
Lec4: Architecture and 
Scheduling

Textbook Chapter 4



Things to discuss

• GPU execution resources: cores (SM), SIMD lane (CUDA core)
• Thread blocks scheduling to SM
• Warp: a group of threads executing the same instruction (SIMD 

lanes?), a unit of scheduling
• Warp scheduling, latency tolerance, control divergence
• Resource limits



Architecture of a GPU 
• Programmer’s view of 

architecture
• E.g. Ampere A100 GPU has 108 

SMs with 64 cores each, 
totaling 6912 CUDA cores

• Global memory: DRAM, HBM
• SM has local memory—called 

shared memory—dual use as 
L1 cache and scratchpad



Block Scheduling

• Upon kernel launch, blocks are 
assigned to SM on a block-by-
block basis

• Block as a unit: to the same SM. 
• Once assigned to a SM, the block 

do not move to other SM.
• Limited number of blocks can be 

simultaneously assigned to a SM 
(what limits?)

• There is a queue, a list of blocks 
which will be assigned to SMs 
when they become available.



Synchronization & Scalability

• Threads in a block can have a 
barrier synchronization via 
__syncthreads() call. 

• Threads have their own 
progress—how do I say wait until 
other threads has done xxx? 

• Barrier: wait until all threads have 
reached this. 

• All threads in the block must call 
__syncthreads()

• What if there is a branch? 



Barrier in branches

• The two __syncthreads() in the 
two branches are different 
barrier; roughly you can say 
something like “the barrier at 
line 5”. 

• Because of that, the device 
code is not valid as it causes 
deadlocks, as not all threads in 
a block call the same 
__syncthreads(). 



Design Tradeoffs

• Threads in a block (intra-
block)—can synchronize and 
communicate easier and faster

• Threads across blocks (inter-
blocks)-–cannot synchronize 
and communicate slower via 
global memory. 

• Why limiting synchronization to 
intra-block threads? 
For scalability. 



Warp and SIMD hardware

• Within a block, threads are 
scheduled for execution in unit of 
warp, a group of 32 threads. 

• Warp is an architecture concept, 
not visible in CUDA/C language

• A warp of threads must be 
executing the same instruction, 
because they have a single 
Program Counter (PC)

• Why? Again, this is a tradeoff. 
• In principle, threads are 

independent, with their own PC 
and registers, context, so on.

• But how to use SIMD lanes with 
threads? (SIMD is more efficient, 
as functional units share control 
unit to fetch/decode/dispatch)

• You group threads that execute 
the same PC and schedule them 
on a SIMD pipeline. 

• That’s a warp!



Warp

• Blocks are divided into warps 
statically based on threadIdx. 

• A consecutive 32 threads in 
threadIdx.x belong to one 
block. 

• I.e., in 1D block, threadIdx.x
0,1,…,31 is warp0,
32,33,…,63 is warp1, 
…

• For multi-dim block, the 
threadIdx will be linearized and 
then divided into 32 
consecutive groups as warp



Warp execution

• At any point time, a warp is 
scheduled on a processing block 
(say 8 CUDA cores). 

• E.g. A100 GPU each SM has 64 
CUDA cores, forming 4 
processing blocks. In this case, 4 
warps can be scheduled 
simultaneously on a SM. 

• This is where the term Single 
Instruction Multiple Threads 
(SIMT) come from. 



Control Divergence

• Wait, but different threads are 
free to execute different paths!



Cost of divergence

• (within a warp) Branches will be serialized
• A common pattern is boundary check; e.g. launching 1024 

threads to add 1000 size vector; so 1000 threads would be in 
active branch and the rest 24 in else branch (do nothing)
in this case, is there cost? 

• Control divergence only hurt performance within a warp. Threads 
in different warps can very well have diverging control and no 
performance penalty. 



Warp scheduling

• There are usually more resident 
threads (warps) assigned to an 
SM than there are cores in the 
SM. 

• When a warp is scheduled to 
execute a long latency 
instruction, another warp can be 
scheduled

• Having more warps than 
processing blocks help hide 
latency, by switching between 
the warps

• More warps available -> more 
opportunity to hide long latency
e.g. A100, an SM has 64 cores but 
can be assigned up to 2048 
threads

• This is why GPU does not need 
nearly as much 
cache/speculative 
execution/prefetching to deal 
with long latency



Threads & Context Switching

• A thread: code, the PC, and its 
variables and data structures. 

• On the von Neumann model
• PC: address of next instruction in 

memory
• IR: the current instruction
• Variables: in registers and memory

• Context switching
• Suspend execution of thread A
• Resume execution of thread B

• CPU context switching
• Suspension and resuming threads 

involves saving PC & registers into 
memory, enter into kernel mode sched, 
and load PC & registers of the other 
thread. 

• Also will likely invalidate cache
• 1,000s cycles to switch context

• GPU context switching
• Zero-overhead (?), completely in 

hardware
• This is Fine-Grained Multi-Threading 

(FGMT)
• Cycle-by-cycle switching between warps
• How? No need to save registers in 

memory and loading. By having a large 
register file! 



Resource Partition & Occupancy

• It seems desirable to assign as 
many warps/threads to one SM 
as possible. 

• Occupancy= #𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑤𝑎𝑟𝑝𝑠

#𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑟𝑝𝑠

• Maximum warps is a function 
of hardware; the actual 
assigned warps is a function of 
program and hardware

• Why can’t occupancy be 1? 
Limited resources
• # registers 
• Shared memory space
• #block slots



Occupancy Examples

• A100 parameters: one SM max
• 32 blocks 
• 64 warps (2048 threads)
• 65,536 registers
• 48KB shared memory

• Eg1: kernel: 32 threads per block, 
then occupancy<=0.5 because 
32*32=1024 threads max

• Eg2: if 768 threads/block, then 2 
blocks/SM->1546 threads, 
occupancy = 0.75

• Eg3: if a kernel uses 64 registers, 
then max threads = 
65536/64=1024, occupancy 
<=0.5

• Eg4: each block uses 36KB share 
memory, and 256 threads/block, 
occupancy = 256/2048=0.125

• Calculator: 
https://xmartlabs.github.io/cuda-
calculator/



#registers per thread

• # registers/thread is a function of your program.

• You can use -maxrregcount=xx to cap the #regsiters usage per 
thread, but it might come at severe cost of per thread 
performance—need to access global memory(!!) more. 



Caveats of Occupancy

• It may seem the higher the occupancy the better
• It’s NOT!
• When occupancy is high enough, you don’t get higher 

performance by increasing it further. 
• Typically, low occupancy -> suspicion of bad latency hiding 

behavior, idle functional units
• But don’t forget threads is only one form of parallelism!

Instruction level parallelism is also one. 



Summary

• A GPU is organized into SMs (more or less like CPU cores)
• SM consists of processing blocks (like CPU SIMD pipelines)
• When a kernel is launched, blocks are assigned to SM in arbitrary 

manner. 
• Each block is assigned to one SM, and never switch out until done
• Warp: the unit of instruction scheduling, that bridges multiple 

threads with SIMD lanes
• Very fast context switches between warps is the primary way of 

GPU to hide long latency instructions


	Slide 1: Lec4: Architecture and Scheduling
	Slide 2: Things to discuss
	Slide 3: Architecture of a GPU 
	Slide 4: Block Scheduling
	Slide 5: Synchronization & Scalability
	Slide 6: Barrier in branches
	Slide 7: Design Tradeoffs
	Slide 8: Warp and SIMD hardware
	Slide 9: Warp
	Slide 10: Warp execution
	Slide 11: Control Divergence
	Slide 12: Cost of divergence
	Slide 13: Warp scheduling
	Slide 14: Threads & Context Switching
	Slide 15: Resource Partition & Occupancy
	Slide 16: Occupancy Examples
	Slide 17: #registers per thread
	Slide 18: Caveats of Occupancy
	Slide 19: Summary

