
Lec5: Memory Architecture
and Data Locality

Agenda

• Memory organization
• Position of data for efficient access by massive threads
• Memory bound
• Cache/Tiling
• Data locality

Introduction

• So far, we have studied
• Writing CUDA kernels
• Configure and coordinate threads
• Understand scheduling of blocks and warps
• GPU architecture (except memory)

• But the kernels we wrote might perform at small fraction of
hardware capability, because
• Frequent access to global memory
• Un-optimized access to global memory
• Overall performance bounded by low throughput of global memory

Analysis of matrix multiplication

• Let’s analyze the performance
of this kernel: what’s the
maximum GFLOP/s possible?

• Look at the inner loop iteration:
each iteration:
• 2 FLOP
• 2 global memory access—8B
• Arithmetic intensity:

2FLOP/8B = 0.25 FLOP/B

Naïve Matrix Multiplication Kernel

• (From last slide) The arithmetic
intensity (or compute-to-
global-memory-ratio) of the
naïve matmul kernel is
0.25FLOP/B.

• As an example, the Ampere
A100 GPU, the global memory
bandwith is 1555 GB/s

• Which means the achieved
FLOPS is 0.25*1555 = 389
GFLOP/s

• However, 389 GFLOP/s is only
2% of the peak SP throughput
which is 19.5 TFLOP/s

• If accounting for TensorCores,
the peak SP throughput is 156
TFLOP/s, and 389 GFLOP/s is
only 0.25% of the peak

• This is not ideal--any way to
improve substantially?

The Roofline Model

• Low computational intensity –
memory bound

• High computational intensity –
compute bound

• You want compute bound!
• What’s the FLOP/B needed to

achieve peak compute
throughput on A100?
19,500 GFLOP/second)/(1555
GB/second)=12.5 FLOP/B

Improving Naïve MatMul Kernel

• Need 12.5 FLOP/B intensity to be compute bound!
• I.e., 50 FLOP/element! (1 SP element is 4B)
• Can we improve computation intensity of MatMul?
• We want to reduce traffic to global memory, which means that

• Need to increase data reuse on-chip (cache? Register?)
• Need to change matmul algorithm and implementation

• Depending on how much reduction to global memory is achieved,
performance of MatMul kernel can differ by 2-3 orders of
magnitude!

CUDA memory types

• Scope
• Per-grid
• Per-block
• Per-thread

• The programmer dictates
where the variables stays

• Aggregate register bandwidth
is usually >=10x shared
memory >=100x global
memory

• Also data in register takes less
instructions to access

Variable <-> Memory type

MatMul: Tiling to reduce memory traffic

• To reduce global memory traffic, let’s use increase data reuse in
shared memory

• we could try to increase data reuse in other places as well like
registers, but for now let’s focus on shared memory

• The idea is to load parts of A and B into the shared memory and
make the most use of them before kicking them out and bring in
other parts.

Shared Memory, Tiling

Caching Data in Shared Memory
• Same memory locations accessed by neighboring

threads

for (int i = 0; i < 3; i++){

 for (int j = 0; j < 3; j++){

 sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

 }

}

13

Data Reuse
• Shared memory tiling

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];

…

Load tile into shared memory

__syncthreads();

for (int i = 0; i < 3; i++){

 for (int j = 0; j < 3; j++){

 sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

 }

}

14

How much reduction to
global memory
achieved?

Tiled MatMul

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a column
of N

– Each thread block – a strip of M and a
strip of N

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each

thread into phases
– so that the data accesses by the

thread block in each phase are
focused on one tile of M and one
tile of N

– The tile is of TS elements in each
dimension

Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

19

2D Tiled MatMul Kernel

Analysis: Improvement of Tiling
• Assuming TS=32.
• What’s the computational intensity FLOP/B now? (bytes refer to

global memory traffic)?
• Now the unit if a tile TS*TS
• Load once: 2*TS*TS*4 bytes,
• Compute: 2*TS*TS*TS
• Ratio: TS/4 FLOP/B = 8 FLOP/B, a 32x over naïve MatMul.

• What’s the Peak Compute rate now?
• 8 FLOP/B * 1500 GB/s = 12 TFLOP/s (~60% of hardware peak, not bad!)

Boundary Checks of Tiled MatMul

	Slide 1: Lec5: Memory Architecture and Data Locality
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Analysis of matrix multiplication
	Slide 5: Naïve Matrix Multiplication Kernel
	Slide 6: The Roofline Model
	Slide 7: Improving Naïve MatMul Kernel
	Slide 8: CUDA memory types
	Slide 9
	Slide 10: Variable <-> Memory type
	Slide 11: MatMul: Tiling to reduce memory traffic
	Slide 12: Shared Memory, Tiling
	Slide 13: Caching Data in Shared Memory
	Slide 14: Data Reuse
	Slide 15
	Slide 16: Tiled MatMul
	Slide 17: Matrix Multiplication
	Slide 18: Tiled Matrix Multiplication
	Slide 19: Loading a Tile
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: 2D Tiled MatMul Kernel
	Slide 27: Analysis: Improvement of Tiling
	Slide 28: Boundary Checks of Tiled MatMul

