
Multidimensional Grid and
Data

COSC4397: Sel Topics: Parallel Computations of GPU
Based on: Textbook, Chapter 3

Threads Organization: Blocks

• When a kernel is launched on GPU, a grid of thread blocks are
spawned to execute the kernel function. (two level organization)

• Each thread will be uniquely id’ed by two coordinates: it’s block index
(blockIdx) within the grid and thread index (threadIdx) within that block.

• In general, the blockIdx is 3-dimensional vector; you can access the 3
coordinates via blockIdx.x, blockIdx.y, blockIdx.z. The same goes for
the threadIdx.x, threadIdx.y, threadIdx.z

• The 1-d example below is a special case—just implicitly assuming the
y,z dimensions are trivial—dimension 1.

• And in general, the gridDim and blockDim are 3-dimensional as well.

Organization of Threads

Organization of Threads

• Each thread block can contain at most 1024 threads (a fixed
amount!)

• However, the number of thread blocks is rather unlimited.
• Why? What does this mean?

• This will make much more sense when we talk about scheduling later
• At high level, thread blocks are supposed to be independent; meaning

they can’t cooperate (synchronize) at granular level.
• Threads within a block are much more cooperative in terms of

synchronization (barrier) and communications (shared memory, warp
level, etc)

Mapping threads to multi-dimensional data

• Suppose we are dealing with a picture (2D array of pixels), converting
each pixel from color scale to gray scale.

• For simplicity let’s say we map one thread to one pixel. Let’s further
say we have a pixel map of size 62x76 pixels.

• It’s natural to use a 2D blocks and 2D threads.
• First, we decide on the dim of thread block. 16x16 seems to be good

(<1024 limit). So each thread block covers a 16x16 patch of pixels.
• What’s the shape(dim) of thread blocks shall we launch?

(4,5,1) – because we need 4 blocks to cover x-dim and 5 blocks to cover
y-dim – we have 64x80 threads to cover 62x76 pixels.

Mapping: thread id -> pixel id

• x dim -> vertical, y dim ->
horizontal

• Top left (0,0), bottom right (3,4)
• How to map each thread to a

pixel[i][j]?

Aside: Memory layout of multi-dimension
array in C
• Machine memory space is flat

(one-dimensional); C/C++ high
dimension array (with >=2
indices) needs to be able to
convert to a single index and
back.

• In C/C++/Python(pytorch): Row
Major
Fortran/BLAS/LAPACK
libraries: Column Major

• What is Row Major?

Example1: ColorToGrayScale

RGB Color Image Representation

• Each pixel in an image is an RGB value
• The format of an image’s row is

(r g b) (r g b) … (r g b)
• RGB ranges are not distributed uniformly
• Many different color spaces, here we show the

constants to convert to AdobeRGB color space
• The vertical axis (y value) and horizontal axis (x value)

show the fraction of the pixel intensity that should be
allocated to G and B. The remaining fraction (1-y–x) of
the pixel intensity that should be assigned to R

• The triangle contains all the representable colors in
this color space

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

Color Calculating Formula
• For each pixel (r g b) at (I, J) do:

 grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b
• This is just a dot product

<[r,g,b],[0.21,0.71,0.07]> with the constants
being specific to input RGB space

0.21
0.71

0.07

RGB to Grayscale Conversion Kernel

Example2: Image Blurring

• Previous examples are simple:
each thread is completely
independent, so parallelization
is super easy!

• Image blurring: For each pixel,
set it to be average of the 3x3
patch centered at it. This
softens edges.

• This is a special case called
convolution

Example3: Matrix Multiplication

• Matrix Multiplication (MatMul) is a nice computation kernel and
worth a detailed study
• It’s non-trivial to optimize
• It’s one the rare kernel that can reach the hardwar FLOPS limit
• Nowadays it often got its own chip: neural engines, TensorCores, etc
• It’s the computational workhorse for Deep Neural network training &

matrix computations

• Textbook definition: A: m*k, B: k*n, C: m*n
A*B=C means:
C[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + … + A[i][k-1]*B[k-1][j]

MatMul: naïve CUDA version

• Decompose by output: map
each thread to a C[i][j]; that
thread is charged with
computing C[i][j]

• Naturally, 2D decomposition
(2D blocks, 2D grids)

	Slide 1: Multidimensional Grid and Data
	Slide 2: Threads Organization: Blocks
	Slide 3: Organization of Threads
	Slide 4: Organization of Threads
	Slide 5: Mapping threads to multi-dimensional data
	Slide 6: Mapping: thread id -> pixel id
	Slide 7: Aside: Memory layout of multi-dimension array in C
	Slide 8: Example1: ColorToGrayScale
	Slide 9: RGB Color Image Representation
	Slide 10: RGB to Grayscale Conversion
	Slide 11: Color Calculating Formula
	Slide 12: RGB to Grayscale Conversion Kernel
	Slide 13: Example2: Image Blurring
	Slide 14
	Slide 15: Example3: Matrix Multiplication
	Slide 16: MatMul: naïve CUDA version
	Slide 17

