs not just on NVIDIA® GPUs and so you

must tell it which device(s) to use

Third party names are the property of their owners.

Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(

 CLK_GLOBAL_MEM_FENCE |

 CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start

another

Translation from CUDA to OpenCL

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange

More information

• http://developer.amd.com/Resources/hc

/OpenCLZone/programming/pages/portin

gcudatoopencl.aspx

http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx

Exercise 13: Porting CUDA to OpenCL

• Goal:

– To port the provided CUDA/serial C program to
OpenCL

• Procedure:

– Examine the CUDA kernel and identify which
parts need changing
• Change them to the OpenCL equivalents

– Examine the Host code and port the commands
to the OpenCL equivalents

• Expected output:
– The OpenCL and CUDA programs should produce

the same output – check this!

SOME CONCLUDING REMARKS

Conclusion
• OpenCL has widespread industrial support

• OpenCL defines a platform-API/framework for heterogeneous
computing, not just GPGPU or CPU-offload programming

• OpenCL has the potential to deliver portably performant code;
but it has to be used correctly

• The latest C++ and Python APIs make developing OpenCL
programs much simpler than before

• The future is clear:

– OpenCL is the only parallel programming standard that enables
mixing task parallel and data parallel code in a single program while

load balancing across ALL of the platform’s available resources.

Other important related trends
• OpenCL’s Standard Portable Intermediate Representation (SPIR)

– Based on LLVM’s IR

– Makes interchangeable front- and back-ends straightforward
– Now libraries of OpenCL kernels can be distributed in "binary" form,

protecting software developer IP

• OpenCL 2.0 adds support for:
– Shared virtual memory to share addresses between the host and the devices

– Dynamic (nested) parallelism, enabling kernels to directly enqueue other
kernels on the same device without host intervention

– A formal memory model based on C11

– A generic address space to enable easier mixing and matching between
host/global/local/private

– Pipes as memory objects
– Sub-groups to expose warp/wavefront-like hardware features

– Lots of other improvements!

• For the latest news on SPIR and new OpenCL versions see:
– http://www.khronos.org/opencl/

Third party names are the property of their owners.

http://www.khronos.org/opencl/

Resources:

https://www.khronos.org/opencl/

OpenCL Programming Guide:

Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and

James Fung, 2011

Heterogeneous Computing with OpenCL

Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry

and Dana Schaa, 2011

The OpenCL specification

Surprisingly approachable for a spec!

https://www.khronos.org/registry/cl/

OpenCL reference card

Useful to have on your desk(top)

Available on the same page as the spec.

https://www.khronos.org/registry/cl/

Other OpenCL resources

• New annual OpenCL conference

– http://www.iwocl.org/

– Held in May each year

– CFP to be announced at SC

• OpenCL Forums:
– Khronos' OpenCL forums are the central place

to be:

– http://www.khronos.org/message_boards/fo
rumdisplay.php?f=61

http://www.iwocl.org/
http://www.khronos.org/message_boards/forumdisplay.php?f=61
http://www.khronos.org/message_boards/forumdisplay.php?f=61

Other OpenCL resources

• CLU: a library of useful C-level OpenCL utilities,
such as program initialization, CL kernel code
compilation and calling kernels with their
arguments (bit like
GLUT!):https://github.com/Computing-
Language-Utility/CLU

• clMath: an open source BLAS / FFT library
originally developed by
AMDhttps://github.com/clMathLibraries/clBLAS
and https://github.com/clMathLibraries/clFFT

https://github.com/Computing-Language-Utility/CLU
https://github.com/Computing-Language-Utility/CLU
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clFFT

VERSIONS OF OPENCL

OpenCL 1.0

• First public release, December 2008

OpenCL 1.1

• Released June 2010

• Major new features:

– Sub buffers

– User events

– More built-in functions

– 32-bit atomics become core features

OpenCL 1.2

• Released November 2011

• Major new features:

– Custom devices and built-in kernels

– Device partitioning

– Support separate compilation and linking of

programs

– Greater support for OpenCL libraries

OpenCL 2.0

• Released in November 2013

• Major new features:
– Shared virtual memory (SVM)

– Dynamic parallelism

– Pipes

– Built-in reductions/broadcasts

– Sub-groups

– "generic" address space

– C11 atomics

– More image support

VECTOR OPERATIONS WITHIN

KERNELS

Appendix A

Before we continue...

• The OpenCL device compilers are good at
auto-vectorising your code

– Adjacent work-items may be packed to
produce vectorized code

• By using vector operations the compiler
may not optimize as sucessfully

• So think twice before you explicitly
vectorize your OpenCL kernels, you might
end up hurting performance!

Vector operations
• Modern microprocessors include vector units:

Functional units that carry out operations on blocks of numbers

• For example, x86 CPUs have over the years introduced
MMX, SSE, and AVX instruction sets …
characterized in part by their widths (e.g. SSE operates on 128
bits at a time, AVX 256 bits etc)

• To gain full performance from these processors it is
important to exploit these vector units

• Compilers can sometimes automatically exploit vector
units.
Experience over the years has shown, however, that you all too
often have to code vector operations by hand.

• Example using 128 bit wide SSE:

#include "xmmintrin.h " // vector intrinsics from gcc for SSE (128 bit wide)

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); // pack 4 floats into vector register

__m128 vstep = _mm_load1_ps(&step); // pack step into a vector register

__m128 xvec; = _mm_mul_ps(ramp,vstep); // multiple corresponding 32 bit

 // floats and assign to xvec

Vector intrinsics challenges

• Requires an assembly code style of programming:
– Load into registers

– Operate with register operands to produce values in another
vector register

• Non portable
– Change vector instruction set (even from the same vendor)

and code must be re-written. Compilers might treat them
differently too

• Consequences:
– Very few programmers are willing to code with intrinsics

– Most programs only exploit vector instructions that the
compiler can automatically generate – which can be hit or miss

– Most programs grossly under exploit available performance.

Solution: a high level portable vector instruction set …

which is precisely what OpenCL provides.

Vector Types

• The OpenCL C kernel programming language provides
a set of vector instructions:
– These are portable between different vector instruction

sets

• These instructions support vector lengths of 2, 4, 8,
and 16 … for example:
– char2, ushort4, int8, float16, double2, …

• Properties of these types include:
– Endian safe

– Aligned at vector length

– Vector operations (elementwise) and built-in functions

Remember, double (and hence vectors

of double) are optional in OpenCL v1.1

Vector Operations

• Vector literal

• Vector components

• Vector ops

int4 vi0 = (int4) -7;

int4 vi1 = (int4) (0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8) (vi0, vi1.s01, vi1.odd);

vi0 += vi1;

vi0 = abs(vi0);

-7 -7 -7 -7

0 1 2 3

2 3 -7 -7

2 3 -7 -7 0 1 1 3

2 3 -7 -7

0 1 2 3

2 4 -5 -4

+

2 4 5 4

Using vector operations

• You can convert a scalar loop into a vector loop using
the following steps:

– Based on the width of your vector instruction set and
your problem, choose the number of values you can pack
into a vector register (the width):
• E.g. for a 128 bit wide SSE instruction set and float data (32 bit),

you can pack four values (128 bits =4*32 bits) into a vector
register

– Unroll the loop to match your width (in our example, 4)

– Set up the loop preamble and postscript. For example, if
the number of loop iterations doesn’t evenly divide the
width, you’ll need to cover the extra iterations in a loop
postscript or pad your vectors in a preamble

– Replace instructions in the body of the loop with their
vector instruction counter parts

Vector instructions example
• Scalar loop:

for (i = 0; i < 34; i++) x[i] = y[i] * y[i];

• Width for a 128-bit SSE is 128/32=4

• Unroll the loop, then add postscript and premable as needed:
NLP = 34+2; x[34]=x[35]=y[34]=y[35]=0.0f // preamble to zero pad

for (i = 0; i < NLP; i = i + 4) {

 x[i] = y[i] * y[i]; x[i+1] = y[i+1] * y[i*1];

 x[i+2] = y[i+2] * y[i*2]; x[i+3] = y[i+3] * y[i*3];

}

• Replace unrolled loop with associated vector instructions:

float4 x4[DIM], y4[DIM];

// DIM set to hold 34 values extended to multiple of 4 (36)

float4 zero = {0.0f, 0.0f, 0.0f, 0.0f};

NLP = 34 % 4 + 1; // 9 values (as 34 isn’t a multiple of 4)

x4[NLP-1] = 0.0f; y4[NLP-1] = 0.0f; // zero pad arrays

for (i = 0; i < NLP; i++)

 x4[i] = y4[i] * y4[i]; // actual vector operations

Exercise A: The vectorized Pi program

• Goal:

– To understand the vector instructions in the kernel
programming language

• Procedure:

– Start with your best Pi program

– Unroll the loops 4 times. Verify that the program still
works

– Use vector instructions in the body of the loop

• Expected output:

– Output result plus an estimate of the error in the result

– Report the runtime and compare vectorized and scalar
versions of the program

– You could try running this on the CPU as well as the
GPU…

THE OPENCL EVENT MODEL

Appendix B

OpenCL Events
• An event is an object that communicates the status of

commands in OpenCL … legal values for an event:

– CL_QUEUED: command has been enqueued.

– CL_SUBMITTED: command has been submitted to the
 compute device

– CL_RUNNING: compute device is executing the command

– CL_COMPLETE: command has completed

– ERROR_CODE: a negative value indicates an error condition
 occurred.

• Can query the value of an event from the host … for
example to track the progress of a command.

cl_int clGetEventInfo (

 cl_event event, cl_event_info param_name,

 size_t param_value_size, void *param_value,

 size_t *param_value_size_ret)

Examples:

• CL_EVENT_CONTEXT
• CL_EVENT_COMMAND_EXECUTION_STATUS

• CL_EVENT_COMMAND_TYPE

Generating and consuming events
• Consider the command to enqueue a kernel. The last three

arguments optionally expose events (NULL otherwise).

cl_int clEnqueueNDRangeKernel (

 cl_command_queue command_queue,

 cl_kernel kernel,

 cl_uint work_dim,

 const size_t *global_work_offset,

 const size_t *global_work_size,

 const size_t *local_work_size,

 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,

 cl_event *event)

Pointer to an event object

generated by this command

Array of pointers to the events

being waited upon … Command

queue and events must share a

context.

Number of events this command

is waiting to complete before

executing

Event: basic event usage

• Events can be used to impose order
constraints on kernel execution.

• Very useful with out-of-order queues.

cl_event k_events[2];

err = clEnqueueNDRangeKernel(commands, kernel1, 1,

 NULL, &global, &local, 0, NULL, &k_events[0]);

err = clEnqueueNDRangeKernel(commands, kernel2, 1,

 NULL, &global, &local, 0, NULL, &k_events[1]);

err = clEnqueueNDRangeKernel(commands, kernel3, 1,

 NULL, &global, &local, 2, k_events, NULL);

Enqueue two

kernels that

expose events

Wait to execute

until two previous

events complete

OpenCL synchronization: queues & events
• Events connect command invocations. Can be used to synchronize

executions inside out-of-order queues or between queues

• Example: 2 queues with 2 devices

GPU

CPU

GPU

CPU

Time Time

Kernel 1

Kernel 2

E
n
q
u
e
u
e
 K

e
rn

e
l
1

E
n
q
u
e
u
e
 K

e
rn

e
l
2

Kernel 2 starts

before the results

from Kernel 1 are

ready

Kernel 1

Kernel 2

E
n
q
u
e
u
e
 K

e
rn

e
l
1

E
n
q
u
e
u
e
 K

e
rn

e
l
2

Kernel 2 waits for

an event from

Kernel 1 and does

not start until the
results are ready

Why Events? Won’t a barrier do?

• A barrier defines a synchronization
point … commands following a
barrier wait to execute until all
prior enqueued commands complete
cl_int
clEnqueueBarrier(cl_command_queue
queue)

• Events provide fine grained control
… this can really matter with an
out-of-order queue.

• Events work between commands in
the different queues … as long as
they share a context

• Events convey more information
than a barrier … provide info on
state of a command, not just
whether it’s complete or not.

Queue Queue

Context

GPU CPU

Event

Barriers between queues: clEnqueueBarrier doesn’t work

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

1st Command Queue 2nd Command Queue

clEnqueueBarrier() clEnqueueBarrier()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

Barriers between queues: this works!

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

1st Command Queue 2nd Command Queue

clEnqueueBarrier()

clEnqueueWaitForEvent(event)
clEnqueueMarker(event)

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

Host generated events influencing execution of

commands: User events

• “user code” running on a host thread can
generate event objects
cl_event clCreateUserEvent(cl_context context, cl_int

*errcode_ret)

• Created with value CL_SUBMITTED.

• It’s just another event to enqueued commands.

• Can set the event to one of the legal event
values
cl_int clSetUserEventStatus(cl_event event, cl_int
execution_status)

• Example use case: Queue up block of commands
that wait on user input to finalize state of
memory objects before proceeding.

Command generated events influencing

execution of host code

• A thread running on the host can pause
waiting on a list of events to complete. This
can be done with the function:
cl_int clWaitForEvents(

 cl_uint num_events,

 const cl_event *event_list)

• Example use case: Host code waiting for an
event to complete before extracting
information from the event.

Number of events to wait on

An array of pointers

to event object

Profiling with Events

• OpenCL is a performance oriented language … Hence
performance analysis is an essential part of OpenCL
programming.

• The OpenCL specification defines a portable way to
collect profiling data.

• Can be used with most commands placed on the
command queue … includes:

– Commands to read, write, map or copy memory objects

– Commands to enqueue kernels, tasks, and native kernels

– Commands to Acquire or Release OpenGL objects

• Profiling works by turning an event into an opaque
object to hold timing data.

Using the Profiling interface
• Profiling is enabled when a queue is created with the

CL_QUEUE_PROFILING_ENABLE flag set.

• When profiling is enabled, the following function is used
to extract the timing data

cl_int clGetEventProfilingInfo(

 cl_event event,

 cl_profiling_info param_name,

 size_t param_value_size,

 void *param_value,

 size_t *param_value_size_ret)

Expected and

actual size of

profiling data.

Profiling data

to query (see

next slide)

Pointer to

memory to

hold results

cl_profiling_info values

• CL_PROFILING_COMMAND_QUEUED

– the device time in nanoseconds when the command is
enqueued in a command-queue by the host. (cl_ulong)

• CL_PROFILING_COMMAND_SUBMIT

– the device time in nanoseconds when the command is
submitted to compute device. (cl_ulong)

• CL_PROFILING_COMMAND_START

– the device time in nanoseconds when the command
starts execution on the device. (cl_ulong)

• CL_PROFILING_COMMAND_END

– the device time in nanoseconds when the command has
finished execution on the device. (cl_ulong)

Profiling Examples
cl_event prof_event;

cl_command_queue comm;

comm = clCreateCommandQueue(

 context, device_id,

 CL_QUEUE_PROFILING_ENABLE,

 &err);

err = clEnqueueNDRangeKernel(

 comm, kernel,

 nd, NULL, global, NULL,

 0, NULL, prof_event);

clFinish(comm);

err = clWaitForEvents(1,

&prof_event);

cl_ulong start_time, end_time;

size_t return_bytes;

err = clGetEventProfilingInfo(

 prof_event,

CL_PROFILING_COMMAND_QUEUED,

 sizeof(cl_ulong),

 &start_time,

 &return_bytes);

err = clGetEventProfilingInfo(

 prof_event,

CL_PROFILING_COMMAND_END,

 sizeof(cl_ulong),

 &end_time,

 &return_bytes);

run_time =(double)(end_time -

start_time);

Events inside Kernels … Async. copy
// A, B, C kernel args … global buffers.

// Bwrk is a local buffer

for(k=0;k<Pdim;k++)

 Awrk[k] = A[i*Ndim+k];

for(j=0;j<Mdim;j++){

 event_t ev_cp = async_work_group_copy(

 (__local float*) Bwrk, (__global float*) B,

 (size_t) Pdim, (event_t) 0);

 wait_group_events(1, &ev_cp);

 for(k=0, tmp= 0.0;k<Pdim;k++)

 tmp += Awrk[k] * Bwrk[k];

 C[i*Ndim+j] = tmp;

}

• Compute a row of C = A * B

– 1 A col.per work-item

– Work group shares rows of B

Start an async. copy

for row of B returning

an event to track

progress.

Wait for async. copy to

complete before

proceeding.

Compute element of C

using A from private

memory and B from

local memory.

Events and the C++ interface

(for profiling)
• Enqueue the kernel with a returned event

Event event =

 vadd(

 EnqueueArgs(commands,NDRange(count), NDRange(local)),

 a_in, b_in, c_out, count);

• What for the command attached to the event to complete
event.wait();

• Extract timing data from the event:

 cl_ulong ev_start_time =

 event.getProfilingInfo<CL_PROFILING_COMMAND_START>();

 cl_ulong ev_end_time =

 event.getProfilingInfo<CL_PROFILING_COMMAND_END>();

PINNED MEMORY

Appendix C

Pinned Memory

• In general, the fewer transfers you can

do between host and device, the better

• But some are unavoidable

• It is possible to speed up these transfers,

by using pinned memory (also called

page-locked memory)

• If supported, can enable much faster host

<-> device communications

Pinned Memory

• A regular enqueueRead/enqueueWrite

command might manage ~6GB/s

• But PCI-E Gen 3.0 can sustain transfer

rates of up to 16GB/s

• So, where has our bandwidth gone?

• The operating system

• Why? Let's consider when memory is

actually allocated…

Malloc Recap

• Consider a laptop which

has 16GB of RAM.

• What is the output of the

code on the right if run

on this laptop?

• Bonus Question: if
compiled with –m32,

what will the output be?

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

 //64 billion floats

size_t len = 64 * 1024*1024*1024;

//256GB allocation

float *buffer =

malloc(len*sizeof(float));

if (NULL == buffer)

{

fprintf(stderr, "malloc failed\n");

return 1;

}

 printf("got ptr %p\n", buffer);

return 0;

}

% gcc test.c -o test

% ./test
got ptr 0x7f84b0c03350

Malloc Recap

• A non-NULL pointer was

returned

• Both OS X and Linux will

oversubscribe memory

• When will this memory

actually get allocated?

• Checking the return

value of malloc/calloc is

useless – malloc never*

returns NULL!

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

 //64 billion floats

size_t len = 64 * 1024*1024*1024;

//256GB allocation

float *buffer =

malloc(len*sizeof(float));

if (NULL == buffer)

{

fprintf(stderr, "malloc failed\n");

return 1;

}

 printf("got ptr %p\n", buffer);

return 0;

}

* This might not be true for an embedded system

Malloc Recap

• This program does not

actually allocate any

memory

• We call malloc, but we

never use it!

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

 size_t len = 16 * 1024*1024;

 float *buffer =

 malloc(len*sizeof(float));

 return 0;

}

Malloc Recap

• So what happens here?

• The pointer we got back,

when accessed, will trigger

a page fault in the kernel.

• The kernel will then

allocate us some memory,

and allow us to write to it.

• But how much was

allocated in this code? Only

4096 bytes (one page)

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

 size_t len = 16 * 1024*1024;

 float *buffer =

 malloc(len*sizeof(float));

 buffer[0] = 10.0f;

 return 0;

}

Malloc Recap

• 4KB pages will be allocated at a time,

and can also be swapped to disk

dynamically

• In fact, an allocation may not even be

contiguous

• So, enqueueRead/enqueueWrite must

incur an additional host memory to host

memory copy, wasting bandwidth and

costing performance

• EnqueueWrite:

– Allocate contiguous portion of DRAM

– Copy host data into this contiguous memory

– Signal the DMA engines to start the transfer

• EnqueueRead:

– Allocate contiguous portion of DRAM

– Signal DMA engine to start transfer

– Wait for interrupt to signal that the transfer

has finished

– Copy transferred data from the contiguous

memory into memory in the host code’s

address space

• Pinned memory side-steps this issue by

giving the host process direct access to

the portions of host memory that the DMA

engines read and write to.

• This results in much less time spent

waiting for transfers!

• Disclaimer: Not all drivers support it, and

it makes allocations much more

expensive (so it would be slow to

continually allocate and free pinned

memory!)

Using Pinned Memory
• OpenCL has no official

support for pinned memory

• But e.g. NVIDIA supports
pinned memory allocations
(CL_MEM_ALLOC_HOST_PTR
flag)

• When you allocate a cl_mem
object, you also allocate
page-locked host memory of
the same size

• But this does not return the
host pointer

• Reading and writing data is
handled by
enqueueMapBuffer, which
does return the host pointer

• Eventually call
clEnqueueUnmapMemObject
when you're done

//create device buffer

cl_mem devPtrA = clCreateBuffer(

 context,

 CL_MEM_ALLOC_HOST_PTR, //pinned memory flag

 len,

 NULL, //host pointer must be NULL

 NULL

);

float *hostPtrA =

(float *) clEnqueueMapBuffer(

 queue,

 devPtrA,

 CL_TRUE, //blocking map

 CL_MAP_WRITE_INVALIDATE_REGION, //write data

 0, //offset of region

 len, //amount of data to be mapped

 0, NULL, NULL, //event information

 NULL //error code pointer

);

CL_MAP_WRITE_INVALIDATE_REGION is a v1.2 feature; if using

v1.1 or earlier, would have to use CL_MAP_WRITE instead.

Caveats

• Again, allocating pinned memory is much
more expensive (about 100x slower) than
regular memory, so frequent allocations will
be bad for performance.

• However, frequent reads and writes will be
much faster!

• Not all platforms support pinned memory.
But, the above method will still work, and
at least will not be any slower than regular
use

C++ FOR C PROGRAMMERS

Appendix D

C++ for C programmers

• This Appendix shows and highlights some of

the basic features and principles of C++.

• It is intended for the working C programmer.

• The C++ standards:

– ISO/ANSI Standard 1998 (revision 2003)

– ISO/ANSI Standard 2011 (aka C++0x or C++11)

Comments, includes, and variable

definitions

• Single line comments:

 // this is a C++ comment

• C includes are prefixed with “c”:

 #include <cstdio>

• IO from keyboard and to console
 #include <iosteam>

 int a;

 std::cin >> a; // input integer to ‘a’

 std::cout << a; // outputs ‘a’ to console

Namespaces

• Definitions and variables can be scoped with namespaces.
 :: is used to dereference.

• Using namespace opens names space into current scope.

• Default namespace is std.

 #include <iostream> // definitions in std namespace

 namespace foo {

 int id(int x) { return x; }

 };

 int x = foo::id(10);

 using namespace std;

 cout << x; // no need to prefix with std::

References in C++ …

a safer way to do pointers
• References are non-null pointers. Since they can’t be NULL, you

don’t have to check for NULL value all the time (as you do with
C)

• For example, in C we need to write:

 int foo(int * x) {
 if (x != NULL) return *x;

 else return 0;

 }

• In C++ we could write:

 int foo(int & x) {
 return x;

 }

• Note that in both cases the memory address of x is passed (i.e.
by reference) and not the value!

New/Delete Memory allocation

• C++ provides safe(r) memory allocation

• new and delete operator are defined for
each type, including user defined types. No
need to multiple by sizeof(type) as in C.

 int * x = new int;
 delete x;

• For multi element allocation (i.e. arrays) we
must use delete[].

 int * array = new int[100];

 delete[] array;

Overloading
• C++ allows functions to have the same name but with

different argument types.

 int add(int x, int y)
 {

 return x+y;

 }

 float add(float x, float y)

 {

 return x+y;

 }

 // call the float version of add

 float f = add(10.4f, 5.0f);

 // call the int version of add

 int i = add(100,20);

Classes (and structs)
• C++ classes are an extension of C structs (and unions) that

can functions (called member functions) as well as data.

The keyword “const” can be applied to member functions such as getX() to state that
the particular member function will not modify the internal state of the object, i.e it
will not cause any visual effects to someone owning a pointer to the said object. This
allows for the compiler to report errors if this is not the case, better static analysis,
and to optimize uses of the object , i.e. promote it to a register or set of registers.

class Vector {

 private:

 int x_, y_, z_ ;

 public:

 Vector (int x, int y, int z) : x_(x), y_(y), z_(z) {} // constructor

 ~Vector // destructor

 {

 cout << “vector destructor”;

 }

 int getX() const { return x_; } // access member function

 …

 };

More information about constructors
• Consider the constructor from the previous slide …

Vector (int x, int y, int z): x_(x), y_(y), z_(z) {}

• C++ member data local to a class (or struct) can be initialized using
the noation
: data_name(initializer_name), ...

• Consider the following two semantically equivalent structs in which
the constructor sets the data member x_ to the input value x:

• Case B must use a temporary to read the value of x, while this is not
so for Case A. This is due to C’s definition of local stack allocation.

• This turns out to be very import in C++11 with its memory model
which states that an object is said to exist once inside the body of the
constructor and hence thread safety becomes an issue, this is not the
case for the constructor initalization list (case A). This means that
safe double locking and similar idioms can be implemented using this
approach.

struct Foo

{

 int x_;

 Foo(int x) : x_(x) {}

}

struct Foo

{

 int x_;

 Foo(int x) { x_ = x; }

}

A B

Classes (and structs) continued

• Consider the following block where we construct an
object (the vector “v”), use it and then reach the
end of the block

{

 Vector v(10,20,30);

 // vector {x_ = 10, y_ = 20 , z_ = 30}

 // use v

} // at this point v’s destructor would be called!

• Note that at the end of the block, v is no longer
accessible and hence can be destroyed. At this point,
the destructor for v is called.

Classes (and structs) continued

• There is a lot more to classes, e.g.

inheritance but it is all based on this

basic notion.

• The previous examples adds no additional

data or overhead to a traditional C

struct, it has just improved software

composibility.

Function objects

• Function application operator can be

overloaded to define functor classes

 struct Functor

 {

 int operator() (int x) { return x*x; }

 };

 // create an object of type Functor

 Functor f();

 int value = f(10); // call the operator()

Template functions

• Don’t want to write the same function many times
for different types?

• Templates allow functions to be parameterized with
a type(s).

template<typename T>

 T add(T x, T y) { return x+y; }

 float f = add<float>(10.4f, 5.0f); // float version

 int i = add<int>(100,20); // int version

• You can use the templatized type, T, inside the
template function

Template classes

• Don’t want to write the same class many times
for different types?

• Templates allow class to be parameterized
with a type(s) too.

template <typename T>

 class Square

 {

 T operator() (T x) { return x*x; }

 };

 Square<int> f_int();

 int value = f_int(10);

C++11 defines a function template

• C++ function objects can be stored in the templated class
std::function. The following header defines the class
std::function

 #include <functional>

• We can define a C++ function object (e.g. functor) and then
store it in the tempated class std::function

struct Functor

 {

 int operator() (int x) { return x*x; }

 };

 std::function<int (int)> square(Functor());

C++ function template: example 1

The header <functional> just defines the template std::function. This
can be used to warp standard functions or function objects, e.g.:

int foo(int x) { return x; } // standard function

std::function<int (int)> foo_wrapper(foo);

struct Foo // function object

{

 void operator()(int x) {return x;}

};

std::function<int (int)> foo_functor(Foo());

foo_functor and foo_wrapper are basically

the same but one is using a standard C like

function, while the other is using a function

object

C++ function template: example 2
What is the point of function objects? Well they can of course
contain local state, which functions cannot, they can also contain
member functions and so on. A silly example might be:

struct Foo // function object

{

 int y_;

 Foo() : y_(100) {}

 void operator()(int x) { return x+100; }

};

std::function<int (int)> add100(Foo());

// function that adds 100 to its argument

PYTHON FOR C PROGRAMMERS

Appendix E

Python 101
• Python is an interpreted language, and so

doesn’t need to be compiled

• Python is often used as a language to glue other
parts of your application together – with OpenCL
this is great as the host code is fast to write and
the heavy computation is done on your
accelerator

• Run your code as:
– python file.py

• No curly braces – indent consistently to define
blocks of code

• Print to stdout with print – it will try it’s best to
format variables:
print ‘a =‘, a, ‘and b =‘, b

Comments, variables and includes

• A comment is prefixed with the hash
this is a comment

• Initilize variables as you go – no need for a type
N = 1024

x = 5.23

my_string = 'hello world'

• Use single or double quotes for strings
'this is the same'

"as this"

"no need to escape 'opposite' quotes!"

• Also use three quotes ''' or """ for multiline strings
without escaping anything!

• Include additional modules and libraries with
import sys

Conditionals

if n == 1:

print ‘n was 1’

elif n == 2 or n == 3:

print ‘n was 2 or 3’

else:

 print ‘n was’, n

Loops

loop from 0 to 1023

for i in range(1024):

 print i

iterate through an array

for x in my_array:

 x += 1

same as the first one

while i < 1024:

 print i

 i += 1

Functions and classes

• Define a function with the def keyword
def func(arg):

• You don’t specify the types or return
arguments
– you just return what you like

• Define a class with the class keyword
class name:

• Classes contain function definitions and
variables

– These are both called attributes

More about classes

• There is a lot more about classes e.g.
inheritance

• Python is an object-oriented language

• A small example from the python tutorial:
class Complex:

 def __init__(self, realpart, imagpart):

 self.r = realpart

 self.i = imagpart

• Initilize an instance of the class with:
x = Complex(3.0, -4.5)

Python has functional programming

elements
• Filter

filter(function, sequence)

– Returns a list from sequence which function returns
true

• Map
map(function, sequence)

– Applies the function to each element in the
sequence

• Reduce
reduce(function, sequence)

– Applies binary function with first two in sequence,
then with the result with third, etc.

Python has functional programming

elements
• List comprehensions

squares = [x*x for x in range(10)]

squares = [0, 1, 4, 9, 16, etc]

• Zip
zip(list1, list2)

– Creates a list of tuples, where the ith tuple consists
of the ith elements of each list

• Generators
– Lazy generation of lists
– Either:

• Replace [] with () in list comprehensions to use as
expression, i.e. to pass to another function

• Use the yield keyword instead of return in a function
which builds and returns a list

Further information:

• There is lots more to python, this is just a
flavor of the language to help you
understand the syntax in this course

• The official python tutorial is much more
complete:
– http://docs.python.org/2/tutorial/index.ht

ml

• The python docs are really good too
– http://docs.python.org/2/library/index.html

http://docs.python.org/2/tutorial/index.html
http://docs.python.org/2/tutorial/index.html
http://docs.python.org/2/library/index.html

	Introduction
	Slide 1: Lec14: OpenCL
	Slide 2: Hands On OpenCL
	Slide 3: Agenda
	Slide 4: Course materials

	2: OpenCL Overview
	Slide 18: An overview of OpenCL
	Slide 19: It’s a Heterogeneous world
	Slide 20: Microprocessor trends
	Slide 21: Industry Standards for Programming Heterogeneous Platforms
	Slide 22: The origins of OpenCL
	Slide 23: OpenCL Working Group within Khronos
	Slide 24: OpenCL Timeline
	Slide 25: OpenCL Timeline
	Slide 26: OpenCL: From cell phone to supercomputer
	Slide 27: OpenCL Platform Model
	Slide 28: OpenCL Platform Example (One node, two CPU sockets, two GPUs)
	Slide 29: Exercise 1: Platform Information

	3: OpenCL Concepts
	Slide 30: Important OpenCL concepts
	Slide 31: OpenCL Platform Model
	Slide 32: The BIG idea behind OpenCL
	Slide 33: Analogies to CUDA
	Slide 34: An N-dimensional domain of work-items
	Slide 35: OpenCL N Dimensional Range (NDRange)
	Slide 36: OpenCL N Dimensional Range (NDRange)
	Slide 37: OpenCL Memory model
	Slide 38: Context and Command-Queues
	Slide 39: Execution model (kernels)
	Slide 40: Building Program Objects
	Slide 41: Example: vector addition
	Slide 42: Vector Addition - Kernel
	Slide 43: Vector Addition – Host
	Slide 44: The basic platform and runtime APIs in OpenCL (using C)
	Slide 45: 1. Define the platform
	Slide 46: Command-Queues
	Slide 47: Command-Queue execution details
	Slide 48: 2. Create and Build the program
	Slide 49: Error messages
	Slide 50: 3. Setup Memory Objects
	Slide 51: What do we put in device memory?
	Slide 52: Creating and manipulating buffers
	Slide 53: Conventions for naming buffers
	Slide 54: Creating and manipulating buffers
	Slide 55: 4. Define the kernel
	Slide 56: 5. Enqueue commands
	Slide 57: 5. Enqueue commands
	Slide 58: Vector Addition – Host Program
	Slide 59: Vector Addition – Host Program
	Slide 60: Exercise 2: Running the Vadd kernel

	4: OpenCL APIs
	Slide 61: Overview of OpenCL APIs
	Slide 62: Host programs can be “ugly”
	Slide 63: The C++ Interface
	Slide 64: C++ Interface: setting up the host program
	Slide 65: C++ interface: The vadd host program
	Slide 66: The C++ Buffer Constructor
	Slide 67: The C++ Buffer Constructor
	Slide 68: The Python Interface
	Slide 69: Setting up the host program
	Slide 70
	Slide 71: Exercise 3: Running the Vadd kernel (C++ / Python)
	Slide 72: Exercise 4: Chaining vector add kernels (C++ / Python)

	Working with Kernels
	Slide 73: A host view of Working with kernels
	Slide 74: Working with Kernels (C++)
	Slide 75: Create a kernel
	Slide 76: Create a kernel (advanced)
	Slide 77: Associate with args and enqueue kernel
	Slide 78: Working with Kernels (Python)
	Slide 79: Working with Kernels (Python)
	Slide 80: Working with Kernels (Python)
	Slide 81: Exercise 5: The D = A + B + C problem
	Slide 82: We have now covered the basic platform runtime APIs in OpenCL

	5: Kernel Programming
	Slide 83: Introduction to OpenCL kernel programming
	Slide 84: OpenCL C for Compute Kernels
	Slide 85: OpenCL C for Compute Kernels
	Slide 86: OpenCL C Language Highlights
	Slide 87: OpenCL C Language Restrictions
	Slide 88: Worked example: Linear Algebra
	Slide 89: Solving Ax=b
	Slide 90: Matrix multiplication: sequential code
	Slide 91: Matrix multiplication performance
	Slide 92: Matrix multiplication: sequential code
	Slide 93: Matrix multiplication: OpenCL kernel (1/2)
	Slide 94: Matrix multiplication: OpenCL kernel (2/2)
	Slide 95: Matrix multiplication: OpenCL kernel
	Slide 96: Matrix multiplication: OpenCL kernel improved
	Slide 97: Matrix multiplication host program (C++ API)
	Slide 98: Matrix multiplication performance
	Slide 99: Exercise 6: Matrix Multiplication

	6: Memory Hierarchy
	Slide 100: Understanding the OpenCL memory hierarchy
	Slide 101: Optimizing matrix multiplication
	Slide 102: An N-dimensional domain of work-items
	Slide 103: OpenCL Memory model
	Slide 104: OpenCL Memory model
	Slide 105: Private Memory
	Slide 106: Local Memory*
	Slide 107: Local Memory
	Slide 108: The Memory Hierarchy
	Slide 109: Memory Consistency
	Slide 110: Optimizing matrix multiplication
	Slide 111: An N-dimension domain of work-items
	Slide 112: Matrix multiplication: One work item per row of C
	Slide 113: Matrix multiplication host program (C++ API)
	Slide 114: Matrix multiplication performance
	Slide 115: Optimizing matrix multiplication
	Slide 116: Matrix multiplication: (Row of A in private memory)
	Slide 117: Matrix multiplication performance
	Slide 118: Why using too much private memory can be a good thing
	Slide 119: Exercise 7: using private memory
	Slide 120: Optimizing matrix multiplication
	Slide 121: Matrix multiplication: B column shared between work-items
	Slide 122: Matrix multiplication host program (C++ API)
	Slide 123: Matrix multiplication performance
	Slide 124: Making matrix multiplication really fast
	Slide 125: Matrix multiplication performance
	Slide 126: Exercise 8: using local memory

	7: Synchronization
	Slide 127: Synchronization in OpenCL
	Slide 128: Consider N-dimensional domain of work-items
	Slide 129: Work-Item Synchronization
	Slide 130: Where might we need synchronization?
	Slide 131: Simple parallel reduction
	Slide 132: A simple program that uses a reduction
	Slide 133: Numerical integration source code
	Slide 134: Exercise 9: The Pi program

	8: Heterogeneous Computing
	Slide 135: Heterogeneous computing with OpenCL
	Slide 136: Running on the CPU and GPU
	Slide 137: Running on the CPU and GPU
	Slide 138: Exercise 10: Heterogeneous Computing

	9: Portable Performance
	Slide 139: Enabling Portable Performance via OpenCL
	Slide 140: Portable performance in OpenCL
	Slide 141: Optimization issues
	Slide 142: Memory layout is critical to performance
	Slide 143: Other optimisation tips
	Slide 144: Portable performance in OpenCL
	Slide 145: Advice for performance portability
	Slide 146: Advice for performance portability
	Slide 147: Timing microbenchmarks (C)
	Slide 148: Advice for performance portability
	Slide 149: Tuning Knobs some general issues to think about
	Slide 150: Auto tuning
	Slide 151: Auto tuning example - Flamingo
	Slide 152: Auto tuning - Example
	Slide 153: Exercise 11: Optimize matrix multiplication

	10: Profiling
	Slide 154: Optimizing OpenCL performance
	Slide 155: Extrae and Paraver
	Slide 156: Extrae and Paraver
	Slide 157: Important!
	Slide 158: Installing Extrae and Paraver
	Slide 159: Step 1 – tracing your code
	Slide 160: Step 2 – visualize the trace
	Slide 161: Paraver
	Slide 162: Usage Tips
	Slide 163: Platform specific profilers
	Slide 164: NVIDIA Visual Profiler®
	Slide 165: Profiling using nvvp
	Slide 166: Profiling using nvvp
	Slide 167: Profiling from the command line
	Slide 168: AMD® CodeXL
	Slide 169: CodeXL
	Slide 170: CodeXL
	Slide 171: CodeXL
	Slide 172: Exercise 12: Profiling OpenCL programs

	11: Debugging
	Slide 173: Debugging OpenCL
	Slide 174: Debugging OpenCL
	Slide 175: Debugging OpenCL 1.1
	Slide 176: Debugging OpenCL – more tips
	Slide 177: Debugging OpenCL - GDB
	Slide 178: Debugging OpenCL - GDB
	Slide 179: Using GDB with AMD®
	Slide 180: Using GDB with Intel®
	Slide 181: Debugging OpenCL – Using GDB
	Slide 182: Oclgrind
	Slide 183: GPUVerify
	Slide 184: Other debugging tools

	12: Porting CUDA
	Slide 185: Porting CUDA to OpenCL
	Slide 186: Introduction to OpenCL
	Slide 187: Memory Hierarchy Terminology
	Slide 188: Allocating and copying memory
	Slide 189: Allocating and copying memory
	Slide 190: Declaring dynamic local/shared memory
	Slide 191: Declaring dynamic local/shared memory
	Slide 192: Dividing up the work
	Slide 193: Enqueue a kernel (C)
	Slide 194: Enqueue a kernel (C++)
	Slide 195: Indexing work
	Slide 196: Differences in kernels
	Slide 197: Host code
	Slide 198: Thread Synchronization
	Slide 199: Translation from CUDA to OpenCL
	Slide 200: More information
	Slide 201: Exercise 13: Porting CUDA to OpenCL

	Conclusion
	Slide 202: Some Concluding remarks
	Slide 203: Conclusion
	Slide 204: Other important related trends
	Slide 205: Resources: https://www.khronos.org/opencl/
	Slide 206: Other OpenCL resources
	Slide 207: Other OpenCL resources

	OpenCL Versions
	Slide 208: Versions of opencl
	Slide 209: OpenCL 1.0
	Slide 210: OpenCL 1.1
	Slide 211: OpenCL 1.2
	Slide 212: OpenCL 2.0

	A: Vector Instructions
	Slide 213: Vector operations within kernels
	Slide 214: Before we continue...
	Slide 215: Vector operations
	Slide 216: Vector intrinsics challenges
	Slide 217: Vector Types
	Slide 218: Vector Operations
	Slide 219: Using vector operations
	Slide 220: Vector instructions example
	Slide 221: Exercise A: The vectorized Pi program

	B: Events
	Slide 222: The OpenCL event model
	Slide 223: OpenCL Events
	Slide 224: Generating and consuming events
	Slide 225: Event: basic event usage
	Slide 226: OpenCL synchronization: queues & events
	Slide 227: Why Events? Won’t a barrier do?
	Slide 228: Barriers between queues: clEnqueueBarrier doesn’t work
	Slide 229: Barriers between queues: this works!
	Slide 230: Host generated events influencing execution of commands: User events
	Slide 231: Command generated events influencing execution of host code
	Slide 232: Profiling with Events
	Slide 233: Using the Profiling interface
	Slide 234: cl_profiling_info values
	Slide 235: Profiling Examples
	Slide 236: Events inside Kernels … Async. copy
	Slide 237: Events and the C++ interface (for profiling)

	C: Pinned Memory
	Slide 238: Pinned memory
	Slide 239: Pinned Memory
	Slide 240: Pinned Memory
	Slide 241: Malloc Recap
	Slide 242
	Slide 243: Malloc Recap
	Slide 244: Malloc Recap
	Slide 245: Malloc Recap
	Slide 246: Malloc Recap
	Slide 247
	Slide 248
	Slide 249: Using Pinned Memory
	Slide 250: Caveats

	D: C++ for C
	Slide 251: C++ for C Programmers
	Slide 252: C++ for C programmers
	Slide 253: Comments, includes, and variable definitions
	Slide 254: Namespaces
	Slide 255: References in C++ … a safer way to do pointers
	Slide 256: New/Delete Memory allocation
	Slide 257: Overloading
	Slide 258: Classes (and structs)
	Slide 259: More information about constructors
	Slide 260: Classes (and structs) continued
	Slide 261: Classes (and structs) continued
	Slide 262: Function objects
	Slide 263: Template functions
	Slide 264: Template classes
	Slide 265: C++11 defines a function template
	Slide 266: C++ function template: example 1
	Slide 267: C++ function template: example 2

	E: Python for C
	Slide 268: Python for C programmers
	Slide 269: Python 101
	Slide 270: Comments, variables and includes
	Slide 271: Conditionals
	Slide 272: Loops
	Slide 273: Functions and classes
	Slide 274: More about classes
	Slide 275: Python has functional programming elements
	Slide 276: Python has functional programming elements
	Slide 277: Further information:

