Lec2: Heterogeneous Data
Parallel Computing

2025Spring: COSC4397

Based on Programming Massive Parallel Processors, 4" Ed, Chapter 2

Agenda

* Data parallelism
* CUDA language, SPMD

* Threads, host, device, memory management
e Structure of a CUDA C kernel function

Data Parallelism

e “same compute, on different parts of the data”

* Those computations on different parts of the data can often be
done independently

* Many application exhibits rich data parallelism that is amenable to
scalable parallel computation

* The most important type of parallelism that GPU exploits

* Examples:
* Graphics: each pixel could be independently rendered
* I[mage processing: blurring
* Matrix computations: multiplication, decomposition, etc

Programming Model: Data Parallelism

* How to program GPU (general purpose, non-graphics
applications) to exploit data parallelism?
* SIMD instructions? (x86: SSE, AVX, arm: NEON)

* Vectorinstructions? (No longer used much; used on Vector machine such
as Cray supercomputers)

* Threads? (most flexible, but high cost? E.g. CPU multi-threading)
* Loops? (OpenMP annotation? Are iterations independent?)

* Programming model
* Needs to be simple for productivity
* Needs to be performant on the underlying execution model

GPU Execution Model

* To be studied later in a separate lecture, but in a nutshell...

* Multi-core: core in NVIDIA speak is Streaming Multiprocessor (SM)
* Wide SIMD machine: each SIMD lane is called a CUDA core
* Pipelined functional units

CUDA/C Extension

* In NVIDIA speak CUDA/C model is Single Thread Multiple Data
(STMD), highlighting the role of thread.

* |[n fact, thread is the main mechanism to express parallelism in
CUDA/C

* What’s a thread?
* Software thread vs hardware thread
* Thread on GPU vs Thread on CPU
 Thread in CUDA vs Thread in POSIX threads

CUDA/C Structure

* Heterogeneous model (sometimes accelerator model): a program
Is executed on two different architectures:
* Host: usually the CPU, likely x64 or ARM
* Devices: usually discrete GPUs

CPU Serial Code i
Device Parallel Kernel w w w w
KernelA<<< nBlk, nTid >>>(args):
CPU Serial Code g

Device Parallel Kernel w a w w
KernelB<<< nBlk, nTid >>>(args):

FIGURE 2.3 Execution of a CUDA program.

CUDA/C

e Kernel: the function executable on GPU

* Launching a kernel (from host):

e Send code of the kernel to GPU for execution

* GPU ”"spawns” a large number of threads, each one of those threading
executing the kernel function

* Those threads are called a grid of threads

* Execution on Host and Devices are asynchronous

* After launching the kernel, the CPU program proceeds without waiting
(usually, unless using a synchronous call)

* To synchronize (host code wait for GPU kernel to finish): explicit call
device synchronize

Vector Add Example: Loops

void vecAdd(float* A_h, float* B_h, float* C_h, int n) {
for (Ant i =0; i < n; ++1) {
c_hl[i]l = A_h[i] + B_h[i]:

}
}

int main() {

vecAadd(A, B, C, N);

FIGURE 24 A simple traditional vector addition C
code example.

Vector Add Example: Offloading to Device

- * Host program is the control
L center.

Host memory
Part 3

Host (CPU)

id Add(float* A, float* B, float* C, int n) { * HOSt program typically “Offload”

B e i heavy computation to Device
(GPU)

* Host and device have different
memory space: host memory vs
device memory (global memory)

* Data needs to be explicitly moved
FIGURE 2.5 Outline of a revised vecAdd function between host and device

that moves the work to a device.

Device Global Memory and Data Transfer

* Before calling the kernel, the host ¢ cudaMalloc()

program needsto * Allocates GPU memory
* Allocate GPU memory * Returns a pointer that points to
« Move necessary input data to the GPU memory on host program
GPU memory * Accessing data pointed by GPU

- And launch the GPU kernel... memory pointer will segfault
* Afterwards, the CPU needsto * cudakree()
move the output in GPU memory * De-allocate GPU memory space
back to host for post-processing ¢ cudaMemcpy(dst,src,size,dir)
* Memory data transfer

* Src, dst are source and destination
(pointers)

* Diristhe direction: HostToDevice,
DeviceloHost

VecAdd with data transfer

* Pop quiz:
void vecAdd(float* A_h, float* B_h, float* C_h, int n) { .
ot size n stmeciostyy * Why the &A_d in cudaMalloc(
&A_d, size)?

cudamalloc((void **) &A_d, size);
cudaMalloc((void **) &B_d, size);
cudaMalloc((void **) &C_d, size);

cudamemcpy (A_d, A_h, size, cudaMemcpyHostToDevice);
cudamemcpy(B_d, B_h, size, cudaMemcpyHostToDevice);

cudamemcpy(C_h, C_d, size, cudaMemcpyDeviceToHost) ;

cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

FIGURE 2.8 A more complete version of vec-
Add().

Aside: Error Checking in CUDA code

CUDA Kernel and Thread

* A CUDA kernel is a function

that is executed by each of the
threads on GPU

* This is called SPMD, Single
Program Multiple Data

* On therightis an example of N
thread blocks, each consisting
of 256 threads, executing the
same code (kernel function)

BlockO Bockl BokNl

[(2 | [2sa2ss| [oi]t [2| [2sa2s5| [o[1 [2| [254]255

\\\\ \\ \\\\ \\ \\\\ \\

= blockldx.x * blockD = blockldx.x * blockD = blo kd * blockDim.x
thre dd.; threa ldx.x; 08, dd.;
C[i] = A[i] + B[i]; C[i] = A[i] + B[i]; C[i]=A[i]+B[i];

FIGURE 29 All threads in a grid execute the
same kernel code.

Thread Organization and ID

* Host program launches a
kernel function, with the

following info: e
. void vecAddkernel(float* A, float* B, float* C, int n) {
o The kernel funCtlon name 1:t('| = t?riadldx.x + blockDim.x * blockIdx.x;
* Kernelfunction parameters | cHil = AL+ b
* # of thread blocks }

e # of threads per block FIGURE 2.10 A vector addition kernel function.

* Each thread computes one
element of C, but which one?
* Depending on thread ID
* How to id each thread?

Thread Organization and ID

e Built-in variables:

¢ Wh'Ch thread blOCk? ;?l?\bf:lé_ddKerneKﬂoat* A, ﬂoat:* B, float* C, int n) {
blOCkIdX jl:t(:- : E;lri_adldx.x + blockbim.x blockIdx.x;

* Which thread in the block? Slnd =l Bl
threadldx

* How many blocks?
gridDim

* How many threads per block BlockN 1
blockDim 254 | 255 254 | 255 254 255|

. Private variable: i \\\\ \\ \\\\ \\ \\\\ \\

threadldx.x; threadldx.x; e threadldx.x;
C[i] = A[i] + B[i]; C[i] = A[i] + B[i]; C[i] = Ali] + B[i];

‘ = blockldx.x * blockDim.x = blockldx.x * blockDim.x = blockldx.x * blockDim.x

* Branch: if (i<n)

FIGURE 29 All threads in a grid execute the
same kernel code.

CUDA Qualifiers

Qualifier Callable Executed Executed
Keyword From On By

__host__ st Howt Caller host
thread

Host Poding New grid of

__global__ device threads

Caller device
thread

__device Device Device

FIGURE 2.11 CUDA C keywords for function dec-
laration.

Launching a kernel

* Launching a kernel from host

orogram is like calling a function, " eicar sad, ro d ﬂ;gﬂ)ﬂ e
DUt With a funny <<<gr|dDimS’ cudamalloc((void **) &A_d, size);
blockDims>>> Tt (ot i e

* Specifies how many threads to e e

[aunch: vecaddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, c_d, n);

cudamMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);

* gridDims: number of blocks e
cudaFree(A_ ’

* blockDims: number of threads per bt
block

* total threads = gridDims* blockDims
* Kernel launch is asynchronous

FIGURE 2.13 A complete version of the host code
in the vecAdd function.

Compilation & Execution

Integrated C programs with CUDA extensions

4

‘ NVCC Compiler

Host Code ‘

Host C preprocessor,

‘ Device Code (PTX)

compiler/ linker Device just-in-time compiler
Heterogeneous Computing Platform with
CPUs, GPUs

FIGURE 2.14 Overview of the compilation
process of a CUDA C program.

* You can put both host code
and kernel/device code in a
single file, (*.cu)

* NVCC will compile the *.cu into
a combined object file or
executable.

* Can handle the
object/executable files as if
they are single architecture.

CUDA Driver and Runtime

Pop Quiz

* 1.If we wantto use each threadin a
grid to calculate one output element of
a vector addition, what would be the
expression for mapping the
thread/block indices to the data index

(i)?

A) i=threadldx.x + threadldx.y;
B) i=blockldx.x + threadldx.x;

C) i=blockldx.x*blockDim.x +
hreadldx.x;
)

(
(
(
t
(D) i=blockldx.x * threadldx.x;”

e “2. Assume that we want to use each
thread to calculate two adjacent
elements of a vector addition. What
would be the expression for mapping
the thread/block indices to the data
index (i) of the first element to be
processed by a thread?

(A) i=blockldx.x*blockDim.x + threadldx.x
+2;

(B) i=blockldx.x*threadldx.x*2;

(C) i=(blockldx.x*blockDim.x +
threadldx.x)*2;

(D) i=blockldx.x*blockDim.x*2 +
threadldx.x;”

	Slide 1: Lec2: Heterogeneous Data Parallel Computing
	Slide 2: Agenda
	Slide 3: Data Parallelism
	Slide 4: Programming Model: Data Parallelism
	Slide 5: GPU Execution Model
	Slide 6: CUDA/C Extension
	Slide 7: CUDA/C Structure
	Slide 8: CUDA/C
	Slide 9: Vector Add Example: Loops
	Slide 10: Vector Add Example: Offloading to Device
	Slide 11: Device Global Memory and Data Transfer
	Slide 12: VecAdd with data transfer
	Slide 13: Aside: Error Checking in CUDA code
	Slide 14: CUDA Kernel and Thread
	Slide 15: Thread Organization and ID
	Slide 16: Thread Organization and ID
	Slide 17: CUDA Qualifiers
	Slide 18: Launching a kernel
	Slide 19: Compilation & Execution
	Slide 20: CUDA Driver and Runtime
	Slide 21: Pop Quiz

