
Lec2: Heterogeneous Data
Parallel Computing

2025Spring: COSC4397
Based on Programming Massive Parallel Processors, 4th Ed, Chapter 2

Agenda

• Data parallelism
• CUDA language, SPMD
• Threads, host, device, memory management
• Structure of a CUDA C kernel function

Data Parallelism

• “same compute, on different parts of the data”
• Those computations on different parts of the data can often be

done independently
• Many application exhibits rich data parallelism that is amenable to

scalable parallel computation
• The most important type of parallelism that GPU exploits
• Examples:

• Graphics: each pixel could be independently rendered
• Image processing: blurring
• Matrix computations: multiplication, decomposition, etc

Programming Model: Data Parallelism

• How to program GPU (general purpose, non-graphics
applications) to exploit data parallelism?
• SIMD instructions? (x86: SSE, AVX, arm: NEON)
• Vector instructions? (No longer used much; used on Vector machine such

as Cray supercomputers)
• Threads? (most flexible, but high cost? E.g. CPU multi-threading)
• Loops? (OpenMP annotation? Are iterations independent?)

• Programming model
• Needs to be simple for productivity
• Needs to be performant on the underlying execution model

GPU Execution Model

• To be studied later in a separate lecture, but in a nutshell…
• Multi-core: core in NVIDIA speak is Streaming Multiprocessor (SM)
• Wide SIMD machine: each SIMD lane is called a CUDA core
• Pipelined functional units

CUDA/C Extension

• In NVIDIA speak CUDA/C model is Single Thread Multiple Data
(STMD), highlighting the role of thread.

• In fact, thread is the main mechanism to express parallelism in
CUDA/C

• What’s a thread?
• Software thread vs hardware thread
• Thread on GPU vs Thread on CPU
• Thread in CUDA vs Thread in POSIX threads

CUDA/C Structure

• Heterogeneous model (sometimes accelerator model): a program
is executed on two different architectures:
• Host: usually the CPU, likely x64 or ARM
• Devices: usually discrete GPUs

CUDA/C

• Kernel: the function executable on GPU
• Launching a kernel (from host):

• Send code of the kernel to GPU for execution
• GPU ”spawns” a large number of threads, each one of those threading

executing the kernel function
• Those threads are called a grid of threads

• Execution on Host and Devices are asynchronous
• After launching the kernel, the CPU program proceeds without waiting

(usually, unless using a synchronous call)
• To synchronize (host code wait for GPU kernel to finish): explicit call

device synchronize

Vector Add Example: Loops

Vector Add Example: Offloading to Device

• Host program is the control
center.

• Host program typically “offload”
heavy computation to Device
(GPU)

• Host and device have different
memory space: host memory vs
device memory (global memory)

• Data needs to be explicitly moved
between host and device

Device Global Memory and Data Transfer

• Before calling the kernel, the host
program needs to
• Allocate GPU memory
• Move necessary input data to the

GPU memory
• And launch the GPU kernel…
• Afterwards, the CPU needs to

move the output in GPU memory
back to host for post-processing

• cudaMalloc()
• Allocates GPU memory
• Returns a pointer that points to

GPU memory on host program
• Accessing data pointed by GPU

memory pointer will segfault
• cudaFree()

• De-allocate GPU memory space
• cudaMemcpy(dst,src,size,dir)

• Memory data transfer
• Src, dst are source and destination

(pointers)
• Dir is the direction: HostToDevice,

DeviceToHost

VecAdd with data transfer

• Pop quiz:
• Why the &A_d in cudaMalloc(

&A_d, size)?

Aside: Error Checking in CUDA code

CUDA Kernel and Thread

• A CUDA kernel is a function
that is executed by each of the
threads on GPU

• This is called SPMD, Single
Program Multiple Data

• On the right is an example of N
thread blocks, each consisting
of 256 threads, executing the
same code (kernel function)

Thread Organization and ID

• Host program launches a
kernel function, with the
following info:
• The kernel function name
• Kernel function parameters
• # of thread blocks
• # of threads per block

• Each thread computes one
element of C, but which one?
• Depending on thread ID
• How to id each thread?

Thread Organization and ID

• Built-in variables:
• Which thread block?

blockIdx
• Which thread in the block?

threadIdx
• How many blocks?

gridDim
• How many threads per block

blockDim
• Private variable: i
• Branch: if (i<n)

CUDA Qualifiers

Launching a kernel

• Launching a kernel from host
program is like calling a function,
but with a funny <<<gridDims,
blockDims>>>

• Specifies how many threads to
launch:
• gridDims: number of blocks
• blockDims: number of threads per

block
• total threads = gridDims* blockDims

• Kernel launch is asynchronous

Compilation & Execution

• You can put both host code
and kernel/device code in a
single file, (*.cu)

• NVCC will compile the *.cu into
a combined object file or
executable.

• Can handle the
object/executable files as if
they are single architecture.

CUDA Driver and Runtime

Pop Quiz

• 1. If we want to use each thread in a
grid to calculate one output element of
a vector addition, what would be the
expression for mapping the
thread/block indices to the data index
(i)?

(A) i=threadIdx.x + threadIdx.y;
(B) i=blockIdx.x + threadIdx.x;
(C) i=blockIdx.x*blockDim.x +
threadIdx.x;
(D) i=blockIdx.x * threadIdx.x;”

• “2. Assume that we want to use each
thread to calculate two adjacent
elements of a vector addition. What
would be the expression for mapping
the thread/block indices to the data
index (i) of the first element to be
processed by a thread?

(A) i=blockIdx.x*blockDim.x + threadIdx.x
+2;
(B) i=blockIdx.x*threadIdx.x*2;
(C) i=(blockIdx.x*blockDim.x +
threadIdx.x)*2;
(D) i=blockIdx.x*blockDim.x*2 +
threadIdx.x;”

	Slide 1: Lec2: Heterogeneous Data Parallel Computing
	Slide 2: Agenda
	Slide 3: Data Parallelism
	Slide 4: Programming Model: Data Parallelism
	Slide 5: GPU Execution Model
	Slide 6: CUDA/C Extension
	Slide 7: CUDA/C Structure
	Slide 8: CUDA/C
	Slide 9: Vector Add Example: Loops
	Slide 10: Vector Add Example: Offloading to Device
	Slide 11: Device Global Memory and Data Transfer
	Slide 12: VecAdd with data transfer
	Slide 13: Aside: Error Checking in CUDA code
	Slide 14: CUDA Kernel and Thread
	Slide 15: Thread Organization and ID
	Slide 16: Thread Organization and ID
	Slide 17: CUDA Qualifiers
	Slide 18: Launching a kernel
	Slide 19: Compilation & Execution
	Slide 20: CUDA Driver and Runtime
	Slide 21: Pop Quiz

