
Lec17: Neural Networks

Introduction

• (Deep) Neural Network is a really flexible and powerful machine
learning model that
• Approximate any reasonable function in theory
• “Learns the pattern from data” incredibly well in practice, particularly in hard

areas like cognition, perception

• Two computational modes:
• Training: go through training examples, update model parameters (usually driven

by reducing a certain loss function)
• Inference: given new input, compute output (prediction, next token,

classification, regressions, probability, etc…)

• Usually very hungry for data+compute
• Modern LLM pretty much demands to be run on accelerators (GPUs, TPUs, …)

Agenda

• To study how a neural network works, in particular its
computational structure and their acceleration on GPU…

• We study a relatively simple but representative example:
digit classifier on the MNIST dataset.

• Moving from higher abstraction -> lower abstraction
• PyTorch version
• Python+numpy version (pytorch free) + Math
• C version (without dependencies)
• C+CUDA version (accelerated on GPU!)

Neural Network Background

• 10,000-ft bird view:
A particular class of mathematical function
f(x;w) = y,
x is input vector
w is the model parameters
y is output vector

• Training:
given (x0,y0), (x1,y1), …, update w to make f() better predict y

• Inferencing:
given x, compute f(x; w) = y

Function f(x;w)

• It’s constructed in layers
input x -> (layer 1) -> output z1 -> (layer 2) -> output z2 -> …
-> output z

• There are many different layers:
• Linear layer: f x : = 𝑥 ⋅ 𝑊 + 𝑏 = 𝑧

W is weights, a matrix of size (#input, #output), b is vector bias.
• Convolutional layer, recurrent layer, embedding layer…
• Activation layer:

ReLU: 𝑓 𝑥 = max 𝑥, 0
Sigmoid, Softmax, …

• Normalization layer (to stabilize training): BatchNorm, LayerNorm,
• Attention layer:

MNIST Dataset

• MNIST contains 60,000
training images and 10,000
testing images of handwritten
digits.

• The dataset comprises
grayscale images of size
28×28 pixels.

Simple Multilayer Perceptron (MLP)

• Input x: 784 (28*28) pixels(floats)
• Three layers: input -> hidden -> output

• Linear layer1: 784*256 (a matrix that maps 784-vector to 256-vector
z1=x*W1+b1

• ReLU layer: 256->256
a1​=ReLU(z1​)

• Linear layer2: 256*10 (a matrix that maps 256 –vector to 10-vector)
z2=a1W2+b2

Softmax + Cross-Entropy Loss:
L=−∑ylog(softmax(z2))

PyTorch MLP: Network

PyTorch MLP: Train

PyTorch: Evaluate

Python MLP without PyTorch

• What actually does PyTorch do?
• Layers are just functions mapping input vector -> output vector
• .backward(): automatically computing gradients using chain rules
• Train: iteration of computing gradient and update parameters using some

variant of stochastic gradient descent

• For our simple MLP we can derive and hardcode the gradient
computing rule, the forward pass of the network, and the training
iterations with SGD using nothing other than Numpy linear algebra

Training: Back-propagation

• Recall training:
f(x; w) = y
Optimize w to minimize (cross-
entropy) loss function over a training
data set (x0,y0), (x1, y1), …, (xn, yn):

min
𝑤

෍

𝑖

𝐿(𝑓 𝑥𝑖; 𝑤 , 𝑦𝑖)

• Take one training point (x0, y0).
How to update w so that loss is
lower?

• Intuition: In calculus, we learn that
gradient (derivative) at w is the
slope that the function increases
around w

def L(w): return 3*w**2 - 4*w + 5

Gradient & Back-propagation

• Intuitively, the f gradient of w at point x0
∇𝑤𝑓 𝑥0, 𝑤

points to the direction in which the scalar function f(x0,w) increases the fastest;
• If we want to reduce f(x0,w), we would go tiny step in opposite direction of the

gradient g:= ∇𝑤𝑓 𝑥0, 𝑤 :
𝛿𝑤 = 𝑡 ∗ 𝑔

• 𝑓 𝑥0;𝑤 − 𝛿𝑤 ≈ 𝑓 𝑥0;𝑤 − 𝛿𝑤, 𝑔 = 𝑓 𝑥0;𝑤 − 𝑡 𝑔
2

• So in summary, to minimize the loss function at point (x0,y0), one would update
parameters w a tiny amount in the ∇𝐿𝑤 𝑥0;𝑤

• But how to compute ∇𝐿𝑤 𝑥0;𝑤 for our MLP?
Chain rule, and layer by layer backwards (that’s where back-propagation got its
name)

Chain rule

Chain rule applied to the 3-layer net

Layer-by-layer Back-propagation

• For an linear layer,
z = xW + b
the backward() should compute the following gradients:
given gradient_out (∂L/∂z), computes gradients for parameters W, b,
and for gradient_in(∂L/∂x):

Numpy version

• https://github.com/Infatoshi/mnist-cuda/blob/master/python/c-
friendly.py

https://github.com/Infatoshi/mnist-cuda/blob/master/python/c-friendly.py
https://github.com/Infatoshi/mnist-cuda/blob/master/python/c-friendly.py

References:

• https://github.com/Infatoshi/mnist-cuda/tree/master
• https://www.kaggle.com/code/scaomath/simple-neural-network-

for-mnist-numpy-from-scratch/notebook
• Back-propagation: Andrej Karpathy, MicroGrad:

https://www.youtube.com/watch?v=VMj-3S1tku0&t=579s
• Pure CUDA implementation to reproduce GPT-2(124M) model:

https://github.com/karpathy/llm.c/discussions/481
https://www.youtube.com/watch?v=l8pRSuU81PU

https://github.com/Infatoshi/mnist-cuda/tree/master
https://www.kaggle.com/code/scaomath/simple-neural-network-for-mnist-numpy-from-scratch/notebook
https://www.kaggle.com/code/scaomath/simple-neural-network-for-mnist-numpy-from-scratch/notebook
https://www.youtube.com/watch?v=VMj-3S1tku0&t=579s
https://github.com/karpathy/llm.c/discussions/481
https://www.youtube.com/watch?v=l8pRSuU81PU

	Slide 1: Lec17: Neural Networks
	Slide 2: Introduction
	Slide 3: Agenda
	Slide 4: Neural Network Background
	Slide 5: Function f(x;w)
	Slide 6: MNIST Dataset
	Slide 7: Simple Multilayer Perceptron (MLP)
	Slide 8: PyTorch MLP: Network
	Slide 9: PyTorch MLP: Train
	Slide 10: PyTorch: Evaluate
	Slide 11: Python MLP without PyTorch
	Slide 12: Training: Back-propagation
	Slide 13: Gradient & Back-propagation
	Slide 14: Chain rule
	Slide 15: Chain rule applied to the 3-layer net
	Slide 16: Layer-by-layer Back-propagation
	Slide 17: Numpy version
	Slide 18: References:

