Lec4: Architecture and
Scheduling

Textbook Chapter 4

Things to discuss

* GPU execution resources: cores (SM), SIMD lane (CUDA core)
* Thread blocks scheduling to SM

* Warp: a group of threads executing the same instruction (SIMD
lanes?), a unit of scheduling

* Warp scheduling, latency tolerance, control divergence
* Resource limits

Architecture of a GPU

C:'lh:'ol Cfn':ol C:rrol C:l,:ol Cfn':'ol C:'lht:ol Cfn':'ol Cfn’:ol ¢ P ro g ra m m e r ,S Vi eW Of
architecture
MMMMMMMMMMMMMM ry Memory Memory Memory Memory Memory o E . g. Am pe re A1 OO G PU h a S 1 08

SMs with 64 cores each,
totaling 6912 CUDA cores

FIGURE 4.1 Architecture of a CUDA-capable * Global memory: DRAM ’ HBM

GPU. * SM has local memory—-called

shared memory—dual use as
L1 cache and scratchpad

Block Scheduling

* Upon kernel launch, blocks are
! . aSSI ned to SM on a block-by-

tgil\f\z\«f;"l °°°° ’ 39\9\53«;@ block basis
> SM SM S Block as a unit: to the same SM.
Control Control o
— * Once assigned to a SM, the block

Blocks 3 { Blocks do not move to other SM.

* Limited number of blocks can be
simultaneously assigned to a SM
Memory e (what limits?)

FIGURE 4.2 Thread block assignment to stream- * Thereis a queue, a list of blocks
ing multiprocessors (SMs). which will be assigned to SMs

when they become available.

Synchronization & Scalability

Thread 0
Thread 1

Thread 2

Thread 3

Thread 4

Thread N-3 >

Thread N-2 |

Thread N-1

FIGURE 4.3 An example execution of barrier syn-
chronization. The arrows represent execution
activities over time. The vertical curve marks the
time when each thread executes the__sync-
threads statement. The empty space to the right
of the vertical curve depicts the time that each
thread waits for all threads to complete. The verti-
cal line marks the time when the last thread exe-
cutes the __syncthreads statement, after which all
threads are allowed to proceed to execute the
statements after the __syncthreads statement.

* Threads in a block can have a
barrier synchronization via
__syncthreads() call.

e Threads have their own
progress—how do | say wait until
other threads has done xxx?

e Barrier: wait until all threads have
reached this.

* All threads in the block must call
__syncthreads()

e What if there is a branch?

Barrier in branches

* The two __syncthreads() in the

two branches are different
void incorrect_barrier_example(int n) {

/7 barrier; roughly you can say

if (threadIdx. x % 2 something like “the barrier at
/.. , ”
__syncthreads(); line 5.

else {

/.. Because of that, the device
__syncthreads(); code is not valid as it causes
deadlocks, as not all threads in
a block call the same
__syncthreads().

Design Tradeoffs

* Threads in a block (intra-
block)—can synchronize and
communicate easier and faster

* Threads across blocks (inter-
blocks)-—cannot synchronize
and communicate slower via
global memory.

* Why limiting synchronization to
intra-block threads?
For scalability.

Device Kemel grid

Device
Block 0fBlock 1

(o

-
Each block can execute in any order relative to other blocks.

FIGURE 4.5 Lack of synchronization constraints
between blocks enables transparent scalability for
CUDA programs.

Warp and SIMD hardware

* Within a block, threads are * Why? Again, this is a tradeoff.
scheduled for execution in unitof In principle, threads are

warp, a group OT 32 threads. independent, with their own PC
* Warp is an architecture concept, and registers, context, so on.

not visible in CUDA/C language e But how to use SIMD lanes with

* Awarp of threads must be threads? (SIMD is more efficient,
executing the same instruction, as functional units share control
because they have a single unit to fetch/decode/dispatch)

Program Counter (PC) * You group threads that execute

the same PC and schedule them
on a SIMD pipeline.

* That’s a warp!

Warp

* Blocks are divided into warps

statically based on threadldx.

* A consecutive 32 threads in
threadldx.x belongto one
block.

* |.e., in 1D block, threadldx.x
0,1,...,31is warp0,
32,33,...,63is warp1,

* For multi-dim block, the
threadldx will be linearized and
then divided into 32
consecutive groups as warp

logical 2-D
organization

v

linear order

FIGURE 4.7 Placing 2D threads into a linear lay-
out.

Warp execution

SM

Instruction Instruction
Fetch/Dispatch Fetch/Dispatch

FIGURE 4.8 Streaming multiprocessors are orga-
nized into processing blocks for SIMD execution.

* At any pointtime, awarpis
scheduled on a processing block
(say 8 CUDA cores).

* E.g. A100 GPU each SM has 64
CUDA cores, forming 4
processing blocks. In this case, 4
warps can be scheduled
simultaneously on a SM.

* This is where the term Single
Instruction Multiple Threads
(SIMT) come from.

Control Divergence

 Wait, but different threads are
free to execute different paths!

2 3 23 24 25 31

i

% inactive
inactive % 2 %
}

- L R e

FIGURE 4.9 Example of a warp diverging at an if-
else statement.

N = a[threadIdx.x];

for(i = 0; 1 < N; ++1i)

{

P R VR 2ok 2 ok 2ok 2%k 2%k 2%

S Nl N

-~ N\ =

e 2 ok 2ok 2ok 2ok 2%

L e NI

VR 2ok 2 ok 2ok 2k 22 2

S e g §

B e 272k 2ok 2%

N\ W\
N TN O

B N e 2%k 27k 27

N e 2%k 2ok 2%k 2%k 2%

\/_.\/\\J

FIGURE 4.10 Example of a warp diverging at a

for-loop.

R R Vel 2ok 27k 2%k 2ok 2o

w
=

WA AN AN AN AN AN AN

Cost of divergence

* (within a warp) Branches will be serialized

* Acommon pattern is boundary check; e.g. launching 1024
threads to add 1000 size vector; so 1000 threads would be in
active branch and the rest 24 in else branch (do nothing)
in this case, is there cost?

* Control divergence only hurt performance within a warp. Threads
In different warps can very well have diverging control and no
performance penalty.

Warp scheduling

* There are usually more resident * Having more warps than
threads (warps) assigned to an rocessing blocks help hide
SM than there are cores in the atency, by switching between
SM. the warps

* When awarp is scheduled to * More warps available -> more
execute a long latency opportunity to hide long latency
instruction, another warp can be e.g. A100, an SM has 64 cores but
scheduled Cﬁn bde assigned up to 2048

threads

* This is why GPU does not need
nearly as much
cache/speculative
execution/prefetching to deal
with long latency

Threads & Context Switching

 Athread: code, the PC, and its
variables and data structures.

e Onthe von Neumann model

e PC: address of next instruction in
memory

* |R: the current instruction
* Variables: in registers and memory

* Context switching
* Suspend execution of thread A
* Resume execution of thread B

* CPU context switching
* Suspension and resuming threads

involves saving PC & registers into
memory, enter into kernel mode sched,
ahnd l%ad PC & registers of the other
thread.

* Also will likely invalidate cache
* 1,000s cycles to switch context

* GPU context switching
 Zero-overhead (?), completely in

hardware

* This is Fine-Grained Multi-Threading

(FGMT)

* Cycle-by-cycle switching between warps
* How? No need to save registers in

memory and loading. By having a large
register file!

Resource Partition & Occupancy

* |t seems desirable to assign as
many warps/threads to one SM
as possible.

#assigned warps

* Occupancy=
P y #maximum warps

* Maximum warps is a function
of hardware; the actual
assigned warps is a function of
program and hardware

* Why can’t occupancy be 1?
Limited resources
* # registers
 Shared memory space
* #block slots

Occupancy Examples

* A100 parameters: one SM max Eg3: if a kernel uses 64 registers,
« 32 blocks then max threads =
« 64 warps (2048 threads) 65536/64=1024, occupancy
* 65,536 registers <=0.5
* 48KB shared memory * Eg4: each block uses 36KB share
* Eg1: kernel: 32 threads per block, memory, and 256 threads/block,
then occupancy<=0.5 because occupancy =256/2048=0.125

32*32=1024 threads max e Calculator:

» Eg2: if 768 threads/block, then 2 https://xmartlabs.github.io/cuda-
blocks/SM->1546 threads, calculator/
occupancy =0.75

registers per thread

* # registers/thread is a function of your program.

$ nvcc solution.cu -I /opt/2025s_cosc4397/1libgput

k -lgputk -L /opt/2025s_cosc4397/1ibgputk/lib --ptxas-options=-v -arch=sm_86
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function '_Z10blurKernelPfS_ii' for 'sm_86"
ptxas info : Function properties for _Z10blurKernelPfS_ii

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 34 registers, used 0 barriers, 376 bytes cmem[[0J}

* You can use -maxrregcount=xx to cap the #regsiters usage per
thread, but it might come at severe cost of per thread
performance—need to access global memory(!!) more.

Caveats of Occupancy

* |t may seem the higher the occupancy the better
* |t’s NOT!

* When occupancy is high enough, you don’t get higher
performance by increasing it further.

* Typically, low occupancy -> suspicion of bad latency hiding
behavior, idle functional units

* But don’t forget threads is only one form of parallelism!
Instruction level parallelism is also one.

Summary

* AGPU is organized into SMs (more or less like CPU cores)
* SM consists of processing blocks (like CPU SIMD pipelines)

* When a kernelis launched, blocks are assigned to SM in arbitrary
mannetr.

* Each blockis assigned to one SM, and never switch out until done

* Warp: the unit of instruction scheduling, that bridges multiple
threads with SIMD lanes

* Very fast context switches between warps is the primary way of
GPU to hide long latency instructions

	Slide 1: Lec4: Architecture and Scheduling
	Slide 2: Things to discuss
	Slide 3: Architecture of a GPU
	Slide 4: Block Scheduling
	Slide 5: Synchronization & Scalability
	Slide 6: Barrier in branches
	Slide 7: Design Tradeoffs
	Slide 8: Warp and SIMD hardware
	Slide 9: Warp
	Slide 10: Warp execution
	Slide 11: Control Divergence
	Slide 12: Cost of divergence
	Slide 13: Warp scheduling
	Slide 14: Threads & Context Switching
	Slide 15: Resource Partition & Occupancy
	Slide 16: Occupancy Examples
	Slide 17: #registers per thread
	Slide 18: Caveats of Occupancy
	Slide 19: Summary

