Lec5: Memory Architecture
and Data Locality

Agenda

* Memory organization

* Position of data for efficient access by massive threads
* Memory bound
* Cache/Tiling

* Data locality

Introduction

e So far, we have studied
* Writing CUDA kernels
* Configure and coordinate threads
* Understand scheduling of blocks and warps
* GPU architecture (except memory)

* But the kernels we wrote might perform at small fraction of
hardware capability, because
* Frequent access to global memory
* Un-optimized access to global memory
* Overall performance bounded by low throughput of global memory

Analysis of matrix multiplication

// compute C=A*B; where A shape is m*k, B shape is k*n, C shape is m*n
__global__ void naiveMatMul(float *A, float *B, float *C, int m, int n, int k)

{ ; * Let’s analyze the performance

int i = blockDim.x * blockIdx.x + threadIdx.x;

e B of this kernel: what’s the
C[il[j] = O;

for' (int Kked; kek; ket | maximum GFLOP/s possible?

//Clil[j]1 += ALillkk1*B[kk1ill
C[i*n + j] += A[ixk + kk] * B[kk*n + jI1;

* Look at the inner loop iteration:
each iteration:
e 2FLOP
* 2 global memory access—8B

* Arithmetic intensity:
2FLOP/8B =0.25 FLOP/B

Naive Matrix Multiplication Kernel

* (From last slide) The arithmetic * However, 389 GFLOP/s is only
Intensity (or compute-to- 2% of the peak SP throughput
global-memory-ratio) of the whichis 19.5 TFLOP/s

naive matmul kernelis * If accounting for TensorCores,
0.25FLOFP/B. the peak SP throughputis 156

* As an example, the Ampere TFLOP/s, and 389 GFLOP/s is
A100 GPU, the global memory only 0.25% of the peak

bandwith is 1555 GB/s » This is not ideal--any way to
* Which means the achieved Improve substantially?

FLOPSis 0.25*1555 =389

GFLOP/s

The Roofline Model

* Low computational intensity -
memory bound

* High computational intensity -
compute bound

* You want compute bound!

* What’s the FLOP/B needed to
achieve peak compute
throughput on A1007?

19,500 GFLOP/second)/(1555

Computational intensity (FLOP/B) G B/Secon d)= 1 2.5 FLO P/B

p—
7
o
o
—
L:-
O
S
5
o,
<=
2
=
=)
=
<
—
-
c
=)
=
S
R
3
o,
£
S
)

Improving Naive MatMul Kernel

* Need 12.5 FLOP/B intensity to be compute bound!
* |.e., 50 FLOP/element! (1 SP elementis 4B)
* Can we improve computation intensity of MatMul?

* We want to reduce traffic to global memory, which means that

* Need to increase data reuse on-chip (cache? Register?)
* Need to change matmul algorithm and implementation

* Depending on how much reduction to global memory is achieved,
performance of MatMul kernel can differ by 2-3 orders of
maghnitude!

CUDA memory types

* Scope

o b
Device code can: (Device) Grid Pe r g rl d

— R/W per-thread registers Block (0,0) || Block (0, 0) ° Pe r- b '.O C k
— R/W per-thread local memory

— R/W per-block shared memory — . — i ° Pe I‘-th rea d

— R/W per-grid global memory .
~ Read only per-grid constant T ﬁ B * The programmer dictates

Host code can <l lobal Memo 1l Whe e the va I’IableS StayS

Host . 4
— Transfer data to/from per grid = 3 Constant Memory

global and constant memories

FIGURE 5.2 An (incomplete) overview of the CUDA
device memory model. An important type of CUDA

memory that is not shown in this figure is the texture
memory, since its use is not covered in this textbook.

* Aggregate register bandwidth
Is usually >=10x shared

: memory >=100x global

Processing Unit memory

Memory

[pine

i| Shared Register

5 Memory = ALU File

)
'

4 J

= * Also data in register takes less

Control Unit

Instructions to access

Processor (Processing Block in SM)

FIGURE 54 Shared memory versus registers in a
CUDA device SM.

Variable <->Memory type

Varnable declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Grid

Automatic array variables Local Thread Grid
device shared__ int SharedVar; Shared Block Grid

~ device int GlobalVar: Global Grid Application

~ device constant int ConstVar; Constant Grid Application

MatMul: Tiling to reduce memory traffic

* To reduce global memory traffic, let’s use increase data reuse in
shared memory

* we could try to increase data reuse in other places as well like
registers, but for now let’s focus on shared memory

* The idea isto load parts of A and B into the shared memory and
make the most use of them before kicking them out and bring in
other parts.

Shared Memory, Tiling

Caching Data in Shared Memory

* Same memory locations accessed by neighboring
threads

for (int 1 = 0; 1 < 3
for (int 3 = 0; 7
[

;o 14++) {
sum += gauss[i

< 3; Jt+){
i][3] * Imagel (i+row-1)*width + (j+col-1)];

}

13

Data Reuse

* Shared memory tiling How much reduction to

global memory
achieved?

__shared int 1 data[(L SIZE+2)* (L SIZE+2)];

Load tile into shared memory
__syncthreads() ;
for (int 1 = 0; 1 < 3; 1i++) {
for (int j = 0; J < 3; J++){
sum += gauss[i] [jJ] * 1 data[(i+l row-1)* (L SIZE+2)+j+1 col-1];
}
}

14

Tiled MatMul

Matrix Multiplication

— Data access pattern

— Each thread - a row of M and a column
of N

— Each thread block - a strip of Mand a
strip of N

ROH

Col

Tiled Matrix Multiplication

— Break up the execution of each
thread into phases

— so that the data accesses by the
thread block in each phase are
focused on one tile of M and one
tile of N

— Thetileis of TS elements in each
dimension

Loading a Tile

— Allthreads in a block participate
— Each thread loads one M elementand one N element in tiled code

19

Shared Memory

UL

No,o|No,1|No,2 |No,3 No,o|No,1 Shared Memory
Nio[Nyt [Ni [Ny Mo My

Shared Memory
£
Mo,0|Mo, 1|Mo.2|Mo 3 l_au 20.11Po,2|Po,3
M1 0 M1,1 M1,2 M1,3 '-)‘.,c 91,1 I:’1,2 I:’1 3
M o|M; 1IM; 2| M; 3 P20|P2,1|P2,2|P2,3
M3 0{M3.1IM3 5 |M; 5 P30/P3.1|P32/P33

No,0|No,1[No,2|No 3 No,o|No,1 Shared Memory
Nyo[No Moo N s Ny ol;
N2 0|N2,1JN2,2|N2 3
N3 o|N3 1|Ns, N3;3
B Shared Memory
| r=- w
Mo 0|Mo, 1Mo 2| Mo 3 Moo Mo,1'| !iu %11]Po,2 | Po,3
My 0[My1 1JM12[M3 ‘Mm M, 2ot 21,1 P1.2[P13
M; 0[Mz, 1M 2|M; 3 P2,0/P2,1|P2,2|P2,3
M; oI M; M3,2_M3I3 P30[P34 P3,2_ P3i3

Shared Memory

No,0[No,1|No,2|No,3
Nio|[Ny1JN1,2|Nys3
Nz’g N*) 1 N') 2 N33 IN:Q_ 1

N2t R, I ,
N3 o [No 1IN o N> 5 '|N29'| 1

Shared Memory

IMo,o Mo, 1|Mo2 [Mig3i——1Rae-9M, 5 Po,0/Po,1]Po,2|Po,3
|M1,0 M1,1 M1,2 NH-s- mm I:’1,0 I:’1,1 P1,2 P1,3
R Pyo|P21[P2a Py
Ma oM M2 [M; 5 P30Ps1|P32|Pss

W 1LLINOIS

No,o/No,1INo,2|No,3
Nio/Nq1IN12|Nq3
N2 o|N2,1N2,2 (N2 3

N3,0 N3,1 N32_ N3i3

Mo 0|Mo,1]Mo,2|Mo 3
My.0[M1,1]M15|M; 3
Mz 0[M2,1]M2 2| My 3
Ms ol My [Ms 5[My 3

Shared Memory
r=—
!lu 2.1]Po,2|Po 3
D

D
1,1 P1,2 I:’1,3
PZ,U I:’2,1 P2,2 P2,3

P30Ps1]Ps2(Pss

No,o| No,1|No,2|No,3
N1 o[Ng1fNi2Ny3
N2,0{N2,1|N2,2|Na 3 N2,0{N2,1
N3 0[N3 1JN32 (N33 Ni3lo| N 4

Shared Memory

N gy iy

IMo,o Mo,1[Mo2[Mo sl Mg 2[Mo =210 01%0,1]Po,2 | Po,3
|M1,0 MM Ml M, M s EP‘-,C!P1,1 Pi2|Pi3
Moo Mo, [M; 5| Mo, P0[Ps,1[P22 |Pas
Mol Ms 4 M321M; 5 [Pso Psi|Ps, Pys

Shared Memory

2D Tiled MatMul Kernel

#define TS 32

// block dim 32x32; each thread block computes a 32x32 block matrix in C.
// A: MK, B: KN, C: MxN; all row major stored contiguously in memory.
_global__ void MatMulTiled(float xA, float *B, float xC, int M, int N, int K)
{
__shared__ float As[TS][TS]; // 4KB
__shared__ float Bs[TS][TS]; // 4KB
int 1dA = K, 1dB = N, 1dC = N;
int Bx = blockIdx.x * TS;
int By = blockIdx.y * TS;

// perform block inner product of Alrs:rel[:] * Bl:][cs:ce]
// ignoring boundry check for now

for (int k=0; k<(K+TS-1)/TS; k += TS) {
//step 1: load the A[Bi] [Bk] and B[BKk] [Bj] into As and Bs
As [threadIdx.x] [threadIdx.y] = A[(Bx+threadIdx.x) * ldA + (k+threadIdx.y)];
Bs [threadIdx.x] [threadIdx.y] = B[(k+threadIdx.x) *x 1dA + (By+threadIdx.y)];
__syncthreads();
//step 2: use As , Bs blocks to accumulate: C += AsxBs
float Cij = CI[Bx+threadIdx.x] [By+threadIdx.y];
for (int kk=0; kk<TS; kk++) {
Cij += As[threadIdx.x][kk] * Bs[kk] [threadIdx.y];

Hi

Analysis: Improvement of Tiling

* Assuming TS=32.

* What’s the computational intensity FLOP/B now? (bytes refer to
global memory traffic)?

* Now the unit if atile TS*TS
* Load once: 2*TS*TS*4 bytes,
e Compute: 2*TS*TS*TS
 Ratio: TS/4 FLOP/B = 8 FLOP/B, a 32x over naive MatMul.
* What’s the Peak Compute rate now?
* 8FLOP/B * 1500 GB/s =12 TFLOP/s (~60% of hardware peak, not bad!)

Boundary Checks of Tiled MatMul

	Slide 1: Lec5: Memory Architecture and Data Locality
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Analysis of matrix multiplication
	Slide 5: Naïve Matrix Multiplication Kernel
	Slide 6: The Roofline Model
	Slide 7: Improving Naïve MatMul Kernel
	Slide 8: CUDA memory types
	Slide 9
	Slide 10: Variable <-> Memory type
	Slide 11: MatMul: Tiling to reduce memory traffic
	Slide 12: Shared Memory, Tiling
	Slide 13: Caching Data in Shared Memory
	Slide 14: Data Reuse
	Slide 15
	Slide 16: Tiled MatMul
	Slide 17: Matrix Multiplication
	Slide 18: Tiled Matrix Multiplication
	Slide 19: Loading a Tile
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: 2D Tiled MatMul Kernel
	Slide 27: Analysis: Improvement of Tiling
	Slide 28: Boundary Checks of Tiled MatMul

