
Lec5: Memory Architecture 
and Data Locality



Agenda

• Memory organization
• Position of data for efficient access by massive threads
• Memory bound
• Cache/Tiling
• Data locality



Introduction

• So far, we have studied
• Writing CUDA kernels 
• Configure and coordinate threads
• Understand scheduling of blocks and warps
• GPU architecture (except memory)

• But the kernels we wrote might perform at small fraction of 
hardware capability, because
• Frequent access to global memory
• Un-optimized access to global memory
• Overall performance bounded by low throughput of global memory



Analysis of matrix multiplication

• Let’s analyze the performance 
of this kernel: what’s the 
maximum GFLOP/s possible?

• Look at the inner loop iteration: 
each iteration:
• 2 FLOP
• 2 global memory access—8B
• Arithmetic intensity: 

2FLOP/8B = 0.25 FLOP/B



Naïve Matrix Multiplication Kernel 

• (From last slide) The arithmetic 
intensity (or compute-to-
global-memory-ratio) of the 
naïve matmul kernel is 
0.25FLOP/B. 

• As an example, the Ampere 
A100 GPU, the global memory 
bandwith is 1555 GB/s

• Which means the achieved 
FLOPS is 0.25*1555 = 389 
GFLOP/s

• However, 389 GFLOP/s is only 
2% of the peak SP throughput 
which is 19.5 TFLOP/s

• If accounting for TensorCores, 
the peak SP throughput is 156 
TFLOP/s, and 389 GFLOP/s is 
only 0.25% of the peak 

• This is not ideal--any way to 
improve substantially? 



The Roofline Model

• Low computational intensity –
memory bound

• High computational intensity –
compute bound

• You want compute bound! 
• What’s the FLOP/B needed to 

achieve peak compute 
throughput on A100?
19,500 GFLOP/second)/(1555 
GB/second)=12.5 FLOP/B



Improving Naïve MatMul Kernel

• Need 12.5 FLOP/B intensity to be compute bound!
• I.e., 50 FLOP/element! (1 SP element is 4B)
• Can we improve computation intensity of MatMul? 
• We want to reduce traffic to global memory, which means that

• Need to increase data reuse on-chip (cache? Register?)
• Need to change matmul algorithm and implementation

• Depending on how much reduction to global memory is achieved, 
performance of MatMul kernel can differ by 2-3 orders of 
magnitude!



CUDA memory types

• Scope
• Per-grid
• Per-block
• Per-thread

• The programmer dictates 
where the variables stays



• Aggregate register bandwidth 
is usually >=10x shared 
memory >=100x global 
memory

• Also data in register takes less 
instructions to access



Variable <-> Memory type 



MatMul: Tiling to reduce memory traffic 

• To reduce global memory traffic, let’s use increase data reuse in 
shared memory 

• we could try to increase data reuse in other places as well like 
registers, but for now let’s focus on shared memory

• The idea is to load parts of A and B into the shared memory and 
make the most use of them before kicking them out and bring in 
other parts. 



Shared Memory, Tiling



Caching Data in Shared Memory
• Same memory locations accessed by neighboring 

threads

for (int i = 0; i < 3; i++){

    for (int j = 0; j < 3; j++){

        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

    }

}
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Data Reuse
• Shared memory tiling

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];

…

Load tile into shared memory

__syncthreads();

for (int i = 0; i < 3; i++){

  for (int j = 0; j < 3; j++){

    sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

  }

}
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How much reduction to 
global memory 
achieved? 





Tiled MatMul



M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a column 
of N

– Each thread block – a strip of M and a 
strip of N
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Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 
– so that the data accesses by the 

thread block in each phase are 
focused on one tile of M and one 
tile of N

– The tile is of TS elements in each 
dimension



Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code
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2D Tiled MatMul Kernel



Analysis: Improvement of Tiling
• Assuming TS=32. 
• What’s the computational intensity FLOP/B now? (bytes refer to 

global memory traffic)? 
• Now the unit if a tile TS*TS
• Load once: 2*TS*TS*4 bytes, 
• Compute: 2*TS*TS*TS
• Ratio: TS/4 FLOP/B = 8 FLOP/B, a 32x over naïve MatMul.

• What’s the Peak Compute rate now? 
• 8 FLOP/B * 1500 GB/s = 12 TFLOP/s (~60% of hardware peak, not bad!)



Boundary Checks of Tiled MatMul
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