Multidimensional Grid and
Data

COSC4397: Sel Topics: Parallel Computations of GPU
Based on: Textbook, Chapter 3

Threads Organization: Blocks

* When a kernel is launched on GPU, a grid of thread blocks are
spawned to execute the kernel function. (two level organization)

 Each thread will be uniquely id’ed by two coordinates: it’s block index
(blockldx) within the grid and thread index (threadldx) within that block.

* In general, the blockldx is 3-dimensional vector; you can access the 3
coordinates via blockldx.x, blockldx.y, blockldx.z. The same goes for
the threadldx.x, threadldx.y, threadldx.z

* The 1-d example below is a special case—just implicitly assuming the
y,z dimensions are trivial—dimension 1.

* Andin general, the gridDim and blockDim are 3-dimensional as well.

Organization of Threads

#include <stdio.h>

i

}

i

{

_global__ void vecAdd(float *a, float *b, float =*c)

printf("blockIdx (%d,%d,%d), threadIdx (%d,%d,%d)\n",
blockIdx.x, blockIdx.y, blockIdx.z,
threadIdx.x, threadIdx.y, threadldx.z);
returnfj

nt main()

float *a, *b, *c;

dim3 gridDim(2, 2, 1);

dim3 blockDim(2,2, 4);
vecAdd<<<gridDim, blockDim>>>(a,
cudaDeviceSynchronize();

\
\

host device
Grid 1
Block Block
| Kernel 1 } > (0,0) 0,1)
Block ,/ Block [\
1,90 |,/ @y |°
/7 Y \
7 i /, ‘\ 4
/, I, & \
Grid 2,7 / ,
Block (1.1)
1,0,0) (1,0,1) (1.0.2) (1.0.3
[Eemzh— > | Aoty
Thread Thread | Thread
(0,0,0)](0,0,1)|(0,0,2)}(0,0.3)
(0,1,0)1(0,1,1)[(0,1,2)|(0,1,3)

FIGURE 3.1 A multidimensional example of

CUDA grid organization.

Organization of Threads

* Each thread block can contain at most 1024 threads (a fixed
amount!)

* However, the number of thread blocks is rather unlimited.

* Why? What does this mean?

* This will make much more sense when we talk about scheduling later

* At high level, thread blocks are supposed to be independent; meaning
they can’t cooperate (synchronize) at granular level.

* Threads within a block are much more cooperative in terms of
synchronization (barrier) and communications (shared memory, warp
level, etc)

Mapping threads to multi-dimensional data

* Suppose we are dealing with a picture (2D array of pixels), converting
each pixel from color scale to gray scale.

* For simplicity let’s say we map one thread to one pixel. Let’s further
say we have a pixel map of size 62x76 pixels.

e |[t’s naturalto use a 2D blocks and 2D threads.

* First, we decide on the dim of thread block. 16x16 seems to be good
(<1024 limit). So each thread block covers a 16x16 patch of pixels.

* What’s the shape(dim) of thread blocks shall we launch?
(4,5,1) — because we need 4 blocks to cover x-dim and 5 blocks to cover
y-dim —we have 64x80 threads to cover 62x76 pixels.

Mapping: thread id -> pixel id

 xdim ->vertical, y dim ->
horizontal
* Top left (0,0), bottom right (3,4)

__global__ void convert(float *pixell] int rows, int cols)

i

// each thread converts one pixel[i][j]

int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
pixel[i*cols + j] /= 2;

return;

16x16 blocks

main()

FIGURE 3.2 Using a 2D thread grid to process a
62x76 picture P. float *a, *b, =*c;
dim3 gridDim(4, 5, 1);
dim3 blockDim(16,16, 1);
convert<<<gridDim, blockDim>>>(a, b,
cudaDeviceSynchronize();

Aside: Memory layout of multi-dimension

array in C

* Machine memory space is flat
(one-dimensional); C/C++ high
dimension array (with >=2
Indices) needs to be able to

convert to a single index and
back.

* In C/C++/Python(pytorch): Row
Major
Fortran/BLAS/LAPACK
libraries: Column Major

* What is Row Major?

|

My | My,

:\"IB,U 3'1‘;1 313: :\‘.I:\,S

{

M,

Ml MZ M3 M4 MS .\"ID NIB :\"IH ..\‘Il:',

FIGURE 3.3 Row-major layout for a 2D C array.
The result is an equivalent 1D array accessed by
an index expression j*Width+i for an element that
is in the jth row and ith column of an array of
Width elements in each row.

Example1: ColorToGrayScale

RGB Color Image Representation

Each pixelin animage is an RGB value
The format of an image’s row is

(rgb)(rgb)...(rgb)

RGB ranges are not distributed uniformly

Many different color spaces, here we show the

constants to convert to AdobeRGB color space
* The vertical axis (y value) and horizontal axis (x value)
show the fraction of the pixelintensity that should be

allocated to G and B. The remaining fraction (1-y-x) of b
the pixel intensity that should be assigned to R

* The triangle contains all the representable colors in

this color space

o
@
i
g

RGB to Grayscale Conversion

Color Calculating Formula

* Foreach pixel (rgb) at(l, J) do:
grayPixel[l,J]=0.21*r+ 0.71*g + 0.07*b

* Thisis just a dot product
<[r,g,b],[0.21,0.71,0.07]> with the constants
being specific to input RGB space

RGB to Grayscale Conversion Kernel

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * graylImage,
unsigned char * rgblImage,
int width, int height) {
int x threadIdx.x + blockIdx.x * blockDim.Xx;
int vy threadIdx.y + blockIdx.y * blockDim.y;

if (x < width & y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r rgbImage[rgbOffset 1; // red value for pixel
unsigned char g rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f=*b;

Example2: Image Blurring

* Previous examples are simple:
each thread is completely
iIndependent, so parallelization
IS super easy!

* Image blurring: For each pixel,
set it to be average of the 3x3
patch centered at it. This

FIGURE 3.6 An original image (/eft) and a blurred

SOfte NS edgeS . version (right).

* This is a special case called
convolution

__global__ void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {
int Col blockIdx.x * blockDim.x + threadIldx.x;
int Row blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w & Row < h) {
int pixVal 0;
int pixels 0,

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow Row + blurRow;
int curCol Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char) (pixVvVal / pixels);

Example3: Matrix Multiplication

* Matrix Multiplication (MatMul) is a nice computation kernel and
worth a detailed study

It’s non-trivial to optimize

It’s one the rare kernel that can reach the hardwar FLOPS limit

Nowadays it often got its own chip: neural engines, TensorCores, etc

It’s the computational workhorse for Deep Neural network training &
matrix computations

* Textbook definition: A: m*k, B: k*n, C: m*n
A*B=C means:
Cli]li] = AlJ[O1*B[O]IL] + AL I*B[1][] + ... + Alll[k-1]*B[k-1][j]

MatMul: naive CUDA version

* Decompose by output: map =
each thread to a CJi][j]; that
thread is charged with
computing CJi][j]

* Naturally, 2D decomposition M B
(2D blocks, 2D grids)

=
=)
2 |E
4
1%
9

-« 2
BLOCK_WIDTH

Row)

WIDTH i | WIDTH

0

Col

FIGURE 3.10 Matrix multiplication using multiple
blocks by tiling P.

// compute C=A*B; where A shape is m*k, B shape is k*n, C shape is m=*n
__global__ void naiveMatMul(float *A, float *B, float *C, int m, int n, int k)
{

int 1 blockDim.x * blockIdx.x + threadIdx.x;
int j blockDim.y * blockIdx.y + threadIdx.y;
if (i <m&R j <n) {
C[il[j]l = 0O;
for (int kk=0; k<k; k++) {
//CLil[j]1 += A[il[kk1+B[kk][l;ill
Cli*n + j] += A[i*k + kk] * B[kk*n + j];

int main()
{
float *A, *B, *C;
int m, n, k;
// initialize a, b, ¢, m, n, k...
dim3 gridDim((m+15)/16, (n+15)/16, 1);
dim3 blockDim(16,16, 1);
naiveMatMul<<<gridDim, blockDim>>>(A, B, C, m, n, k);
cudaDeviceSynchronize();

	Slide 1: Multidimensional Grid and Data
	Slide 2: Threads Organization: Blocks
	Slide 3: Organization of Threads
	Slide 4: Organization of Threads
	Slide 5: Mapping threads to multi-dimensional data
	Slide 6: Mapping: thread id -> pixel id
	Slide 7: Aside: Memory layout of multi-dimension array in C
	Slide 8: Example1: ColorToGrayScale
	Slide 9: RGB Color Image Representation
	Slide 10: RGB to Grayscale Conversion
	Slide 11: Color Calculating Formula
	Slide 12: RGB to Grayscale Conversion Kernel
	Slide 13: Example2: Image Blurring
	Slide 14
	Slide 15: Example3: Matrix Multiplication
	Slide 16: MatMul: naïve CUDA version
	Slide 17

