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Course materials

In addition to these slides, C++ API header files, a set of exercises, 
and solutions, it is useful to have:

OpenCL 1.1 Reference Card

This card will help you keep track 
of the  API as you do the exercises:

https://www.khronos.org/files/ope
ncl-1-1-quick-reference-card.pdf 

The v1.1 spec is also very readable 
and recommended to have on-hand:

https://www.khronos.org/registry/
cl/specs/opencl-1.1.pdf 

https://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf


AN OVERVIEW OF OPENCL
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It’s a Heterogeneous world

OpenCL lets Programmers write a single portable program 

that uses ALL resources in the heterogeneous platform

A modern computing 

platform includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15 

1.7GHz,  Mali T604 GPU

E.g. Intel XXX with IRIS



Microprocessor trends
Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:

    How are we to build a software ecosystem for the
    Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla® 

C2090

10 cores

16 wide SIMD

ATI  RV770

16 cores

32 wide SIMD

Intel® Xeon Phi  

coprocessor



Industry Standards for Programming 

Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving 
performance increases

GPUs
Increasingly general 

purpose data-parallel 
computing

Graphics 
APIs and 
Shading 

Languages

Multi-
processor 

programming – 
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing



The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed 

commonality 

across products

GPU vendor – 

wants to steal 

market share 

from CPU

CPU vendor – 

wants to steal 

market share 

from GPU

Was tired of recoding for 

many core, GPUs.

Pushed vendors to 

standardize.

Wrote a rough draft 

straw man API

Khronos Compute 

group formed

ARM

Nokia

IBM

Sony

Qualcomm

Imagination

TI

Third party names are the property of their owners.

+ many 

more



OpenCL Working Group within Khronos

• Diverse industry participation
– Processor vendors, system OEMs, middleware 

vendors, application developers.

• OpenCL became an important standard upon 
release by virtue of the market coverage of 
the companies behind it.

MemberLogo

MemberLogo

Umeå University's 
Logotype

Takumi Corporation

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/


OpenCL Timeline
• Launched Jun’08 … 6 months from “strawman” to 

OpenCL 1.0

• Rapid innovation to match pace of hardware 
innovation
– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect 
software investments

Khronos publicly 
releases OpenCL 
1.0  specification

During 2H09
Multiple conformant 

implementations ship across a 
diverse range of platforms.

Dec08 Jun10

Khronos publicly releases 
OpenCL 1.1  specification.  

Conformant implementations 
available shortly thereafter

Nov11

Release of 
OpenCL 1.2



OpenCL Timeline
• Launched Jun’08 … 6 months from “strawman” to 

OpenCL 1.0

• Rapid innovation to match pace of hardware 
innovation
– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect 
software investments

OpenCL 1.0 
released. 

Conformance tests 
released Dec08

Dec08

Jun10

OpenCL 1.1 
Specification and 
conformance tests 

released 

Nov11

OpenCL 1.2 
Specification and 
conformance tests 

released

Nov13

OpenCL  2.0 
Specification 
finalized and 

conformance tests 
released

Jul13

OpenCL 2.0 
Provisional 

Specification released 
for public review



OpenCL: From cell phone to 

supercomputer

• OpenCL Embedded profile for 
mobile and embedded silicon
– Relaxes some data type and 

precision requirements

– Avoids the need for a separate 
“ES” specification

• Khronos APIs provide 
computing support for 
imaging & graphics
– Enabling advanced applications 

in, e.g., Augmented Reality

• OpenCL will enable parallel 
computing in new markets
– Mobile phones, cars, avionics

A camera phone with GPS 

processes images to 

recognize buildings and 

landmarks and provides 

relevant data from internet



OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit



OpenCL Platform Example

(One node, two CPU sockets, two GPUs)

CPUs:

• Treated as one OpenCL 

device

– One CU per core

– 1 PE per CU, or if PEs mapped 

to SIMD lanes, n PEs per CU, 

where n matches the SIMD 

width

• Remember:

– the CPU will also have to be 

its own host!

GPUs:

• Each GPU is a separate 

OpenCL device

• Can use CPU and all GPU 

devices concurrently through 

OpenCL

CU = Compute Unit; PE = Processing Element



Exercise 1: Platform Information

• Goal: 

– Verify that you can run a simple OpenCL program.

• Procedure: 
– Take the provided DeviceInfo program, inspect it in 

the editor of your choice, build the program and run it.

• Expected output:

– Information about the installed OpenCL platforms and 
the devices visible to them.

• Extension:
– Run the command clinfo which comes as part of the 

AMD SDK but should run on all OpenCL platforms. This 
outputs all the information the OpenCL runtime can find 
out about devices and platforms.



IMPORTANT OPENCL CONCEPTS

Lecture 3



OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit



The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each 

point in a problem domain
– E.g., process a 1024x1024 image with one kernel invocation per 

pixel or 1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL

void 

mul(const int n,

    const float *a,

    const float *b,

          float *c)

{

  int i;

  for (i = 0; i < n; i++)

    c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

    __global const float *b,

    __global       float *c)

{

  int id = get_global_id(0);

  c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel



Analogies to CUDA

OpenCL CUDA Purpose

get_global_id(0)
blockIdx.x * blockDim.x 

+ threadIdx.x

Global thread ID in 1D 

grid.

get_local_id(0) threadIdx.x
Local ID within a work-

group (block).

get_group_id(0) blockIdx.x Work-group (block) ID.

get_global_size(0) gridDim.x * blockDim.x
Total work-items in 

dimension 0.



An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 64x64 (work-group, executes together)

• Choose the dimensions that are “best” for 

your algorithm

1024

1
0
2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory fences

Cannot synchronize 

between work-groups 

within a kernel



OpenCL N Dimensional Range 

(NDRange)
• The problem we want to compute should 

have some dimensionality; 
– For example, compute a kernel on all points in a 

cube

• When we execute the kernel we specify up 
to 3 dimensions

• We also specify the total problem size in 
each dimension – this is called the global 
size

• We associate each point in the iteration 
space with a work-item



OpenCL N Dimensional Range 

(NDRange)

• Work-items are grouped into work-groups; 

work-items within a work-group can share 

local memory and can synchronize

• We can specify the number of work-items 

in a work-group – this is called the local 

(work-group) size

• Or the OpenCL run-time can choose the 

work-group size for you (usually not 

optimally)



OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global Memory 
/Constant Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

 host → global → local and back



Context and Command-Queues

• Context: 
– The environment within which kernels 

execute and in which synchronization 
and memory management is defined. 

• The context includes:
– One or more devices

– Device memory 

– One or more command-queues

• All commands for a device (kernel 
execution, synchronization, and 
memory transfer operations) are 
submitted through a command-
queue.  

• Each command-queue points to a 
single device within a context.

Queue

Context

Device

Device Memory



Execution model (kernels)

• OpenCL execution model … define a problem 
domain and execute an instance of a kernel for 
each point in the domain

__kernel void times_two(

    __global float* input,

    __global float* output)

{

   int i = get_global_id(0);

   output[i] = 2.0f * input[i];

}

get_global_id(0)

10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50



__kernel void 

horizontal_reflect(read_only image2d_t src,

                   write_only image2d_t dst) 

{

  int x = get_global_id(0);  // x-coord  

  int y = get_global_id(1);  // y-coord  

  int width = get_image_width(src);  

  float4 src_val = read_imagef(src, sampler, 

                       (int2)(width-1-x, y));  

  write_imagef(dst, (int2)(x, y), src_val);

}

Building Program Objects
• The program object encapsulates:

– A context

– The program kernel source or binary

– List of target devices and build options

• The C API build process to create a 
program object:
– clCreateProgramWithSource()

– clCreateProgramWithBinary()

OpenCL uses runtime 

compilation … because 

in general you don’t 

know the details of the 
target device when you 

ship the program

Compile for 

GPU

Compile for 

CPU

GPU

code

CPU

code



Example: vector addition

• The “hello world” program of data parallel 

programming is a program to add two vectors

 

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code



Vector Addition - Kernel

__kernel void vadd(__global const float *a,

         __global const float *b,

         __global       float *c)

 {

     int gid = get_global_id(0);

     c[gid]  = a[gid] + b[gid];

 }



Vector Addition – Host

• The host program is the code that runs on the host to:
– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:
1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute 
kernels

As we go over the next set of slides, cross 

reference  content on the slides to the reference 

card.  This will help you get used to the reference 

card and how to pull information from the card and 

express it in code. 



The basic platform and runtime APIs 

in OpenCL (using C)

arg [0] 

value

arg [1] 

value

arg [2] 

value

arg [0] 

value

arg [1] 

value

arg [2] 

value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
       global const float *b,
       global float *c)

{
  int id = get_global_id(0);
  c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images

In
Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues



1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId, 

                               &numPlatforms);

• Use the first CPU device the platform provides:
err = clGetDeviceIDs(firstPlatformId,

            CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:
context = clCreateContext(firstPlatformId, 1,

                       &device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:

commands = clCreateCommandQueue(context, device_id,

                                            0, &err);



Command-Queues

• Commands include:
– Kernel executions

– Memory object management

– Synchronization

• The only way to submit 
commands to a device is 
through a command-queue.  

• Each command-queue 
points to a single device 
within a context. 

• Multiple command-queues 
can feed a single device.
– Used to define independent 

streams of commands that 
don’t require synchronization

Queue Queue

Context

GPU CPU



Command-Queue execution details

Command queues can be configured in 

different ways to control how commands 

execute

• In-order queues:
– Commands are enqueued and complete in the 

order they appear in the program (program-order)

• Out-of-order queues:
– Commands are enqueued in program-order but 

can execute (and hence complete) in any order.

• Execution of commands in the 

command-queue are guaranteed to be 

completed at synchronization points
– Discussed later

Queue Queue

Context

GPU CPU



2. Create and Build the program

• Define source code for the kernel-program as a string literal 

(great for toy programs) or read from a file (for real 

applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

           (const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from 

which specific kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);



Error messages

• Fetch and print error messages:

if (err != CL_SUCCESS) {

 size_t len;

 char buffer[2048];

 clGetProgramBuildInfo(program, device_id,   

  CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

 printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch (see later)



3. Setup Memory Objects
• For vector addition we need 3 memory objects, one each 

for input vectors A and B, and one for the output vector C.

• Create input vectors and assign values on the host:
float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

    h_a[i] = rand() / (float)RAND_MAX;

    h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

                   sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

                   sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

                   sizeof(float)*count, NULL, NULL);



What do we put in device memory?

Memory Objects: 

• A handle to a reference-counted region of global 
memory.

There are two kinds of memory object

• Buffer object: 
– Defines a linear collection of bytes (“just a C array”).

– The contents of buffer objects are fully exposed within 
kernels and can be accessed using pointers

• Image object: 
– Defines a two- or three-dimensional region of memory.

– Image data can only be accessed with read and write 
functions, i.e. these are opaque data structures.  The 
read functions use a sampler.

Used when interfacing with a graphics API such as 

OpenGL.  We won’t use image objects in this tutorial.



Creating and manipulating buffers

• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side 

data:

float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count 

bytes from “h_a” to the buffer and copy it into 

device memory:

cl_mem d_a = clCreateBuffer(context,

    CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

     sizeof(float)*count, h_a, NULL);



Conventions for naming buffers

• It can get confusing about whether a host 

variable is just a regular C array or an 

OpenCL buffer

• A useful convention is to prefix the names 

of your regular host C arrays with “h_” 

and your OpenCL buffers which will live 

on the device with “d_”



Creating and manipulating buffers

• Other common memory flags include:
CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host 
memory at “h_c”:
– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,

  sizeof(float)*count, h_c, 

  NULL, NULL, NULL);



4. Define the kernel

• Create kernel object from the kernel function 

“vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to 

memory objects:

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), 

   &count);



5. Enqueue commands

• Write Buffers from host into global memory (as non-

blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

         0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

         0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

               NULL, &global, &local, 0, NULL, NULL);



5. Enqueue commands

• Read back result (as a blocking operation). We have an in-

order queue which assures the previous commands are 

completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

            sizeof(float)*count, h_c, 0, NULL, NULL);



Vector Addition – Host Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

                       CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 

                             sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

                                &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

                         sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 

                         sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 

                         sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

                    global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

                          CL_TRUE, 0,

                          n*sizeof(cl_float), dst,

                          0, NULL, NULL);



Vector Addition – Host Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

                       CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 

                             sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

                                &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

                         sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 

                         sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 

                         sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

                    global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

                          CL_TRUE, 0,

                          n*sizeof(cl_float), dst,

                          0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.



Exercise 2: Running the Vadd kernel

• Goal: 

– To inspect and verify that you can run an OpenCL kernel

• Procedure: 

– Take the provided C Vadd program. It will run a simple 
kernel to add two vectors together. 

– Look at the host code and identify the API calls in the 
host code. Compare them against the API descriptions on 
the OpenCL reference card.

– There are some helper files which time the execution, 
output device information neatly and check errors.

• Expected output:

– A message verifying that the vector addition completed 
successfully



OVERVIEW OF OPENCL APIS

Lecture 4



Host programs can be “ugly”

• OpenCL’s goal is extreme portability, so it 
exposes everything

– (i.e. it is quite verbose!).

• But most of the host code is the same from 
one application to the next – the re-use  
makes the verbosity a non-issue.

• You can package common API combinations 
into functions or even C++ or Python classes 
to make the reuse more convenient.



The C++ Interface

• Khronos has defined a common C++ header file 
containing a high level interface to OpenCL, cl.hpp

• This interface is dramatically easier to work with1

• Key features:

– Uses common defaults for the platform and command-
queue, saving the programmer from extra coding for the 
most common use cases

– Simplifies the basic API by bundling key parameters with 
the objects rather than requiring verbose and repetitive 
argument lists

– Ability to “call” a kernel from the host, like a regular 
function

– Error checking can be performed with C++ exceptions
1 especially for C++ programmers…



C++ Interface:

setting up the host program

• Enable OpenCL API Exceptions. Do this before 

including the header file

#define __CL_ENABLE_EXCEPTIONS

• Include key header files … both standard and custom
#include <CL/cl.hpp>   // Khronos C++ Wrapper API

#include <cstdio>      // For C style 

#include <iostream>    // For C++ style IO

#include <vector>      // For C++ vector types

For information about C++, see 

the appendix:

“C++ for C programmers”.



// Create buffers

// True indicates CL_MEM_READ_ONLY

// False indicates CL_MEM_READ_WRITE

d_a = cl::Buffer(context, 

        h_a.begin(), h_a.end(), true);

d_b = cl::Buffer(context, 

        h_b.begin(), h_b.end(), true);

d_c = cl::Buffer(context,

        CL_MEM_READ_WRITE,  

        sizeof(float) * LENGTH);

// Enqueue the kernel

vadd(cl::EnqueueArgs(

                queue, 

                cl::NDRange(count)),

        d_a, d_b, d_c, count);

cl::copy(queue, 

      d_c, h_c.begin(), h_c.end());

std::vector<float>

  h_a(N), h_b(N), h_c(N);

// initialize host vectors…

cl::Buffer d_a, d_b, d_c;

cl::Context context( 

   CL_DEVICE_TYPE_DEFAULT);

cl::CommandQueue 

   queue(context);

cl::Program  program(

  context,

  loadprogram(“vadd.cl”), 

  true);

// Create the kernel functor

cl::make_kernel<cl::Buffer,

 cl::Buffer, cl::Buffer, int>  

 vadd(program, “vadd”);

C++ interface: The vadd host program



The C++ Buffer Constructor

• This is the API definition:

– Buffer(startIterator, endIterator, bool readOnly, bool useHostPtr)

• The readOnly boolean specifies whether the memory is 
CL_MEM_READ_ONLY (true) or CL_MEM_READ_WRITE (false)

– You must specify a true or false here

• The useHostPtr boolean is default false

– Therefore the array defined by the iterators is implicitly copied 
into device memory

– If you specify true:
• The memory specified by the iterators must be contiguous

• The context uses the pointer to the host memory, which becomes 
device accessible - this is the same as CL_MEM_USE_HOST_PTR

• The array is not copied to device memory

• We can also specify a context to use as the first argument 
in this API call



The C++ Buffer Constructor

• When using the buffer constructor which 

uses C++ vector iterators, remember:

– This is a blocking call

– The constructor will enqueue a copy to the first 

Device in the context (when useHostPtr == false)

– The OpenCL runtime will automatically ensure 

the buffer is copied across to the actual device 

you enqueue a kernel on later if you enqueue the 

kernel on a different device within this context



The Python Interface

• A python library by Andreas Klockner from 
University of Illinois at Urbana-Champaign

• This interface is dramatically easier to work 
with1

• Key features:
– Helper functions to choose platform/device at 

runtime

– getInfo() methods are class attributes – no need 
to call the method itself

– Call a kernel as a method
– Multi-line strings – no need to escape new lines!

1 not just for python programmers…



Setting up the host program 

• Import the pyopencl library

import pyopencl as cl

• Import numpy to use arrays etc.

import numpy

• Some of the examples use a helper 

library to print out some information

import deviceinfo



N = 1024

# create context, queue and program

context = cl.create_some_context()

queue = cl.CommandQueue(context)

kernelsource = open(‘vadd.cl’).read()

program = cl.Program(context, kernelsource).build()

# create host arrays

h_a = numpy.random.rand(N).astype(float32)

h_b = numpy.random.rand(N).astype(float32)

h_c = numpy.empty(N).astype(float32)

# create device buffers

mf = cl.mem_flags

d_a = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_a)

d_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_b)

d_c = cl.Buffer(context, mf.WRITE_ONLY, h_c.nbytes)

# run kernel

vadd = program.vadd

vadd.set_scalar_arg_dtypes([None, None, None, numpy.uint32])

vadd(queue, h_a.shape, None, d_a, d_b, d_c, N)

# return results

cl.enqueue_copy(queue, h_c, d_c)



Exercise 3: Running the Vadd kernel 

(C++ / Python)

• Goal: 

– To learn the C++and/or Python interface to OpenCL’s API

• Procedure: 

– Examine the provided program.  They will run a simple 
kernel to add two vectors together

– Look at the host code and identify the API calls in the 
host code.  Note how some of the API calls in OpenCL 
map onto C++/Python constructs

– Compare the original C with the C++/Python versions

– Look at the simplicity of the common API calls

• Expected output:

– A message verifying that the vector addition completed 
successfully



Exercise 4: Chaining vector add kernels

(C++ / Python)
• Goal: 

– To verify that you understand manipulating kernel invocations 
and buffers in OpenCL

• Procedure: 

– Start with a VADD program in C++ or Python

– Add additional buffer objects and assign them to vectors 
defined on the host (see the provided vadd programs for 
examples of how to do this)

– Chain vadds … e.g. C=A+B;  D=C+E;  F=D+G.

– Read back the final result and verify that it is correct

– Compare the complexity of your host code to C

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

(Sample solution is for C = A + B; D = C + E; F = D + G; return F)



A HOST VIEW OF WORKING 

WITH KERNELS

Review



Working with Kernels (C++)

• The kernels are where all the action is in an OpenCL 

program.

• Steps to using kernels:

1. Load kernel source code into a program object from a file

2. Make a kernel functor from a function within the program

3. Initialize device memory

4. Call the kernel functor, specifying memory objects and 

global/local sizes

5. Read results back from the device

• Note the kernel function argument list must match the 

kernel definition on the host.



Create a kernel
• Kernel code can be a string in the host code (toy codes)

• Or the kernel code can be loaded from a file (real codes)

• Compile for the default devices within the default context

program.build();

• Define the kernel functor from a function within the program – 
allows us to ‘call’ the kernel to enqueue it

cl::make_kernel

<cl::Buffer, cl::Buffer, cl::Buffer, int> 
vadd(program, "vadd");

The build step can be carried out by specifying true 

in the program constructor. If you need to specify 

build flags you must specify false in the constructor 

and use this method instead.



Create a kernel (advanced)

• If you want to query information about a 

kernel, you will need to create a kernel 

object too:

cl::Kernel ko_vadd(program, “vadd”);

• Get the default size of local dimension (i.e. the size 

of a Work-Group)

::size_t local = ko_vadd.getWorkGroupInfo

 <CL_KERNEL_WORK_GROUP_SIZE>(cl::Device::getDefault());

If we set the local dimension 

ourselves or accept the OpenCL 

runtime’s, we don’t need this step

We can use any work-group-info parameter from table 5.15 in the 

OpenCL 1.1 specification. The function will return the appropriate type.



Associate with args and enqueue kernel

• Enqueue the kernel for execution with buffer 
objects d_a, d_b and d_c and their length, 

count:

vadd(cl::EnqueueArgs(

    queue, cl::NDRange(count), cl::NDRange(local)),

    d_a, d_b, d_c, count);

We can include any arguments from the 

clEnqueueNDRangeKernel function including Event wait 

lists (to be discussed later) and the command queue 

(optional)



Working with Kernels (Python)

• Kernel source string can be defined with three 
quote marks – no need to escape new lines:
source = ‘‘‘

 __kernel void func() {}

’’’

• Or in a file and loaded at runtime:
source = open(‘file.cl’).read()

• The program object is created and built:
prg = 

pyopencl.Program(context,source).build()



Working with Kernels (Python)

• Kernels can be called as a method of the 
built program object; as in 

program.kernel(q, t, l, a)

• The basic arguments to this call are:
1.  q is the Command Queue

2.  t is the Global size as a tuple:
 (x, ), (x,y), or (x,y,z)

3.  l is the Local size as a tuple or None

4.  a is the list of arguments to pass to the kernel
• Scalars must be type cast to numpy types; i.e. 

numpy.uint32(var), numpy.float32(var)



Working with Kernels (Python)

• Calling the kernel from within the program object calls 
clCreateKernel() from the C API
– I.e. calling program.kernel() creates the kernel object every 

time, which is unnecessary

• Can pull out the kernel to stop this:
kernel = program.kernel

• Specify the scalar arguments on the kernel object to save 
casting in the kernel execution call:
kernel.set_scalar_arg_dtypes([list, of, arg, types])

– Buffer and local memory arguments should be set as None

– Scalar arguments could be numpy.float32, numpy.uint32, etc.



Exercise 5: The D = A + B + C problem

• Goal:

– To verify that you understand how to control the 
argument definitions for a kernel

– To verify that you understand the host/kernel interface

• Procedure: 

– Start with a VADD program.  

– Modify the kernel so it adds three vectors together

– Modify the host code to define three vectors and 
associate them with relevant kernel arguments

– Read back the final result and verify that it is correct

• Expected output:

– Test your result and verify that it is correct.  Print a 
message to that effect on the screen



We have now covered the basic 

platform runtime APIs in OpenCL
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OpenCL C for Compute Kernels

• Derived from ISO C99

– A few restrictions: no recursion, function 
pointers, functions in C99 standard headers ...

– Preprocessing directives defined by C99 are 
supported (#include etc.)

• Built-in data types
– Scalar and vector data types, pointers

– Data-type conversion functions:
• convert_type<_sat><_roundingmode> 

– Image types:

• image2d_t, image3d_t and sampler_t



OpenCL C for Compute Kernels

• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image

– Relational, geometric functions, synchronization 
functions

– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called 

“extensions”)

– Double precision, atomics to global and local 

memory

– Selection of rounding mode, writes to image3d_t 

surface



OpenCL C Language Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel
• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers
– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address 
space qualifier

• Work-item functions
– get_work_dim(),  get_global_id(), get_local_id(), 

get_group_id()

• Synchronization functions
– Barriers - all work-items within a work-group must execute 

the barrier function before any work-item can continue

– Memory fences - provides ordering between memory 
operations



OpenCL C Language Restrictions

• Pointers to functions are not allowed

• Pointers to pointers allowed within a kernel, 
but not as an argument to a kernel invocation

• Bit-fields are not supported

• Variable length arrays and structures are not 
supported

• Recursion is not supported (yet!)

• Double types are optional in OpenCL v1.1, but 
the key word is reserved

   (note: most implementations support double)



1 2 1 x 1

1 3 3 y = 2

1 1 4 z 6

Worked example: Linear Algebra

• Definition:
– The branch of mathematics concerned with the study of 

vectors, vector spaces, linear transformations and systems of 
linear equations. 

• Example: Consider the following system of linear 
equations

   x + 2y +  z  = 1

   x + 3y + 3z = 2

   x +  y +  4z = 6
– This system can be represented in terms of vectors and a 

matrix as the classic “Ax = b” problem.



1 0 0 1 2 1 1 2 1

1 1 0 0 1 2 = 1 3 3

1 -1 1 0 0 5 1 2 4

Solving Ax=b
• LU Decomposition:

– transform a matrix into the product of a lower triangular 
and upper triangular matrix.  It is used to solve a linear 
system of equations. 

L AU =
• We solve for x, given a problem Ax=b

– Ax=b                   LUx=b

– Ux=(L-1)b             x = (U-1)(L-1)b 

So we need to be able to do matrix multiplication



void mat_mul(int N, float *A, float *B, float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

        for (j = 0; j < N; j++) {

            C[i*N+j] = 0.0f;

            for (k = 0; k < N; k++) { 

                // C(i, j) = sum(over k) A(i,k) * B(k,j)

                C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

}

Matrix multiplication: sequential code
We calculate C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C



Matrix multiplication performance

• Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

using the gcc compiler.

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.



Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

        for (j = 0; j < N; j++) {

            C[i*N+j] = 0.0f;

            for (k = 0; k < N; k++) { 

              // C(i, j) = sum(over k) A(i,k) * B(k,j)

              C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

} We turn this into an OpenCL kernel!



Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

      for (j = 0; j < N; j++) {

        // C(i, j) = sum(over k) A(i,k) * B(k,j)

        for (k = 0; k < N; k++) {  

          C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

}

__kernel void mat_mul(

 const int N,

__global float *A, __global float *B, __global float *C)

Mark as a kernel function and 

specify memory qualifiers



__kernel void mat_mul(

  const int N,

  __global float *A, __global float *B, __global float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

        for (j = 0; j < N; j++) {

            for (k = 0; k < N; k++) { 

                // C(i, j) = sum(over k) A(i,k) * B(k,j)

                C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set 

work-item co-ordinates



__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

    int i, j, k;

    i = get_global_id(0);

    j = get_global_id(1);

    // C(i, j) = sum(over k) A(i,k) * B(k,j)

    for (k = 0; k < N; k++) { 

      C[i*N+j] += A[i*N+k] * B[k*N+j];

    }

}

Matrix multiplication: OpenCL kernel



__kernel void mmul(

   const int N,

   __global float *A,

   __global float *B,

   __global float *C)

Matrix multiplication: OpenCL kernel improved

{

  int k;

  int i = get_global_id(0);

  int j = get_global_id(1);

  float tmp = 0.0f;

  for (k = 0; k < N; k++) 

   tmp += A[i*N+k]*B[k*N+j];

  }

  C[i*N+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element 

values (a common optimization in Matrix Multiplication functions) 



Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])

{

  std::vector<float> h_A, h_B, h_C; // matrices

  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

  int i, err; 

  int szA, szB, szC; // num elements in each matrix

  double start_time, run_time; // timing data

  cl::Program program;

  Ndim = Pdim = Mdim = ORDER;

  szA = Ndim*Pdim; 

  szB = Pdim*Mdim; 

  szC = Ndim*Mdim;

  h_A   = std::vector<float>(szA);

  h_B   = std::vector<float>(szB);

  h_C   = std::vector<float>(szC);

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  // Compile for first kernel to setup program

  program = cl::Program(C_elem_KernelSource, true);

  Context context(CL_DEVICE_TYPE_DEFAULT);  

  cl::CommandQueue queue(context);

  std::vector<Device> devices =

      context.getInfo<CL_CONTEXT_DEVICES>();

  cl::Device device = devices[0]; 

  std::string s =  

      device.getInfo<CL_DEVICE_NAME>();

  std::cout << "\nUsing OpenCL Device ”

            << s << "\n";

// Setup the buffers, initialize matrices,

  // and write them into global memory

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

  cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

  cl::Buffer d_c = cl::Buffer(context, 

                              CL_MEM_WRITE_ONLY,

                              sizeof(float) * szC);

 

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer> 

naive(program, "mmul");

  zero_mat(Ndim, Mdim, h_C);

  start_time = wtime();

  naive(cl::EnqueueArgs(queue,

cl::NDRange(Ndim, Mdim)),

Ndim, Mdim, Pdim, d_a, d_b, d_c);

  cl::copy(queue, d_c, h_C.begin(), h_C.end());

  run_time  = wtime() - start_time;

  results(Mdim, Ndim, Pdim, h_C, run_time);

}

Declare and 

initialize 

data

Setup the 

platform and 

build program

Setup buffers and write 

A and B matrices to the 

device memory

Create the kernel functor

Run the kernel and 

collect results

Note: To use the default context/queue/device, skip this section and 

remove the references to context, queue and device.



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.



Exercise 6: Matrix Multiplication

• Goal: 

– To write your first complete OpenCL kernel “from scratch”

– To multiply a pair of matrices

• Procedure: 

– Start with the provided matrix multiplication OpenCL host 
program including the function to generate matrices and test 
results

– Create a kernel to do the multiplication

– Modify the provided OpenCL host program to use your kernel

– Verify the results

• Expected output:

– A message to standard output verifying that the chain of 
vector additions produced the correct result

– Report the runtime and the MFLOPS



UNDERSTANDING THE OPENCL 

MEMORY HIERARCHY

Lecture 6



Optimizing matrix multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS

– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for 

every memory access we execute as many FLOPS as 

possible.

• Outer product algorithms are faster, but for pedagogical 

reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to 

optimize matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C



An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for 

your algorithm

1024

1
0
2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory fences

Cannot synchronize 

between work-groups 

within a kernel



OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global/Constant 
Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

 host → global → local and back



OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory
– Shared by all WI’s in a work-group

– But not shared between work-
groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory
– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant 
memory

• Host memory
– On the CPU - GBytes

Memory management is explicit: 

O(1-10) Gbytes/s bandwidth to discrete GPUs for

      Host <-> Global transfers



Private Memory

• Managing the memory hierarchy is one of the 
most important things to get right to achieve 
good performance

• Private Memory:

– A very scarce resource, only a few tens of 32-bit 
words per Work-Item at most

– If you use too much it spills to global memory or 
reduces the number of Work-Items that can be run 
at the same time, potentially harming performance*

– Think of these like registers on the CPU

* Occupancy on a GPU



Local Memory*

• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this 
means only a fraction of the total Local Memory size is 
available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between 
Local and Global/Constant memories … there are optimized 
library functions to help

– E.g. async_work_group_copy(), 
async_workgroup_strided_copy(), …

• Use Local Memory to hold data that can be reused by all 
the work-items in a work-group

• Access patterns to Local Memory affect performance in a 
similar way to accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU



Local Memory

• Local Memory doesn’t always help…

– CPUs don’t have special hardware for it

– This can mean excessive use of Local Memory 

might slow down kernels on CPUs

– GPUs now have effective on-chip caches which 

can provide much of the benefit of Local 

Memory but without programmer intervention

– So, your mileage may vary!



The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes



Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e. 

– The state of memory visible to a work-item is not guaranteed 
to be consistent across the collection of work-items at all 
times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private 
view of memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a 
barrier, but not guaranteed across different work-
groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization 
(barriers, events, in-order queue) 



Optimizing matrix multiplication

• There may be significant overhead to manage work-items 

and work-groups.

• So let’s have each work-item compute a full row of C

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

• And with an eye towards future optimizations, let’s collect 

work-items into work-groups with 64 work-items per work-

group 



An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)

 Whole problem space (index space)

• Local Dimensions:  64 (work-items per work-group)

 Only 1024/64 = 16 work-groups in total

• Important implication: we will have a lot fewer 
work-items per work-group (64) and work-
groups (16). Why might this matter?

1
0

2
4

6
4



__kernel void mmul(

   const int N,

   __global float *A,

   __global float *B,

   __global float *C)

Matrix multiplication: One work item per row of C

{

  int j, k;

  int i = get_global_id(0);

  float tmp;

  for (j = 0; j < N; j++) {

  tmp = 0.0f;

   for (k = 0; k < N; k++) 

     tmp += A[i*N+k]*B[k*N+j];

   C[i*N+j] = tmp;

  }

}



// Setup the buffers, initialize matrices,

  // and write them into global memory

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

  cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

  cl::Buffer d_c = cl::Buffer(context, 

                              CL_MEM_WRITE_ONLY,

                              sizeof(float) * szC);

 

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer> 

krow(program, "mmul");

  zero_mat(Ndim, Mdim, h_C);

  start_time = wtime();

  krow(cl::EnqueueArgs(queue,

                       cl::NDRange(Ndim), 

                       cl::NDRange(ORDER/16)),

       Ndim, Mdim, Pdim, d_a, d_b, d_c);

  cl::copy(queue, d_c, h_C.begin(), h_C.end());

  run_time  = wtime() - start_time;

  results(Mdim, Ndim, Pdim, h_C, run_time);

}

int main(int argc, char *argv[])

{

  std::vector<float> h_A, h_B, h_C; // matrices

  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

  int i, err; 

  int szA, szB, szC; // num elements in each matrix

  double start_time, run_time; // timing data

  cl::Program program;

  Ndim = Pdim = Mdim = ORDER;

  szA = Ndim*Pdim; 

  szB = Pdim*Mdim; 

  szC = Ndim*Mdim;

  h_A   = std::vector<float>(szA);

  h_B   = std::vector<float>(szB);

  h_C   = std::vector<float>(szC);

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  // Compile for first kernel to setup program

  program = cl::Program(C_elem_KernelSource, true);

  Context context(CL_DEVICE_TYPE_DEFAULT);  

  cl::CommandQueue queue(context);

  std::vector<Device> devices =

      context.getInfo<CL_CONTEXT_DEVICES>();

  cl::Device device = devices[0]; 

  std::string s =  

      device.getInfo<CL_DEVICE_NAME>();

  std::cout << "\nUsing OpenCL Device ”

            << s << "\n";

Matrix multiplication host program (C++ API)

Changes to host program:

1. 1D ND Range set to number of rows in the C matrix

2. Local Dimension set to 64 so number of work-groups 

match number of compute units (16 in this case) for our 

order 1024 matrices

krow(cl::EnqueueArgs(queue

                     cl::NDRange(Ndim),

                     cl::NDRange(ORDER/16)),

     Ndim, Mdim, Pdim, a_in, b_in, c_out);



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

This has started to help.



Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same 

row of A.

• Let’s copy that row of A into private memory of the work-

item that’s (exclusively) using it to avoid the overhead of 

loading it from global memory for each C(i,j) computation.

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each 
work-item



__kernel void mmul(

   const int N,

   __global float *A,

   __global float *B,

   __global float *C)

{

  int j, k;

  int i = 
    get_global_id(0);

  float tmp;  

  float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < N; k++)

    Awrk[k] = A[i*N+k];

  for (j = 0; j < N; j++) {

  tmp = 0.0f;

    for (k = 0; k < N; k++) 

      tmp += Awrk[k]*B[k*N+j];

    

     C[i*N+j] += tmp;

  }

}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Copy a row of A into private memory from global memory 

before we start with the matrix multiplications.

Setup a work array for A in 

private memory*



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from 

NVIDIA® with a max of 16 

compute units, 512 PEs

Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

Big impact!



Why using too much private memory 

can be a good thing

• In reality private memory is just hardware 
registers, so only dozens of these are available 
per work-item

• Many kernels will allocate too many variables to 
private memory

• So the compiler already has to be able to deal 
with this

• It does so by spilling excess private variables to 
(global) memory

• You still told the compiler something useful – that 
the data will only be accessed by a single work-
item

• This lets the compiler allocate the data in such as 
way as to enable more efficient memory access



Exercise 7: using private memory

• Goal: 

– Use private memory to minimize memory movement 
costs and optimize performance of your matrix 
multiplication program

• Procedure: 

– Start with your matrix multiplication solution

– Modify the kernel so that each work-item copies its own 
row of A into private memory

– Optimize step by step, saving the intermediate versions 
and tracking performance improvements

• Expected output:

– A message to standard output verifying that the matrix 
multiplication program is generating the correct results

– Report the runtime and the MFLOPS



Optimizing matrix multiplication

• We already noticed that, in one row of C, each element 

uses the same row of A

• Each work-item in a work-group also uses the same columns 

of B

• So let’s store the B columns in local memory (which is 

shared by the work-items in the work-group)

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each 
work-item Local memory for each 

work-group



__kernel void mmul(

     const int N,

   __global float *A,

   __global float *B,

   __global float *C,

   __local  float *Bwrk)

{

 int j, k;

 int i =
    get_global_id(0);

 int iloc  =
      get_local_id(0);

 int nloc =
      get_local_size(0);

 

 float tmp;  

 float Awrk[1024];

Matrix multiplication: B column shared between work-items

for (k = 0; k < N; k++)

    Awrk[k] = A[i*N+k];

  for (j = 0; j < N; j++) {

    for (k=iloc; k<N; k+=nloc)

      Bwrk[k] = B[k* N+j];

      

    barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;

    for (k = 0; k < N; k++) 

      tmp += Awrk[k]*Bwrk[k];

 

    C[i*N+j] = tmp;

        

    barrier(CLK_LOCAL_MEM_FENCE);

  }

}
Pass a work array in local memory to hold a 

column of B.  All the work-items do the copy 

“in parallel” using a cyclic loop distribution 

(hence why we need iloc and nloc) 



// Setup the buffers, initialize matrices,

  // and write them into global memory

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);

  cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);

  cl::Buffer d_c = cl::Buffer(context, 

                              CL_MEM_WRITE_ONLY,

                              sizeof(float) * szC);

 

cl::make_kernel<int, int, int,

cl::Buffer, cl::Buffer, cl::Buffer> 

rowcol(program, "mmul");

  zero_mat(Ndim, Mdim, h_C);

  start_time = wtime();

  rowcol(cl::EnqueueArgs(queue,

                         cl::NDRange(Ndim), 

                         cl::NDRange(ORDER/16)),

         Ndim, Mdim, Pdim, d_a, d_b, d_c);

  cl::copy(queue, d_c, h_C.begin(), h_C.end());

  run_time  = wtime() - start_time;

  results(Mdim, Ndim, Pdim, h_C, run_time);

}

int main(int argc, char *argv[])

{

  std::vector<float> h_A, h_B, h_C; // matrices

  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]

  int i, err; 

  int szA, szB, szC; // num elements in each matrix

  double start_time, run_time; // timing data

  cl::Program program;

  Ndim = Pdim = Mdim = ORDER;

  szA = Ndim*Pdim; 

  szB = Pdim*Mdim; 

  szC = Ndim*Mdim;

  h_A   = std::vector<float>(szA);

  h_B   = std::vector<float>(szB);

  h_C   = std::vector<float>(szC);

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  // Compile for first kernel to setup program

  program = cl::Program(C_elem_KernelSource, true);

  Context context(CL_DEVICE_TYPE_DEFAULT);  

  cl::CommandQueue queue(context);

  std::vector<Device> devices =

      context.getInfo<CL_CONTEXT_DEVICES>();

  cl::Device device = devices[0]; 

  std::string s =  

      device.getInfo<CL_DEVICE_NAME>();

  std::cout << "\nUsing OpenCL Device ”

            << s << "\n";

Matrix multiplication host program (C++ API)

cl::LocalSpaceArg localmem =

                    cl::Local(sizeof(float) * Pdim);

rowcol(cl::EnqueueArgs(queue,

                       cl::NDRange(Ndim),           

                       cl::NDRange(ORDER/16)),

       Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);

Changes to host program:

1. Pass local memory to kernels. 

1. This requires a change to the kernel argument lists … an 

arg of type LocalSpaceArg is needed. 

2. Allocate the size of local memory

3. Update argument list in kernel functor

cl::make_kernel<int, int, int,

 cl::Buffer, cl::Buffer, cl:::Buffer,

           cl::LocalSpaceArg>

    rowcol(program, “mmul”);



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.



Making matrix multiplication really fast

• Our goal has been to describe how to work with private, 
local and global memory.  We’ve ignored many well-known 
techniques for making matrix multiplication fast

– The number of work items must be a multiple of the 
fundamental machine “vector width”.  This is the wavefront on 
AMD, warp on NVIDIA, and the number of SIMD lanes exposed 
by vector units on a CPU

– To optimize reuse of data, you need to use blocking techniques  
• Decompose matrices into tiles such that three tiles just fit in the 

fastest (private) memory

• Copy tiles into local memory

• Do the multiplication over the tiles

– We modified the matrix multiplication program provided with 
the NVIDIA OpenCL SDK to work with our test suite to produce 
the blocked results on the following slide. This used register 
blocking with block sizes mapped onto the GPU’s warp size



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Block oriented approach using local 1,534.0 230,416.7

Device is Tesla® M2090 GPU from 

NVIDIA® with a max of 16 

compute units, 512 PEs

Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

Biggest impact so far!



Exercise 8: using local memory

• Goal: 
– Use local memory to minimize memory movement costs and 

optimize performance of your matrix multiplication program

• Procedure: 
– Start with your matrix multiplication solution that already 

uses private memory from Exercise 7

– Modify the kernel so that each work-group collaboratively 
copies its own column of B into local memory

– Optimize step by step, saving the intermediate versions and 
tracking performance improvements

• Expected output:
– A message to standard output verifying that the matrix 

multiplication program is generating the correct results

– Report the runtime and the MFLOPS

• Extra:
– Look at the fast, blocked implementation from the NVIDIA 

OpenCL SDK example. Try running it and compare to yours



SYNCHRONIZATION IN OPENCL

Lecture 7



Consider N-dimensional domain of work-items

• Global Dimensions:
– 1024x1024 (whole problem space)

• Local Dimensions:
– 64x64 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are 
brought to a known point in their execution.   Most common example is a 
barrier … i.e. all units of execution “in scope” arrive at the barrier before 
any proceed. 

1024

1
0
2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory fences

Cannot synchronize 

between work-groups 

within a kernel



Work-Item Synchronization

• Within a work-group

void barrier()

– Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items 
in its work-group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be 
taken by either:
• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be 

executed relative to another work-group

– Cannot exchange data, or have barrier-like synchronization between 
two different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory operations to 

local or global memory (with flushes or queuing 

a memory fence)



Where might we need 

synchronization?

• Consider a reduction … reduce a set of 

numbers to a single value

– E.g. find sum of all elements in an array

• Sequential code

int reduce(int Ndim, int *A)

{

  int sum = 0;

  for (int i = 0; i < Ndim; i++)

    sum += A[i];

  return sum;

}



Simple parallel reduction

• A reduction can be carried out in three steps:

1. Each work-item sums its private values into a local array 
indexed by the work-item’s local id

2. When all the work-items have finished, one work-item sums 
the local array into an element of a global array (indexed by 
work-group id).

3. When all work-groups have finished the kernel execution, 
the global array is summed on the host.

• Note: this is a simple reduction that is straightforward to 
implement.  More efficient reductions do the work-group 
sums in parallel on the device rather than on the host.  
These more scalable reductions are considerably more 
complicated to implement.



A simple program that uses a reduction

Numerical Integration

Mathematically, we know that 

we can approximate the integral 

as a sum of rectangles.

Each rectangle has width and 

height at the middle of interval.

4.0

2.0

1.0
X

0.0



Numerical integration source code
The serial Pi program

static long num_steps = 100000;

double step;

void main()

{

  int i; double x, pi, sum = 0.0;

  step = 1.0/(double) num_steps;

  for (i = 0; i < num_steps; i++) {

    x = (i+0.5)*step;

    sum = sum + 4.0/(1.0+x*x);

  }

  pi = step * sum;

}



Exercise 9: The Pi program
• Goal: 

– To understand synchronization between work-items 
in the OpenCL C kernel programming language

• Procedure: 
– Start with the provided serial program to estimate Pi 

through numerical integration

– Write a kernel and host program to compute the 
numerical integral using OpenCL

– Note: You will need to implement a reduction

• Expected output:
– Output result plus an estimate of the error in the 

result
– Report the runtime

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t 

create one work-item per loop iteration. To do so would make the reduction so 

costly that performance would be terrible. 



HETEROGENEOUS COMPUTING 

WITH OPENCL

Lecture 8



Running on the CPU and GPU

• Kernels can be run on 
multiple devices at the 
same time

• We can exploit many 
GPUs and the host CPU 
for computation

• Simply define a context 
with multiple platforms, 
devices and queues

• We can even synchronize 
between queues using 
Events (see appendix)

• Can have more than one 
context

Queue Queue

Context

GPU CPU



Running on the CPU and GPU

1. Discover all your platforms and devices

– Look at the API for finding out Platform and Device IDs

2. Set up the cl::Context with a vector of devices
         

        cl::Context(const VECTOR_CLASS<Device> &devices,

  cl_context_properties *properties = NULL,

  void (CL_CALLBACK *pfn_notify)(

    const char *errorinfo,

            const void *private_info_size,

    ::size_t cb, void *user_data) = NULL,

  void *user_data = NULL, cl_int *err = NULL);

3. Create a Command Queue for each of these devices

– C examples in the NVIDIA (oclSimpleMultiGPU) and AMD 
(SimpleMultiDevice) OpenCL SDKs

The steps are the same in C and Python, just the API calls differ as usual



Exercise 10: Heterogeneous Computing

• Goal: 
– To experiment with running kernels on multiple devices

• Procedure: 
– Take one of your OpenCL programs

– Investigate the Context constructors to include more 
than one device

– Modify the program to run a kernel on multiple devices, 
each with different input data

– Split your problem across multiple devices if you have 
time

– Use the examples from the SDKs to help you

• Expected output:
– Output the results from both devices and see which runs 

faster



ENABLING PORTABLE 

PERFORMANCE VIA OPENCL

Lecture 9



Portable performance in OpenCL

• Portable performance is always a challenge, 
more so when OpenCL devices can be so 
varied (CPUs, GPUs, …)

• But OpenCL provides a powerful framework 
for writing performance portable code

• The following slides are general advice on 
writing code that should work well on most 
OpenCL devices



Optimization issues

• Efficient access to memory

– Memory coalescing
• Ideally get work-item i to access data[i] and work-item j to access data[j] at 

the same time etc.

– Memory alignment
• Padding arrays to keep everything aligned to multiples of 16, 32 or 64 bytes

• Number of work-items and work-group sizes

– Ideally want at least 4 work-items per PE in a Compute Unit on GPUs

– More is better, but diminishing returns, and there is an upper limit
• Each work item consumes PE finite resources (registers etc)

• Work-item divergence

– What happens when work-items branch?

– Actually a SIMD data parallel model

– Both paths (if-else) may need to be executed (branch divergence), 
avoid where possible (non-divergent branches are termed uniform)



Memory layout is critical to 

performance
• “Structure of Arrays vs. Array of Structures” problem:

 struct { float x, y, z, a; } Point;

• Structure of Arrays (SoA) suits memory coalescence 
on GPUs

• Array of Structures (AoS) may suit cache hierarchies 
on CPUs

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items 

like to access 

adjacent memory

Individual work-

items like to access 

adjacent memory



Other optimisation tips

• Use a profiler to see if you’re getting good performance

– Occupancy is a measure of how active you’re keeping each PE

– Occupancy measurements of >0.5 are good (>50% active)

• Other measurements to consider with the profiler:

– Memory bandwidth – should aim for a good fraction of peak

• E.g. 148 GBytes/s to Global Memory on an M2050 GPU

– Work-Item (Thread) divergence – want this to be low

– Registers per Work-Item (Thread) – ideally low and a nice 
divisor of the number of hardware registers per Compute Unit
• E.g. 32,768 on M2050 GPUs

• These are statically allocated and shared between all Work-Items 
and Work-Groups assigned to each Compute Unit

• Four Work-Groups of 1,024 Work-Items each would result in just 8 
registers per Work-Item! Typically aim for 16-32 registers per Work-
Item



Portable performance in OpenCL
• Don’t optimize too hard for any one platform, e.g.

– Don’t write specifically for certain warp/wavefront sizes etc

– Be careful not to rely on specific sizes of local/global memory

– OpenCL’s vector data types have varying degrees of support – faster on some 
devices, slower on others

– Some devices have caches in their memory hierarchies, some don’t, and it 
can make a big difference to your performance without you realizing

– Choosing the allocation of Work-Items to Work-Groups and dimensions on 
your kernel launches

– Performance differences between unified vs. disjoint host/global memories

– Double precision performance varies considerably from device to device

– Some OpenCL SDKs give useful feedback about how well they can compile 
your code (but you have to turn on this feedback)

• It is a good idea to try your code on several different platforms to see 
what happens (profiling is good!)

– At least two different GPUs (ideally different vendors) and at least one CPU



Advice for performance portability

• Discover what devices you have available at run-

time, e.g.

// Get available platforms

 cl_uint nPlatforms;

 cl_platform_id platforms[MAX_PLATFORMS];

 int ret = clGetPlatformIDs(MAX_PLATFORMS, platforms, &nPlatforms);

 // Loop over all platforms

 for (int p = 0; p < nPlatforms; p++) {

   // Get available devices

   cl_uint nDevices = 0;

   cl_device_id devices[MAX_DEVICES];

   clGetDeviceIDs(platforms[p], deviceType, MAX_DEVICES, devices, &nDevices);

   // Loop over all devices in this platform

   for (int d = 0; d < nDevices; d++)

     getDeviceInformation(devices[d]);

}

C



Advice for performance portability

• Micro-benchmark all your OpenCL devices at run-time to 
gauge how to divide your total workload across all the 
devices

– Ideally use some real work so you’re not wasting resource

– Keep the microbenchmark very short otherwise slower devices 
penalize faster ones

• Once you’ve got a work fraction per device calculated, it 
might be worth retesting from time to time

– The behavior of the workload may change

– The host or devices may become busy (or quiet)

• It is most important to keep the fastest devices busy

– Less important if slower devices finish slightly earlier than 
faster ones (and thus become idle)

• Avoid overloading the CPU with both OpenCL host code 
and OpenCL device code at the same time



Timing microbenchmarks (C)

for (int i = 0; i < numDevices; i++) {

   // Wait for the kernel to finish

   ret = clFinish(oclDevices[i].queue);

   // Update timers

   cl_ulong start, end;

   ret = clGetEventProfilingInfo(oclDevices[i].kernelEvent,

             CL_PROFILING_COMMAND_START, 

  sizeof(cl_ulong), &start, NULL);

   ret |= clGetEventProfilingInfo(oclDevices[i].kernelEvent, 

             CL_PROFILING_COMMAND_END, 

  sizeof(cl_ulong), &end, NULL);

   long timeTaken = (end - start);

   speeds[i] = timeTaken / oclDevices[i].load;

}



Advice for performance portability

• Optimal Work-Group sizes will differ between devices

– E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs 
prefer lots of Work-Items per Work-Group (usually a multiple of the 
number of PEs per Compute Unit, i.e. 32, 64 etc.)

• From OpenCL v1.1 you can discover the preferred Work-Group 
size multiple for a kernel once it’s been built for a specific 
device

– Important to pad the total number of Work-Items to an exact 
multiple of this

– Again, will be different per device

• The OpenCL run-time will have a go at choosing good 
EnqueueNDRangeKernel dimensions for you

– With very variable results

• Your mileage will vary, the best strategy is to write 
adaptive code that makes decisions at run-time



Tuning Knobs

some general issues to think about
• Tiling size (work-group sizes, dimensionality etc.)

– For block-based algorithms (e.g. matrix multiplication)

– Different devices might run faster on different block sizes

• Data layout
– Array of Structures or Structure of Arrays (AoS vs. SoA)

– Column or Row major

• Caching and prefetching
– Use of local memory or not

– Extra loads and stores assist hardware cache?

• Work-item / work-group data mapping
– Related to data layout

– Also how you parallelize the work

• Operation-specific tuning
– Specific hardware differences

– Built-in trig / special function hardware

– Double vs. float (vs. half)

From Zhang, Sinclair II and Chien: 

Improving Performance Portability 

in OpenCL Programs – ISC13



Auto tuning

• Q: How do you know what the best 
parameter values for your program are?

– What is the best work-group size, for example

• A: Try them all! (Or a well chosen subset)

• This is where auto tuning comes in
– Run through different combinations of parameter 

values and optimize the runtime (or another 
measure) of your program.



Auto tuning example - Flamingo

• http://mistymountain.co.uk/flamingo/

• Python program which compiles your code 
with different parameter values, and 
calculates the “best” combination to use

• Write a simple config file, and Flamingo will 
run your program with different values, and 
returns the best combination

• Remember: scale down your problem so you 
don’t have to wait for “bad” values (less 
iterations, etc.)

http://mistymountain.co.uk/flamingo/


Auto tuning - Example

• D2Q9 Lattice-Boltzmann

• What is the best work-group size for a 
specific problem size (3000x2000) on a 
specific device (NVIDIA Tesla M2050)?

X values

Y values

Runtimes – lower is better

Best: 60x1



Exercise 11: Optimize matrix multiplication

• Goal: 
– To understand portable performance in OpenCL

• Procedure: 
– Optimize a matrix multiply solution step by step, saving 

intermediate versions and tracking performance 
improvements

– After you’ve tried to optimize the program on your own, study 
the blocked solution optimized for an NVIDIA GPU.  Apply 
these techniques to your own code to further optimize 
performance

– As a final step, go back and make a single program that is 
adaptive so it delivers good results on both a CPU and a GPU

• Expected output:
– A message confirming that the matrix multiplication is correct

– Report the runtime and the MFLOPS



OPTIMIZING OPENCL 

PERFORMANCE

Lecture 10



Extrae and Paraver

• From Barcelona Supercomputing Center

– http://www.bsc.es/computer-

sciences/performance-tools/trace-generation

– http://www.bsc.es/computer-

sciences/performance-tools/paraver

• Create and analyze traces of OpenCL programs

– Also MPI, OpenMP

• Required versions:

– Extrae v2.3.5rc

– Paraver 4.4.5

http://www.bsc.es/computer-sciences/performance-tools/trace-generation
http://www.bsc.es/computer-sciences/performance-tools/trace-generation
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver


Extrae and Paraver

1. Extrae instruments your application and 
produces “timestamped events of 
runtime calls, performance counters and 
source code references”
– Allows you to measure the run times of your 

API and kernel calls

2. Paraver provides a way to view and 
analyze these traces in a graphical way



Important!

• At the moment NVIDIA® GPUs support up 
to OpenCL v1.1 and AMD® and Intel® 
support v1.2

• If you want to profile on NVIDIA® devices 
you must compile Extrae against the 
NVIDIA headers and runtime otherwise 
v1.2 code will be used by Extrae 
internally which will cause the trace step 
to segfault



Installing Extrae and Paraver

• Paraver is easy to install on Linux
– Just download and unpack the binary

• Extrae has some dependencies, some of which you’ll have 
to build from source
– libxml2

– binutils-dev

– libunwind

– PAPI

– MPI (optional)

• Use something like the following command line to 
configure before “make && make install”:

./configure –-prefix=$HOME/extrae --with-
binutils=$HOME --with-papi=$HOME --with-mpi=$HOME 
--without-dyninst --with-unwind=$HOME --with-
opencl=/usr/local/ --with-opencl-libs=/usr/lib64



Step 1 – tracing your code

• Copy the trace.sh script from 
extrae/share/example/OPENCL to your project 
directory
– This sets up a few environment variables and then runs 

your compiled binary

• Copy the extrae.xml file from the same location to 
your project directory
– This gives some instructions to Extrae as to how to profile 

your code

– Lots of options here – see their user guide

– The default they provide is fine to use to begin with

• Trace!
– ./trace.sh ./a.out



Step 2 – visualize the trace

• Extrae produces a number of files
– .prv, .pcf, .row, etc…

• Run Paraver
– ./wxparaver-<version>/bin/wxparaver

• Load in the trace
– File –> Load Trace -> Select the .prv file

• Load in the provided OpenCL view config file
– File -> Load configuration -> wxparaver-

<version>/cfgs/OpenCL/views/opencl_call.cfg

• The traces appear as three windows
1. OpenCL call in host - timings of API calls

2. Kernel Name – run times of kernel executions

3. OpenCL call in accelerator – information about total 
compute vs memory transfer times



Paraver



Usage Tips

• Show what the colours represent

– Right click -> Info Panel

• Zoom in to examine specific areas of interest

– Highlight a section of the trace to populate the timeline 
window

• Tabulate the data – numerical timings of API calls

– Select a timeline in the Paraver main window, click on 
the ‘New Histogram’ icon and select OK

• Powerful software – can also pick up your MPI 
communications

• Perform calculations with the data – see the Paraver 
user guide



Platform specific profilers

• More information can be obtained about 

your OpenCL program by profiling it using 

the hardware vendors dedicated profilers

• OpenCL profiling can be done with Events 

in the API itself for specific profiling of 

queues and kernel calls



NVIDIA Visual Profiler®

This gives us information 
about:

• Device occupancy

• Memory bandwidth(between 
host and device)

• Number of registers uses

• Timeline of kernel 
executions and memory 
copies

• Etc…

Third party names are the property of their owners.

• Start a new session:

• Follow the wizard, selecting the compiled binary in the File box 

(you do not need to make any code or compiler modifications). You 

can leave the other options as the default.

• The binary is then run and profiled and the results displayed.



Profiling using nvvp

• The timeline says what happened during 

the program execution:

• Some things to think about optimising are 

displayed in the Analysis tab:

Kernels

Each 

invocation of 

the kernel is 

pictured as a 

box



Profiling using nvvp

• The Details tab shows information for each kernel 
invocation and memory copy
– number of registers used

– work group sizes

– memory throughput

– amount of memory transferred

• No information about which parts of the kernel are 
running slowly, but the figures here might give us a clue 
as to where to look

• Best way to learn: experiment with an application 
yourself



Profiling from the command line
• NVIDIA® also have nvprof and 'Command Line Profiler’

• nvprof available with CUDA  5.0 onwards, but currently lacks driver 

support for OpenCL profiling

• The legacy command-line profiler can be invoked using environment 

variables:

        $ export COMPUTE_PROFILE=1

        $ export COMPUTE_PROFILE_LOG=<output file>

        $ export COMPUTE_PROFILE_CONFIG=<config file>

• Config file controls which events to collect (run nvprof --query-

events for a comprehensive list)

• Run your application to collect event information and then inspect 

output file with text editor

• Can also output CSV information (COMPUTE_PROFILE_CSV=1) for 

inspection with a spreadsheet or import into nvvp (limited support)

Third party names are the property of their owners.



AMD® CodeXL

• AMD provide a graphical Profiler and 
Debugger for AMD Radeon  GPUs

• Can give information on:
– API and kernel timings

– Memory transfer information

– Register use

– Local memory use

– Wavefront usage

– Hints at limiting performance factors

Third party names are the property of their owners.



CodeXL

• Create a new project, inserting the 

binary location in the window

• Click on the Profiling button, and hit the 

green arrow to run your program

• Select the different traces to view 

associated information



CodeXL

• GPU: Performance 
Counters

– Information on kernels 
including work group 
sizes, registers, etc.

– View the kernel 
instruction code
• Click on the kernel name in 

the left most column

– View some graphs and 
hints about the kernel
• Click on the Occupancy 

result



CodeXL

• GPU: Application 

Trace

– See timing 

information about 

API calls

– Timings of memory 

movements

– Timings of kernel 

executions



Exercise 12: Profiling OpenCL programs

• Goal: 

– To experiment with profiling tools

• Procedure: 

– Take one of your OpenCL programs, such as matrix 

multiply

– Run the program in the profiler and explore the results

– Modify the program to change the performance in some 

way and observe the effect with the profiler

– Repeat with other programs if you have time

• Expected output:

– Timings reported by the host code and via the profiling 

interfaces should roughly match



DEBUGGING OPENCL
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Debugging OpenCL

• Parallel programs can be challenging to debug

• Luckily there are some tools to help

• Firstly, if your device can run OpenCL 1.2, you can printf 
straight from the kernel.

• Here, each work-item will print to stdout

• Note: there is some buffering between the device and the 
output, but will be flushed by calling clFinish (or equivalent)

__kernel void func(void)

{

  int i = get_global_id(0);

  printf(" %d\n ", i);

}



Debugging OpenCL 1.1

• Top tip:

– Write data to a global buffer from within the 

kernel

result[ get_global_id(0) ] = … ;

– Copy back to the host and print out from 

there or debug as a normal serial application

• Works with any OpenCL device and 

platform



Debugging OpenCL – more tips

• Check your error messages!

– If you enable Exceptions in C++ as we have 
here, make sure you print out the errors.

• Don’t forget, use the err_code.c from the 
tutorial to print out errors as strings 
(instead of numbers), or check in the cl.h 
file in the include directory of your 
OpenCL provider for error messages

• Check your work-group sizes and indexing



Debugging OpenCL - GDB

• Can also use GDB to debug your programs 
on the CPU

– This will also leverage the memory system
• Might catch illegal memory dereferences more 

accurately

– But it does behave differently to accelerator 
devices so bugs may show up in different 
ways

• As with debugging, compile your C or C++ 
programs with the –g flag



Debugging OpenCL - GDB

• Require platform specific instructions depending 
on if you are using the AMD® or Intel® OpenCL 
platform

– This is in part due to the ICD (Installable Client 
Driver) ensuring that the correct OpenCL runtime is 
loaded for the chosen platform

– Also different kernel compile flags are 
accepted/required by different OpenCL 
implementations

• Remember: your CPU may be listed under each 
platform – ensure you choose the right debugging 
method for the platform

Third party names are the property of their owners.



Using GDB with AMD®

• Ensure you select the CPU device from the AMD® platform

• Must use the –g flag and turn off all optimizations when 
building the kernels:

program.build(" –g –O0" )

• The symbolic name of a kernel function “__kernel void 
foo(args)” is “__OpenCL_foo_kernel”

– To set a breakpoint on kernel entry enter at the GDB prompt:

  break __OpenCL_foo_kernel

• Note: the debug symbol for the kernel will not show up until 
the kernel has been built by your host code

• AMD® recommend setting the environment variable 
CPU_MAX_COMPUTE_UNITS=1 to ensure deterministic 
kernel behaviour

Third party names are the property of their owners.



Using GDB with Intel®

• Ensure you select the CPU device from the Intel® 
platform

• Must use the –g flag and specify the kernel source file 
when building the kernels:
program.build(" –g –s 
/full/path/to/kernel.cl" )

• The symbolic name of a kernel function “__kernel 
void foo(args)” is “foo”
– To set a breakpoint on kernel entry enter at the GDB 

prompt:

  break foo

• Note: the debug symbol for the kernel will not show 
up until the kernel has been built by your host code

Third party names are the property of their owners.



Debugging OpenCL – Using GDB

• Use n to move to the next line of execution

• Use s to step into the function

• If you reach a segmentation fault, backtrace 

lists the previous few execution frames

– Type frame 5 to examine the 5th frame

• Use print varname to output the current 

value of a variable



Oclgrind

• A SPIR interpreter and OpenCL simulator

• Developed at the University of Bristol

• Runs OpenCL kernels in a simulated environment to 
catch various bugs:
– oclgrind ./application

– Invalid memory accesses

– Data-races (--data-races)

– Work-group divergence

– Runtime API errors (--check-api)

• Also has a GDB-style interactive debugger
– oclgrind –i ./application

• More information on the Oclgrind Website

https://github.com/jrprice/Oclgrind


GPUVerify

• A useful tool for detecting data-races in 
OpenCL programs

• Developed at Imperial College as part of the 
CARP project 

• Uses static analysis to try to prove that 
kernels are free from races

• Can also detect issues with work-group 
divergence

• More information on the GPUVerify Website

gpuverify --local_size=64,64 --num_groups=256,256 kernel.cl

http://multicore.doc.ic.ac.uk/tools/GPUVerify/


Other debugging tools

• AMD® CodeXL

– For AMD® APUs, CPUs and GPUs

• Graphical Profiler and Debugger

• NVIDIA® Nsight  Development Platform

– For NVIDIA® GPUs

• IDE, including Profiler and Debugger

• GPUVerify

– Formal analysis of kernels

– http://multicore.doc.ic.ac.uk/tools/GPUVerify/

Third party names are the property of their owners.

Note: Debugging OpenCL is still changing rapidly - your 

mileage may vary when using GDB and these tools

http://multicore.doc.ic.ac.uk/tools/GPUVerify/


PORTING CUDA TO OPENCL
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Introduction to OpenCL

• If you have CUDA code, you’ve already 
done the hard work!

– I.e. working out how to split up the problem 
to run effectively on a many-core device

• Switching between CUDA and OpenCL is 
mainly changing the host code syntax
– Apart from indexing and naming conventions 

in the kernel code (simple to change!)



Memory Hierarchy Terminology

CUDA OpenCL

Private – within a work-itemLocal – within a thread

Local – shared between 

work-items in a work-group

Shared – shared between 

threads in a thread block

Constant – a cache for 

constant memory

Constant – a cache for 

constant memory

Device – shared between 

all thread blocks

Global – shared 

between all work-

groups



Allocating and copying memory

CUDA C OpenCL C

Allocate float* d_x;

cudaMalloc(&d_x, 

sizeof(float)*size);

cl_mem d_x =

   clCreateBuffer(context,

     CL_MEM_READ_WRITE,

     sizeof(float)*size,

     NULL, NULL);

Host to Device cudaMemcpy(d_x, h_x,

    sizeof(float)*size,

    cudaMemcpyHostToDevice);

clEnqueueWriteBuffer(queue, d_x,

      CL_TRUE, 0, 

      sizeof(float)*size,

      h_x, 0, NULL, NULL);

Device to Host cudaMemcpy(h_x, d_x,

    sizeof(float)*size,

    cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

      CL_TRUE, 0, 

      sizeof(float)*size,

      h_x, 0, NULL, NULL);



Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;

cudaMalloc(&d_x,  

    sizeof(float)*size);

cl::Buffer

  d_x(begin(h_x), end(h_x), true);

Host to Device cudaMemcpy(d_x, h_x,

    sizeof(float)*size,

    cudaMemcpyHostToDevice);

cl::copy(begin(h_x), end(h_x), 

         d_x);

Device to Host cudaMemcpy(h_x, d_x,

    sizeof(float)*size,

    cudaMemcpyDeviceToHost);

cl::copy(d_x, 

         begin(h_x), end(h_x));



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

  __shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

 num_threads_per_block,

 shared_mem_size>>>(args);

OpenCL C++

1. Have the kernel accept a local 

array as an argument

    __kernel void func(

          __local int *array)   

  {}

2. Define a local memory kernel 

kernel argument of the right size

cl::LocalSpaceArg localmem =

    cl::Local(shared_mem_size);

3. Pass the argument to the kernel 

invocation

func(EnqueueArgs(…),localmem);



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

  __shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

 num_threads_per_block,

 shared_mem_size>>>(args);

OpenCL C

1. Have the kernel accept a local 

array as an argument

    __kernel void func(

          __local int *array) 

{}

2. Specify the size by setting the 

kernel argument

  clSetKernelArg(kernel, 0,          

   sizeof(int)*num_elements,                                    

   NULL);



Dividing up the work

• To enqueue the kernel

– CUDA – specify the number of thread blocks and 
threads per block

– OpenCL – specify the problem size and 
(optionally) number of work-items per work-
group

Problem size

CUDA OpenCL

Work-itemThread

Thread block Work-group



Enqueue a kernel (C)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

            

threads_per_block>>>();

OpenCL C

const size_t global[2] =

                  {300, 200};

const size_t local[2] = 

                  {30, 20};

clEnqueueNDRangeKernel(

       queue, &kernel,

       2, 0, &global, &local,

       0, NULL, NULL);



Enqueue a kernel (C++)

CUDA C

dim3 

threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,       

  threads_per_block>>>(…);

OpenCL C++

const cl::NDRange

       global(300, 200);

const cl::NDRange

       local(30, 20);

kernel(

  EnqueueArgs(global, local),

  …);



Indexing work

CUDA

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim + threadIdx

OpenCL

get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()



Differences in kernels

• Where do you find the kernel?

– OpenCL -  either a string (const char *), or 
read from a file

– CUDA – a function in the host code

• Denoting a kernel

– OpenCL - __kernel

– CUDA - __global__

• When are my kernels compiled?

– OpenCL – at runtime

– CUDA – with compilation of host code



Host code

• By default, CUDA initializes the GPU 

automatically

– If you needed anything more complicated 

(multi-device etc.) you must do so manually

• OpenCL always requires explicit device 

initialization

– It runs not just on NVIDIA® GPUs and so you 

must tell it which device(s) to use

Third party names are the property of their owners.



Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(

    CLK_GLOBAL_MEM_FENCE |             

    CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start 

another



Translation from CUDA to OpenCL

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange



More information

• http://developer.amd.com/Resources/hc

/OpenCLZone/programming/pages/portin

gcudatoopencl.aspx

http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/Resources/hc/OpenCLZone/programming/pages/portingcudatoopencl.aspx


Exercise 13: Porting CUDA to OpenCL

• Goal: 

– To port the provided CUDA/serial C program to 
OpenCL

• Procedure: 

– Examine the CUDA kernel and identify which 
parts need changing
• Change them to the OpenCL equivalents

– Examine the Host code and port the commands 
to the OpenCL equivalents

• Expected output:
– The OpenCL and CUDA programs should produce 

the same output – check this!



SOME CONCLUDING REMARKS



Conclusion
• OpenCL has widespread industrial support

• OpenCL defines a platform-API/framework for heterogeneous 
computing, not just GPGPU or CPU-offload programming

• OpenCL has the potential to deliver portably performant code; 
but it has to be used correctly

• The latest C++ and Python APIs make developing OpenCL 
programs much simpler than before

• The future is clear:

– OpenCL is the only parallel programming standard that enables 
mixing task parallel and data parallel code in a single program while 

load balancing across ALL of the platform’s available resources.



Other important related trends
• OpenCL’s Standard Portable Intermediate Representation (SPIR)

– Based on LLVM’s IR

– Makes interchangeable front- and back-ends straightforward
– Now libraries of OpenCL kernels can be distributed in "binary" form, 

protecting software developer IP

• OpenCL 2.0 adds support for:
– Shared virtual memory to share addresses between the host and the devices

– Dynamic (nested) parallelism, enabling kernels to directly enqueue other 
kernels on the same device without host intervention

– A formal memory model based on C11

– A generic address space to enable easier mixing and matching between 
host/global/local/private

– Pipes as memory objects
– Sub-groups to expose warp/wavefront-like hardware features

– Lots of other improvements!

• For the latest news on SPIR and new OpenCL versions see:
– http://www.khronos.org/opencl/ 

Third party names are the property of their owners.

http://www.khronos.org/opencl/


Resources:

https://www.khronos.org/opencl/

OpenCL Programming Guide: 

Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and 

James Fung, 2011 

Heterogeneous Computing with OpenCL

Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry 

and Dana Schaa, 2011

The OpenCL specification

Surprisingly approachable for a spec!

https://www.khronos.org/registry/cl/ 

OpenCL reference card

Useful to have on your desk(top)

Available on the same page as the spec.

https://www.khronos.org/registry/cl/


Other OpenCL resources

• New annual OpenCL conference

– http://www.iwocl.org/

– Held in May each year

– CFP to be announced at SC

• OpenCL Forums:
– Khronos' OpenCL forums are the central place 

to be:

– http://www.khronos.org/message_boards/fo
rumdisplay.php?f=61 

http://www.iwocl.org/
http://www.khronos.org/message_boards/forumdisplay.php?f=61
http://www.khronos.org/message_boards/forumdisplay.php?f=61


Other OpenCL resources

• CLU: a library of useful C-level OpenCL utilities, 
such as program initialization, CL kernel code 
compilation and calling kernels with their 
arguments (bit like 
GLUT!):https://github.com/Computing-
Language-Utility/CLU

• clMath: an open source BLAS / FFT library 
originally developed by 
AMDhttps://github.com/clMathLibraries/clBLAS 
and https://github.com/clMathLibraries/clFFT

https://github.com/Computing-Language-Utility/CLU
https://github.com/Computing-Language-Utility/CLU
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clFFT


VERSIONS OF OPENCL



OpenCL 1.0

• First public release, December 2008



OpenCL 1.1

• Released June 2010

• Major new features:

– Sub buffers

– User events

– More built-in functions

– 32-bit atomics become core features



OpenCL 1.2

• Released November 2011

• Major new features:

– Custom devices and built-in kernels

– Device partitioning

– Support separate compilation and linking of 

programs

– Greater support for OpenCL libraries



OpenCL 2.0

• Released in November 2013

• Major new features:
– Shared virtual memory (SVM)

– Dynamic parallelism

– Pipes

– Built-in reductions/broadcasts

– Sub-groups

– "generic" address space

– C11 atomics

– More image support



VECTOR OPERATIONS WITHIN 

KERNELS

Appendix A



Before we continue...

• The OpenCL device compilers are good at 
auto-vectorising your code

– Adjacent work-items may be packed to 
produce vectorized code

• By using vector operations the compiler 
may not optimize as sucessfully

• So think twice before you explicitly 
vectorize your OpenCL kernels, you might 
end up hurting performance!



Vector operations
• Modern microprocessors include vector units:

Functional units that carry out operations on blocks of numbers

• For example, x86 CPUs have over the years introduced 
MMX, SSE, and AVX instruction sets …
characterized in part by their widths (e.g. SSE operates on 128 
bits at a time, AVX 256 bits etc)

• To gain full performance from these processors it is 
important to exploit these vector units

• Compilers can sometimes automatically exploit vector 
units.
Experience over the years has shown, however, that you all too 
often have to code vector operations by hand.

• Example using 128 bit wide SSE:

#include "xmmintrin.h "     // vector intrinsics from gcc for SSE (128 bit wide)

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);   // pack 4 floats into vector register

__m128 vstep = _mm_load1_ps(&step);              // pack step into a vector register

__m128 xvec; = _mm_mul_ps(ramp,vstep);           // multiple corresponding 32 bit

                                                         //  floats and assign to xvec



Vector intrinsics challenges

• Requires an assembly code style of programming:
– Load into registers

– Operate with register operands to produce values in another 
vector register

• Non portable
– Change vector instruction set (even from the same vendor) 

and code must be re-written. Compilers might treat them 
differently too

• Consequences:
– Very few programmers are willing to code with intrinsics

– Most programs only exploit vector instructions that the 
compiler can automatically generate – which can be hit or miss

– Most programs grossly under exploit available performance.

Solution: a  high level portable vector instruction set … 

which is precisely what OpenCL provides. 



Vector Types

• The OpenCL C kernel programming language provides 
a set of vector instructions:
– These are portable between different vector instruction 

sets

• These instructions support vector lengths of 2, 4, 8, 
and 16 … for example:
– char2, ushort4, int8, float16, double2, …

• Properties of these types include:
– Endian safe

– Aligned at vector length

– Vector operations (elementwise) and built-in functions

Remember, double (and hence vectors 

of double) are optional in OpenCL v1.1



Vector Operations

• Vector literal

• Vector components

• Vector ops

int4 vi0 = (int4) -7;

int4 vi1 = (int4) (0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8) (vi0, vi1.s01, vi1.odd);

vi0 += vi1;

vi0 = abs(vi0);

-7 -7 -7 -7

0 1 2 3

2 3 -7 -7

2 3 -7 -7 0 1 1 3

2 3 -7 -7

0 1 2 3

2 4 -5 -4

+

2 4 5 4



Using vector operations

• You can convert a scalar loop into a vector loop using 
the following steps:

– Based on the width of your vector instruction set and 
your problem, choose the number of values you can pack 
into a vector register (the width):  
• E.g. for a 128 bit wide SSE instruction set and float data (32 bit), 

you can pack four values (128 bits =4*32 bits) into a vector 
register

– Unroll the loop to match your width (in our example, 4)

– Set up the loop preamble and postscript. For example, if 
the number of loop iterations doesn’t evenly divide the 
width, you’ll need to cover the extra iterations in a loop 
postscript or pad your vectors in a preamble

– Replace instructions in the body of the loop with their 
vector instruction counter parts



Vector instructions example
• Scalar loop:

for (i = 0; i < 34; i++) x[i] = y[i] * y[i];

• Width for a 128-bit SSE is 128/32=4

• Unroll the loop, then add postscript and premable as needed:
NLP = 34+2; x[34]=x[35]=y[34]=y[35]=0.0f // preamble to zero pad

for (i = 0; i < NLP; i = i + 4) {

  x[i] = y[i] * y[i];  x[i+1] = y[i+1] * y[i*1];

  x[i+2] = y[i+2] * y[i*2];  x[i+3] = y[i+3] * y[i*3];

}

• Replace unrolled loop with associated vector instructions:

float4 x4[DIM], y4[DIM];

// DIM set to hold 34 values extended to multiple of 4 (36)

float4 zero = {0.0f, 0.0f, 0.0f, 0.0f};

NLP = 34 % 4 + 1; // 9 values (as 34 isn’t a multiple of 4)

x4[NLP-1] = 0.0f; y4[NLP-1] = 0.0f; // zero pad arrays

for (i = 0; i < NLP; i++)

 x4[i] = y4[i] * y4[i]; // actual vector operations



Exercise A: The vectorized Pi program

• Goal: 

– To understand the vector instructions in the kernel 
programming language

• Procedure: 

– Start with your best Pi program

– Unroll the loops 4 times.  Verify that the program still 
works

– Use vector instructions in the body of the loop 

• Expected output:

– Output result plus an estimate of the error in the result

– Report the runtime and compare vectorized and scalar 
versions  of the program

– You could try running this on the CPU as well as the 
GPU…



THE OPENCL EVENT MODEL

Appendix B



OpenCL Events
• An event is an object that communicates the status of 

commands in OpenCL … legal values for an event:

– CL_QUEUED:      command has been enqueued. 

– CL_SUBMITTED:  command has been submitted to the 
                         compute device

– CL_RUNNING:    compute device is executing the command

– CL_COMPLETE:  command has completed

– ERROR_CODE:   a negative value indicates an error condition 
                        occurred. 

• Can query the value of an event from the host … for 
example to track the progress of a command.

cl_int clGetEventInfo (

          cl_event event,    cl_event_info param_name,

          size_t param_value_size, void *param_value,

          size_t *param_value_size_ret)

Examples:

• CL_EVENT_CONTEXT
• CL_EVENT_COMMAND_EXECUTION_STATUS

• CL_EVENT_COMMAND_TYPE



Generating and consuming events
• Consider the command to enqueue a kernel.  The last three 

arguments optionally expose events (NULL otherwise).

cl_int clEnqueueNDRangeKernel (

     cl_command_queue command_queue,     

     cl_kernel kernel,

     cl_uint work_dim,

     const size_t *global_work_offset,     

     const size_t *global_work_size,

     const size_t *local_work_size,

     cl_uint num_events_in_wait_list,

     const cl_event *event_wait_list,

     cl_event *event)

Pointer to an event object 

generated by this command

Array of pointers to the events 

being waited upon … Command 

queue and events must share a 

context.

Number of events this command 

is waiting to complete before 

executing



Event: basic event usage

• Events can be used to impose order 
constraints on kernel execution.

• Very useful with out-of-order queues.

cl_event    k_events[2];

err = clEnqueueNDRangeKernel(commands, kernel1, 1, 

 NULL, &global, &local, 0, NULL, &k_events[0]);

 

err = clEnqueueNDRangeKernel(commands, kernel2, 1, 

 NULL, &global, &local, 0, NULL, &k_events[1]);

err = clEnqueueNDRangeKernel(commands, kernel3, 1,

 NULL, &global, &local, 2, k_events, NULL);

Enqueue two 

kernels that 

expose events

Wait to execute 

until two previous 

events complete



OpenCL synchronization: queues & events
• Events connect command invocations. Can be used to synchronize 

executions inside out-of-order queues or between queues

• Example: 2 queues with 2 devices
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an event from 

Kernel 1 and does 

not start until the 
results are ready



Why Events? Won’t a barrier do?

• A barrier defines a synchronization 
point … commands following a 
barrier wait to execute until all 
prior enqueued commands complete
cl_int 
clEnqueueBarrier(cl_command_queue 
queue)

• Events provide fine grained control 
… this can really matter with an 
out-of-order queue.

• Events work between commands in 
the different queues … as long as 
they share a context

• Events convey more information 
than a barrier … provide info on 
state of a command, not just 
whether it’s complete or not.

Queue Queue

Context

GPU CPU

Event



Barriers between queues: clEnqueueBarrier doesn’t work

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()
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clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()
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clEnqueueReadBuffer() 

clEnqueueNDRangeKernel()
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clEnqueueReadBuffer() 

clEnqueueNDRangeKernel()



Barriers between queues: this works!

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()
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clEnqueueReadBuffer()
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clEnqueueReadBuffer() 

clEnqueueNDRangeKernel()



Host generated events influencing execution of 

commands: User events

• “user code” running on a host thread can 
generate event objects
cl_event clCreateUserEvent(cl_context context, cl_int 

*errcode_ret)

• Created with value CL_SUBMITTED.

• It’s just another event to enqueued commands.

• Can set the event to one of the legal event 
values
cl_int clSetUserEventStatus(cl_event event, cl_int 
execution_status)

• Example use case: Queue up block of commands 
that wait on user input to finalize state of 
memory objects before proceeding.



Command generated events influencing 

execution of host code

• A thread running on the host can pause 
waiting on a list of events to complete. This 
can be done with the function:
cl_int clWaitForEvents(

 cl_uint num_events,

 const cl_event *event_list)

• Example use case: Host code waiting for an 
event to complete before extracting 
information from the event.

Number of events to wait on

An array of pointers 

to event object



Profiling with Events

• OpenCL is a performance oriented language … Hence 
performance analysis is an essential part of OpenCL 
programming.

• The OpenCL specification defines a portable way to 
collect profiling data. 

• Can be used with most commands placed on the 
command queue … includes:

– Commands to read, write, map or copy memory objects

– Commands to enqueue kernels, tasks, and native kernels

– Commands to Acquire or Release OpenGL objects

• Profiling works by turning an event into an opaque 
object to hold timing data.  



Using the Profiling interface
• Profiling is enabled when a queue is created with the 

CL_QUEUE_PROFILING_ENABLE  flag  set.   

• When profiling is enabled, the following function is used 
to extract the timing data

cl_int clGetEventProfilingInfo(

 cl_event event,

 cl_profiling_info param_name,

 size_t param_value_size,

 void *param_value,

 size_t *param_value_size_ret)

Expected and 

actual size of 

profiling data.

Profiling data 

to query (see 

next slide)

Pointer to 

memory to 

hold results



cl_profiling_info values

• CL_PROFILING_COMMAND_QUEUED

– the device time in nanoseconds when the command is 
enqueued in a command-queue by the host. (cl_ulong)

• CL_PROFILING_COMMAND_SUBMIT

– the device time in nanoseconds when the command is 
submitted to compute device. (cl_ulong)

• CL_PROFILING_COMMAND_START

– the device time in nanoseconds when the command 
starts execution on the device. (cl_ulong)

• CL_PROFILING_COMMAND_END

– the device time in nanoseconds when the command has 
finished execution on the device. (cl_ulong)



Profiling Examples
cl_event prof_event;

cl_command_queue comm;

comm = clCreateCommandQueue(

       context, device_id, 

      CL_QUEUE_PROFILING_ENABLE, 

       &err);

err = clEnqueueNDRangeKernel(

          comm, kernel, 

          nd, NULL, global, NULL, 

          0, NULL, prof_event);

clFinish(comm);

err = clWaitForEvents(1, 

&prof_event );

cl_ulong start_time, end_time;

size_t return_bytes;

err = clGetEventProfilingInfo(

  prof_event,

   

CL_PROFILING_COMMAND_QUEUED,

   sizeof(cl_ulong),  

   &start_time,

   &return_bytes);

err = clGetEventProfilingInfo(

   prof_event,

   

CL_PROFILING_COMMAND_END,

   sizeof(cl_ulong), 

   &end_time,

   &return_bytes);

run_time =(double)(end_time - 

start_time);



Events inside Kernels … Async. copy
// A, B, C kernel args … global  buffers.  

// Bwrk is a local buffer

for(k=0;k<Pdim;k++)

          Awrk[k] = A[i*Ndim+k];  

for(j=0;j<Mdim;j++){

    event_t ev_cp  = async_work_group_copy( 

        (__local float*) Bwrk, (__global float*) B,

        (size_t) Pdim, (event_t) 0); 

    wait_group_events(1, &ev_cp);

    for(k=0, tmp= 0.0;k<Pdim;k++) 

           tmp  += Awrk[k] *  Bwrk[k]; 

    C[i*Ndim+j] = tmp; 

}

• Compute a row of C = A * B

– 1 A col.per work-item

– Work group shares rows of B

Start an async. copy 

for row of B returning 

an event to track 

progress.

Wait for async. copy to 

complete before 

proceeding.

Compute element of C 

using A from private 

memory and B from 

local memory.



Events and the C++ interface

(for profiling)
• Enqueue the kernel with a returned event

Event event =

  vadd(

    EnqueueArgs(commands,NDRange(count), NDRange(local)),

    a_in, b_in, c_out, count);

• What for the command attached to the event to complete
event.wait();

• Extract timing data from the event:

   cl_ulong ev_start_time =

       event.getProfilingInfo<CL_PROFILING_COMMAND_START>(); 

     cl_ulong ev_end_time =

       event.getProfilingInfo<CL_PROFILING_COMMAND_END>();



PINNED MEMORY

Appendix C



Pinned Memory

• In general, the fewer transfers you can 

do between host and device, the better

• But some are unavoidable

• It is possible to speed up these transfers, 

by using pinned memory (also called 

page-locked memory)

• If supported, can enable much faster host 

<-> device communications



Pinned Memory

• A regular enqueueRead/enqueueWrite 

command might manage ~6GB/s

• But PCI-E Gen 3.0 can sustain transfer 

rates of up to 16GB/s

• So, where has our bandwidth gone?

• The operating system

• Why? Let's consider when memory is 

actually allocated…



Malloc Recap

• Consider a laptop which 

has 16GB of RAM.

• What is the output of the 

code on the right if run 

on this laptop?

• Bonus Question: if 
compiled with –m32, 

what will the output be?

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

  //64 billion floats

size_t len    = 64 * 1024*1024*1024;

//256GB allocation

float *buffer = 

malloc(len*sizeof(float));

if (NULL == buffer)

{

fprintf(stderr, "malloc failed\n");

return 1;

}

  printf("got ptr %p\n", buffer);

return 0;

}



% gcc test.c -o test          

% ./test
got ptr 0x7f84b0c03350



Malloc Recap

• A non-NULL pointer was 

returned

• Both OS X and Linux will 

oversubscribe memory

• When will this memory 

actually get allocated?

• Checking the return 

value of malloc/calloc is 

useless – malloc never* 

returns NULL!

#include <stdlib.h>

#include <stdio.h>

int

main

(int argc, char **argv)

{

  //64 billion floats

size_t len    = 64 * 1024*1024*1024;

//256GB allocation

float *buffer = 

malloc(len*sizeof(float));

if (NULL == buffer)

{

fprintf(stderr, "malloc failed\n");

return 1;

}

  printf("got ptr %p\n", buffer);

return 0;

}

* This might not be true for an embedded system



Malloc Recap

• This program does not 

actually allocate any 

memory

• We call malloc, but we 

never use it!

#include <stdlib.h>

#include <stdio.h>

int 

main 

(int argc, char **argv)

{

  size_t len    = 16 * 1024*1024;

  float *buffer = 

             malloc(len*sizeof(float));

  return 0;

}



Malloc Recap

• So what happens here?

• The pointer we got back, 

when accessed, will trigger 

a page fault in the kernel.

• The kernel will then 

allocate us some memory, 

and allow us to write to it.

• But how much was 

allocated in this code? Only 

4096 bytes (one page)

#include <stdlib.h>

#include <stdio.h>

int 

main 

(int argc, char **argv)

{

  size_t len    = 16 * 1024*1024;

  float *buffer = 

             malloc(len*sizeof(float));

  buffer[0] = 10.0f;

  return 0;

}



Malloc Recap

• 4KB pages will be allocated at a time, 

and can also be swapped to disk 

dynamically

• In fact, an allocation may not even be 

contiguous

• So, enqueueRead/enqueueWrite must 

incur an additional host memory to host 

memory copy, wasting bandwidth and 

costing performance



• EnqueueWrite:

– Allocate contiguous portion of DRAM

– Copy host data into this contiguous memory

– Signal the DMA engines to start the transfer

• EnqueueRead:

– Allocate contiguous portion of DRAM

– Signal DMA engine to start transfer

– Wait for interrupt to signal that the transfer 

has finished

– Copy transferred data from the contiguous 

memory into memory in the host code’s 

address space



• Pinned memory side-steps this issue by 

giving the host process direct access to 

the portions of host memory that the DMA 

engines read and write to.

• This results in much less time spent 

waiting for transfers!

• Disclaimer: Not all drivers support it, and 

it makes allocations much more 

expensive (so it would be slow to 

continually allocate and free pinned 

memory!)



Using Pinned Memory
• OpenCL has no official 

support for pinned memory 

• But e.g. NVIDIA supports 
pinned memory allocations 
(CL_MEM_ALLOC_HOST_PTR 
flag)

• When you allocate a cl_mem 
object, you also allocate 
page-locked host memory of 
the same size

• But this does not return the 
host pointer 

• Reading and writing data is 
handled by 
enqueueMapBuffer, which 
does return the host pointer

• Eventually call 
clEnqueueUnmapMemObject 
when you're done

//create device buffer

cl_mem devPtrA = clCreateBuffer(

  context,

  CL_MEM_ALLOC_HOST_PTR, //pinned memory flag

  len,

  NULL, //host pointer must be NULL

  NULL

);

float *hostPtrA = 

(float *) clEnqueueMapBuffer(

  queue, 

  devPtrA, 

  CL_TRUE, //blocking map

  CL_MAP_WRITE_INVALIDATE_REGION, //write data

  0,       //offset of region

  len,     //amount of data to be mapped

  0, NULL, NULL, //event information

  NULL     //error code pointer

);

CL_MAP_WRITE_INVALIDATE_REGION is a v1.2 feature; if using 

v1.1 or earlier, would have to use CL_MAP_WRITE instead.



Caveats

• Again, allocating pinned memory is much 
more expensive (about 100x slower) than 
regular memory, so frequent allocations will 
be bad for performance.

• However, frequent reads and writes will be 
much faster!

• Not all platforms support pinned memory. 
But, the above method will still work, and 
at least will not be any slower than regular 
use



C++ FOR C PROGRAMMERS

Appendix D



C++ for C programmers

• This Appendix shows and highlights some of 

the basic features and principles of C++.

• It is intended for the working C programmer.

• The C++ standards:

– ISO/ANSI Standard 1998 (revision 2003)

– ISO/ANSI Standard 2011 (aka C++0x or C++11) 



Comments, includes, and variable 

definitions

• Single line comments:

   // this is a C++ comment

• C includes are prefixed with “c”:

   #include <cstdio>

• IO from keyboard and to console
   #include <iosteam>

   int a;  

   std::cin >> a;  // input integer to ‘a’

   std::cout << a; // outputs ‘a’ to console



Namespaces

• Definitions and variables can be scoped with namespaces.
 :: is used to dereference.

• Using namespace opens names space into current scope.

• Default namespace is std.

 #include <iostream> // definitions in std namespace

         namespace foo {

              int id(int x) { return x; }

          };

          int x = foo::id(10);

          using namespace std;

          cout << x; // no need to prefix with std::



References in C++ … 

a safer way to do pointers
• References are non-null pointers.  Since they can’t be NULL, you 

don’t have to check for NULL value all the time (as you do with 
C)

• For example, in C we need to write: 

     int foo(int * x)  { 
       if (x != NULL) return *x;

       else return 0;

     }

• In C++ we could write:

       int foo(int & x)  { 
            return x;

     }

• Note that in both cases the memory address of x is passed (i.e. 
by reference) and not the value!



New/Delete Memory allocation

• C++ provides safe(r) memory allocation

• new  and delete operator are defined for 
each type, including user defined types. No 
need to multiple by sizeof(type) as in C.

     int * x = new int;
     delete x;

• For multi element allocation (i.e. arrays) we 
must use delete[].

     int * array = new int[100];

     delete[] array;



Overloading
• C++ allows functions to have the same name but with 

different argument types.

     int add(int x, int y) 
     {

          return x+y;

     }

     float add(float x, float y) 

     {

          return x+y;

     }

     // call the float version of add

     float  f = add(10.4f, 5.0f); 

     // call the int version of add

     int i = add(100,20);



Classes (and structs)
• C++ classes are an extension of C structs (and unions) that 

can functions (called member functions) as well as data.

The keyword “const” can be applied to member functions such as getX() to state that 
the particular member function will not modify the internal state of the object, i.e it 
will not cause any visual effects to someone owning a pointer to the said object. This 
allows for the compiler to report errors if this is not the case, better static analysis, 
and to optimize uses of the object , i.e. promote it to a register or set of registers. 

class Vector {

    private:

       int x_, y_, z_ ;

    public:

        Vector (int x, int y, int z) : x_(x), y_(y), z_(z) {} // constructor

      

       ~Vector // destructor

         {             

             cout << “vector destructor”;         

         } 

        int getX() const { return x_; } // access member function

        …       

   };



More information about constructors
• Consider the constructor from the previous slide …

Vector (int x, int y, int z): x_(x), y_(y), z_(z) {}

• C++ member data local to a class (or struct) can be initialized using 
the noation
: data_name(initializer_name), ...

• Consider the following two semantically equivalent structs in which 
the constructor sets the data member x_ to the input value x:

• Case B must use a temporary to read the value of x, while this is not 
so for Case A. This is due to C’s definition of local stack allocation.

• This turns out to be very import in C++11 with its memory model 
which states that an object is said to exist once inside the body of the 
constructor and hence thread safety becomes an issue, this is not the 
case for the constructor initalization list (case A). This means that 
safe double locking and similar idioms can be implemented using this 
approach.

struct Foo

{

  int x_;

  Foo(int x) : x_(x) {}

}

struct Foo

{

  int x_;

  Foo(int x) { x_ = x; }

}

A B



Classes (and structs) continued

• Consider the following block where we construct an 
object (the vector “v”), use it and then reach the 
end of the block

{

   Vector v(10,20,30);

   // vector {x_ = 10, y_ = 20 , z_ = 30}

   // use v

} // at this point v’s destructor would be called!

• Note that at the end of the block, v is no longer 
accessible and hence can be destroyed.  At this point, 
the destructor for v is called.



Classes (and structs) continued

• There is a lot more to classes, e.g. 

inheritance but it is all based on this 

basic notion.

• The previous examples adds no additional 

data or overhead to a traditional C 

struct, it has just improved software 

composibility.



Function objects

• Function application operator can be 

overloaded to define functor classes

   struct Functor

   {

       int operator() (int x) { return x*x; }

   };

   // create an object of type Functor

   Functor f();

   int value = f(10); // call the operator()



Template functions

• Don’t want to write the same function many times 
for different types?

• Templates allow functions to be parameterized with 
a type(s).

 

template<typename T>

    T add(T x, T y) { return x+y; }

    float  f = add<float>(10.4f, 5.0f); // float version

    int i = add<int>(100,20);           // int version

• You can use the templatized type, T, inside the 
template function



Template classes

• Don’t want to write the same class many times 
for different types?

• Templates allow class to be parameterized 
with a type(s) too.

template <typename T>

    class Square

    {

        T operator() (T x) { return x*x; }

    };

    Square<int> f_int(); 

    int value = f_int(10); 



C++11 defines a function template

• C++ function objects can be stored in the templated class 
std::function.    The following header defines the class 
std::function

 #include <functional>

• We can define a C++ function object (e.g. functor) and then 
store it in the tempated class std::function

struct Functor

   {

       int operator() (int x) { return x*x; }

   };

   std::function<int (int)> square(Functor());



C++ function template: example 1

The header <functional> just defines the template std::function. This 
can be used to warp standard functions or function objects, e.g.:

int foo(int x)  { return x; }  // standard function

std::function<int (int)> foo_wrapper(foo);

struct Foo // function object

{

 void operator()(int x) {return x;}

};

std::function<int (int)> foo_functor(Foo());

foo_functor and foo_wrapper are basically 

the same but one is using a standard C like 

function, while the other is using a function 

object



C++ function template: example 2
What is the point of function objects?  Well they can of course 
contain local state, which functions cannot, they can also contain 
member functions and so on. A silly example might be:

struct Foo // function object

{

  int y_;

 Foo() : y_(100) {}

  void operator()(int x) { return x+100; }

};

std::function<int (int)> add100(Foo());

// function that adds 100 to its argument



PYTHON FOR C PROGRAMMERS

Appendix E



Python 101
• Python is an interpreted language, and so 

doesn’t need to be compiled

• Python is often used as a language to glue other 
parts of your application together – with OpenCL 
this is great as the host code is fast to write and 
the heavy computation is done on your 
accelerator

• Run your code as:
– python file.py

• No curly braces – indent consistently to define 
blocks of code

• Print to stdout with print – it will try it’s best to 
format variables:
print ‘a =‘, a, ‘and b =‘, b



Comments, variables and includes

• A comment is prefixed with the hash
# this is a comment

• Initilize variables as you go – no need for a type
N = 1024

x = 5.23

my_string = 'hello world'

• Use single or double quotes for strings
'this is the same'

"as this"

"no need to escape 'opposite' quotes!"

• Also use three quotes ''' or """ for multiline strings 
without escaping anything!

• Include additional modules and libraries with
import sys



Conditionals

if n == 1:

print ‘n was 1’

elif n == 2 or n == 3:

print ‘n was 2 or 3’

else:

 print ‘n was’, n



Loops

# loop from 0 to 1023

for i in range(1024):

 print i

# iterate through an array

for x in my_array:

 x += 1

# same as the first one

while i < 1024:

 print i

 i += 1



Functions and classes

• Define a function with the def keyword
def func(arg):

• You don’t specify the types or return 
arguments
– you just return what you like

• Define a class with the class keyword
class name:

• Classes contain function definitions and 
variables

– These are both called attributes



More about classes

• There is a lot more about classes e.g. 
inheritance

• Python is an object-oriented language

• A small example from the python tutorial:
class Complex:

 def __init__(self, realpart, imagpart):

  self.r = realpart

  self.i = imagpart

• Initilize an instance of the class with:
x = Complex(3.0, -4.5)



Python has functional programming 

elements
• Filter

filter(function, sequence)

– Returns a list from sequence which function returns 
true

• Map
map(function, sequence)

– Applies the function to each element in the 
sequence

• Reduce
reduce(function, sequence)

– Applies binary function with first two in sequence, 
then with the result with third, etc.



Python has functional programming 

elements
• List comprehensions

squares = [x*x for x in range(10)]

# squares = [0, 1, 4, 9, 16, etc]

• Zip
zip(list1, list2)

– Creates a list of tuples, where the ith tuple consists 
of the ith elements of each list

• Generators
– Lazy generation of lists
– Either:

• Replace [] with () in list comprehensions to use as 
expression, i.e. to pass to another function

• Use the yield keyword instead of return in a function 
which builds and returns a list



Further information:

• There is lots more to python, this is just a 
flavor of the language to help you 
understand the syntax in this course

• The official python tutorial is much more 
complete:
– http://docs.python.org/2/tutorial/index.ht

ml

• The python docs are really good too
– http://docs.python.org/2/library/index.html

http://docs.python.org/2/tutorial/index.html
http://docs.python.org/2/tutorial/index.html
http://docs.python.org/2/library/index.html
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