Lec6: Performance
Considerations

Based on textbook chapter 6

Agenda

* We have discussed in last lecture how to reduce global memory
access/traffic

* This lecture we learn how to access global memory efficiently:
* Memory coalescing
* Latency hiding

* And efficient shared memory access
* And a checklist of performance considerations

Warmup: #0: Control Divergence in Warp

// Divergent kernel: Warp splits into two paths based on thread ID // Divergent kernel: Warp splits into two paths based on thread ID
—-global__ void divergent_kernel 4way(int routput, int iterations) { __global__ void divergent_kernel_2way(int *output, int iterations) {

S CED S L 9 Gl o LTI SR et WL) o B int idx = blockIdx.x * blockDim.x + threadIdx.x;

int lane_id = threadIdx.x % 32; // Determine lane ID within the warp int lane id = threadId % 32: // Det I Sere alT ithin th -

int value = idx; L _id = r X.X % ; etermine e withi e warp

int value = idx;
for (int i = 0; i < iterations; ++i) {
// Condition causes divergence within the warp for (int i = 0; i < iterations; ++i) {

if (lane_id % 4 == 0) { // Condition causes divergence within the warp
value = (value * 3 + 5) % 123; if (lane id % 2 == 0) {
} else if (lane_id %4 == 1) { - ° - .
value = (value * 5 + 4) % 125; value = (value * 3 + 5) % 123;
} else if (lane_id %4 == 2) { } else {
value = (value * 5 + 89) % 125; value = (value * 5 + 3) % 123;
} else { 1
value = (value *2 + 9834) % 434; }
}

1 output[idx] = value;

output[idx] = value;

Divergent kernel time: 15.43 ms
Non-divergent kernel time: 2.91 ms

1: Memory Coalescing

* DRAM is slow: * Remember a warp of threads

 Long latency in accessing the cells execute the same instruction..

* Each time one bitis accessed, a e |f the instruction is MEMORY
range of consecutive bits are LOAD, then we will have have 32

provided—for free.
 Good for spatial data locality simultaneous memory requests

. to global memory
 Burstaccess is fast, random
access is slow * If those 32 mem req are
consecutive: e.g. thread O reads
location X, thread 1 reads
location X+1 .. then

* The 32 mem req can be
combined into 1 memreq, much
faster!

Microbenchmarking:

// Coalesced kernel: consecutive threads access consecutive memory addresses
__global__ void coalesced_kernel(int #*out, const int *in, int n) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n) {
out[tid] = in[tid];
i
}

// Non-coalesced kernel: consecutive threads access strided memory addresses (stride = 32 elements)

__global__ void uncoalesced_kernel(int *out, const int *in, int n) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;

// Calculate a non-coalesced index: threads in a warp access 32 elements apart
int index = (tidl}x 32) * 32 + (tid / 32);

if (index < n) {
out[index] = in[index];
}

Size~1GB in and out data
Coalesced Kernel Time: 15.48 ms
Non-Coalesced Kernel Time: 97.45 ms

Performance Ratio (Non-Coalesced/Coalesced): 6.29x

2d/3d threadldx ->warp ID

* In CUDA the warp membership is determined by the thread’s
linear index within the block. For a 2D thread index, the linear

Index iIs computed as:
linearID=threadldx.x + threadldx.y x blockDim.x

E.g. Fora blockDim =(16,16), the following 32 threads belong to
warp0: (coordinates are (x,y))

WarpO: (0,0), (1, 0), (2, 0), ..., (15, 0), (O, 1
Warp1: (0, 2), (1, 2), (2,2), ..., (15, 2), (0, 3

-

Memory Coalescing Example: Blur

// image: pixel is one float; size mkn stored in row major // image: pixel is one float; size mxn stored in row major
I_global__ void blurl(float *image, float *out, int m, int n) J _global__ void blur2(float ximage, float *out, int m, int n)
{
== int i = threadIdx.x + blockIdx.x * blockDim.x; int i = threadIdx.y + blockIdx.y * blockDim.y;
int j = threadIdx.y + blockIdx.y * blockDim.y; int j = threadIdx.x + blockIdx.x * blockDim.x;
// average of 9 pixels // average of 9 pixels
%f (i>0 && i<m-1 && j>0 & j<n-1) if (i>0 && i<m-1 && j>0 && j<n-1)
float sum = @; { float sum = 0;
for (int ii=-1; ii<=1; ii++) for (int ii=-1; ii<=1; ii++)
for (int jj=-1; jj<=1; jj++) for (int jj=-1; jj<=1; jj++)
sum += image[(i+ii)*n + j+jjl; sum += image[(i+ii)*n + j+jjl;

out[ixn + j1 = 3UM/T; T% ' out[ixn + j] = sum/9;

dim3 gridDim = dim3(m/16,n/16,1);

dim3 blockDim = dim3(16, 16, 1);

// warmup run

blurl<<<gridDim, blockDim>>>(image_d,image_out_d, m, n);

cudaEventRecord(start);
blurl<<<gridDim, blockDim>>>(image_d, image_out_d, m, n);
cudaEventRecord(stop);

cudaEventRecord(start2);
blur2<<<gridDim, blockDim>>>(image_d, image_out_d, m, n);
cudaEventRecord(stop2);

Effects of Memory Coalescing

cudaEventElapsedTime(&milliseconds, start, stop);

printf("BLUR 1 Time: %f, memory bandwidth %f GB/s\n", milliseconds, 2H3izeof(float)*mkn,milliseconds/1e6);

cudaEventElapsedTime(&milliseconds, start2, stop2);
printf("BLUR 2 Time: %f, memory bandwidth %f GB/s\n", milliseconds, 2xsizeof(float)*mkn/milliseconds/1e6);

BLUR 1 Time: 0.750592, memory bandwidth 178.815824 GB/s
BLUR 2 Time: 9.20889¢), memory bandwidth 642.509824 GB/s

« RTX3080'Global memory band\pidth is 760 GB/s

. Whyg*sizeof(float)*m*n? Is it not reading 9 copies of the input pixel
map”
. 'glc/ilnk about the scheduling of blocks to SMs, and working set size of a

* How many threads/blocks can be resident on a SM? What’s the working
set size of a block/thread”? The working set size of a SM? Cache size?

Example: Nalve Matrix Multiplication

// A: mkk, B: kkn, C: mxn; all stored in row major, consecutive in memory

/7 cach thread con * This kernel clearly is

// each thread computes one C[il[j]
_ global__ void naive_matmul(float *A,float *B, float *C, int M, int N, int K)

int i = threadIdx.x + blockIdx.x * blockDim.Xx;

bottlenecked by global
int jlF threadIdx.y + blockIdx.y * blockDim.y; .
oot = K b = N, 1dc = N; memory traffic

for (int k=0; k<K; k++) {
c += Alixlda + k] * B[k«ldb + jI;

ft e+ 11 = * Are the accesses coalescing or
not?

 [f not, how to fix?

2: Avoid bank conflict in shared memory

Shared Memory

* Shared memory is an interleaved memory
* Typically, 32 banks
* Each bank can service one address per cycle

. Successivords are assigned to successive banks
* Bank =Address % 32

* Bank conflicts are only possible within a warp
* No bank conflicts between different warps

Shared Memory

e Bank conflict free

J

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Bank 15

Linear addressing: stride = 1

12

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Random addressing 1:1

Slide credit: Hwu & Kirk

Shared Memory

* N-way bank conflicts .

Thread O Thread O
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3

Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 8
Thread 9 °
Thread 10

Thread 11 ./: Bank 15

Slide credit: Hwu & Kirk

13

Example: Microbenchmarking

_global__ void kernelNoConflict(int *output, int iterations) _global__ void kernelConflict(int *output, int iterations)
// Declare shared memory as volatile to force a real load each time. // Allocate shared memory large enough so that when using the index below
_shared__ volatile int sdata[BLOCK_SIZE]; // each thread’s access lands in the same bank.

hared latile int sdata[BLOCK_SIZE x 32];
int tid = threadIdx.x + blockIdx.x * blockDim.x; —sheresl elsils A Sl -]

int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Compute an index that forces bank conflicts.
int index = threadIdx.x x 32;

// Initialize shared memory.
sdata[threadIdx.x] = 1;
__syncthreads();

int sum = 0; // Initialize the shared memory element used by this thread.
// Repeatedly read from shared memory. sdata[index] = 1;
// Each thread reads its own element (which is in a unique bank within a warp). __syncthreads();
for (int i = @; i < iterations; i++) {

sum += sdata[threadIdx.x]; int sum = @;
} // Repeatedly read from the conflict-inducing address.

for (int i = @; i < iterations; i++) {

// Write result to global memory to avoid optimizing away the loop. sum += sdata[index];
output[tid] = sum; }

// Write result to global memory.
output[tid] = sum;

/usr/local/cuda-12.6/bin/nvcc bank_conflict.cu -02 -arch=sm_86 && ./a.out
Kernel with no bank conflict: 0.943104 ms
Kernel with severe bank conflict: 14.590976 ms

Example Scenario: Matrix Multiplication

#define TS 32

// block dim 32x32; each thread block computes a 32x32 block matrix in C. i ThiS iS the til.ed M atM Ul fro m

// A: MK, B: KN, C: M#N; all row major stored contiguously in memory.
_global__ void MatMulTiled(float *A, float *B, float *C, int M, int N, int K) l 5
{ eco.
__shared__ float As[TS][TS]; // 4KB
_ shared__ float Bs[TS][TS]; // 4KB
int 1dA = K, 1dB = N, 1dC = N;

int B = blockddx TS; * Now analyze its bank conflicts
Z ggrzzﬁirrrr]lgbégﬁﬁdi;ng;egﬁoggitngz Alrs:rel[:]1 % B[:][cs:cel in Sh a red m em O ry

for (int k=0; k<(K+TS-1)/TS; k += TS) {
//step 1: load the A[Bi] [Bk] and B[Bk][Bj] into As and Bs
As [threadIdx.x] [threadIdx.y] = A[(Bx+threadIdx.x) * ldA + (k+threadIdx.y)l;
Bs [threadIdx.x] [threadIdx.y] = B[(k+threadIdx.x) * 1dA + (By+threadIdx.y)l;
__syncthreads();
//step 2: use As , Bs blocks to accumulate: C += Asx*Bs
float Cij = C[Bx+threadIdx.x] [By+threadIdx.yl];
for (int kk=0; kk<TS; kk++) H{
: Cij += As[threadIdx.x][kk] * Bs[kk] [threadIdx.y];
H

3: Thread Coarsening

* |[n previous examples we * Cons: large overhead,
mostly decompose the especially fixed cost per thread
workloads into very fine tasks: Registers
* Each thread does very little * Redundant loading data/work
* Launch many threads * More synchronization overhead
e Pros: * Less data locality
« Sufficient (thread) parallelism e Solution:
* Easy to start with * Less threads, each doing more

* Agood design approachisto
first decompose into fine tasks,
and then assign one thread to
multiple task

Example: Matrix Multiplication

* We used to assign one thread to one output CJi][j]

* To coarsen threading, we assign one thread to say 4 outputs; they
could be contiguous chunk or distributed around.

* S0 a 16x16 thread block will handle say 32x32 matrix block

* Benefits?
* Might have huge benefit in data reuse in registers

* Thread level parallelism—pipelining

* This is analogous to loop unrolling in serial programs, this can be the
single most effective technique in unblocking compiler/hardware to do a

bunch of optimizations

MatMul: Tiled Version (Old)

#define TS 32

// block dim 32x32; each thread block computes a 32x32 block matrix in C.

// A: M*K, B: K*N, C: M*N; all row major stored contiguously in memory.
__global__ void MatMulTiled(float *A, float *B, float *C, int M, int N, int K)
i

__shared__ float As[TS]1[TS]1; // 4KB
__shared__ float Bs[TS][TS]; // 4KB
int 1dA = K, 1dB = N, 1dC = N;

int Bx blockIdx.x * TS;
int By blockIdx.y * TS;

// perform block inner product of A[Bx:Bx+TSI[:] * B[:][By:By+TSH

// ignoring boundary check for now

float Cij = 0.0f;

for (int Kk = 0; k< (K + TS - 1) / TS; k += TS) {
// step 1: load the A[Bi] [Bk] and B[Bk][Bj] into As and Bs
As[threadIdx.x][threadIdx.y] A[(Bx + threadIdx.x) * 1dA + (k + threadIdx.y)];
Bs[threadIdx.x][threadIdx.y] B[(k + threadIdx.x) * 1dA + (By + threadIdx.y)];
__syncthreads();

// step 2: use As, Bs blocks to accumulate: C += As*Bs
for (int kk = 0; kk < TS; kk++)
Cij += As[threadIdx.x][kk] * Bs[kk][threadIdx.y];

}
C[Bx + threadIdx.x][By + threadIdx.y] = Cij;

MatMul: Tiled Version (thread coarsened)

#fidefine TS 32

__global__ void MatMulTiled(float *A, float *B, float *C, int M, int N, int K) {
__shared__ float As[64]1[TS]; // 64x32 shared memory for A
__shared__ float Bs[TS][64]; // 32x64 shared memory for B
int 1dA = K, 1dB = N, 1dC = N;

// Block handles 64x64 C tile
int Bx blockIdx.x * 64;
int By = blockIdx.y * 64;

int tx threadIdx.x; // 0-31
int ty = threadIdx.y; // 0-31

// 2x2 accumulators
float CO0 = 0.0f, C0O1 = 0.0f, C10 = 0.0f, C11 = 0.0f;

for (int k = 0; k < K; k += TS) {...}

// Write 2x2 block to C

int row = Bx + 2*tx;

int col = By + 2%ty;

Clrow * 1dC col] = CO0O;

Clrow * 1dC col + 1] = CO1;
Cl(row + 1) 1dC + col] = C10;
CL(row + 1) 1dC + col + 1] = C11;

for (int k = 0; k < K; k += TS) {
// Load 64x32 A tile into As
As[2*tx][ty] = A[(Bx + 2*tx) * 1dA + (k + ty)];
As[2*tx + 1][ty] = A[(Bx + 2*tx + 1) * 1dA + (k + ty)];

// Load 32x64 B tile into Bs
Bs[tx][2*ty] = B[(k + tx) * 1dB + (By + 2*ty)];
Bs[tx][2*ty + 1] = B[(k + tx) * 1dB + (By + 2*ty + 1)1];

__syncthreads();

// Compute 2x2 block

for [int kk = G; kk < TS kk++) {
float a0 = As[2*tx][kk];
float a1 = As[2*tx + 1][kk];
float b0 = Bs[kk][2*ty];
float b1 = Bs[kk][2*ty + 1];

Co0 -+-= a0 b0;
C01 --= a0 b1;
C10 += a1 b0;
C11 += a1 b1;

__syncthreads();

Discussion: Pros vs Cons

* Reduction to global memory traffic?
* Increased data reuse in shared memory?

* Increased data reuse in register file?

Cons:
* Reduced # threads (occupancy?)
* Increased register pressure?

// Ai MxK, B: KxN, C: MxN; all stored in row-major order
// Computes C = A * B with thread coarsening: each thread computes a 2x2 block.
__global__ void coarsened_matmul2x2(float *A, float *B, float *C, int M, int N, int K)

{

// Each thread computes a 2x2 block.

// Compute the top-left index of the 2x2 block.

int i_base (blockIdx.y * blockDim.y + threadIdx.y) * 2;
int j_base (blockIdx.x * blockDim.x + threadIdx.x) * 2;

// Accumulators for the 2x2 block.

float c00 = 0.0f, c01 = 0.0f, ¢10 = 0.0f, c11 = 0.0f; fusr/local/cuda-12.6/bin/nvcc -02 -arch=sm_86 matmul.cu && ./a.out
int 1lda = K, 1db = N, 1ldc = N; naive matmul 1 Time: 579.636230, memory bandwidth 0.926220 GB/s, GFLOPS: 1896.899456
coarsened matmul 1 Time: 312.706177, memory bandwidth 1.716854 GB/s, GFLOPS: 3516.117504

// LOC.)p over the K dimension. Compilation finished at Fri Feb 14 23:45:07
for (int k = 0; k < K; k++) {

// Load elements from A if within bounds.
float a0 = (i_base < M) ? A[i_base * 1lda + k] : 0.0f;
float a1 ((i_base + 1) < M) ? A[(i_base + 1) * lda + k] : 0.0f;

// Load elements from B if within bounds.
float b0 (j_base < N) ? B[k * 1db + j_base] : 0.0f;
float b1 ((j_base + 1) < N) ? B[k * 1db + j_base + 1] : 0.0f;

// Multiply and accumulate for the 2x2 outputs.
if (i_base < M && j_base < N)
c00 += a0 * bO;
if (i_base < M && (j_base + 1) < N)
c01 += a0 * b1;
if ((i_base + 1) < M && j_base < N)
c10 += a1l * bO;
if ((i_base + 1) < M && (j_base + 1) < N)
c11 += a1l * b1;

// Write the results back to C with proper boundary checks.
if (i_base < M && j_base < N)
C[i_base * ldc + j_base] = c00;
if (i_base < M && (j_base + 1) < N)
C[i_base * ldc + j_base + 1] = c01;
if ((i_base + 1) < M && j_base < N)
C[(i_base + 1) * ldc + j_base] = c10;
if ((i_base + 1) < M & (j_base + 1) < N)
C[(i_base + 1) * 1ldc + j_base + 1] = c¢c11;

Checklist

Optimization

Benefit to compute cores Benefit to memory

Strategies

Maximizing
occupancy

More work to hide
pipeline latency

More parallel memory
accesses to hide DRAM
latency

Tuning usage of SM resources such as threads per block, shared
memory per block, and registers per thread

Enabling
coalesced
global
memory
accesses

Fewer pipeline stalls
waiting for global
MEemory accesses

Less global memory traffic
and better utilization of
bursts/cache lines

Transfer between global memory and shared memory in a
coalesced manner and performing uncoalesced accesses in
shared memory (e.g., corner turning)

Rearranging the mapping of threads to data

Rearranging the layout of the data

Minimizing
control
divergence

High SIMD efficiency
(fewer idle cores
during SIMD
execution)

Rearranging the mapping of threads to work and/or data

Rearranging the layout of the data

Tiling of reused
data

Fewer pipeline stalls
waiting for global
memory accesses

Less global memory traffic

Placing data that is reused within a block in shared memory or
registers so that it is transferred between global memory and
the SM only once

Privatization
(covered later)

Fewer pipeline stalls
waiting for atomic
updates

Less contention and
serialization of atomic
updates

Applying partial updates to a private copy of the data and then
updating the universal copy when done

Thread
cnarsening

Less redundant work,
divergence, or
synchronization

Less redundant global
memory traffic

Assigning multiple units of parallelism to each thread to reduce

the price of parallelism when it is incurred unnece&:ﬁaril}f

Assignment1: Matrix Transpose

* A great exercise to apply the performance considerations
discussed so far. Particularly:

* Coalescing global memory access

* Use the shared memory (nhot necessarily to improve data reuse, but rather
to achieve Coalescing)

* Thread coarsening (loop unrolling) to further improve performance

 Two kernels:

* shmemTransposeKernel: use of shared memory to achieve coalescing
* optimallransposeKernel: use thread coarsening

* Goal: approach or (exceed!) the vendor optimized routine
memcpy().

	Slide 1: Lec6: Performance Considerations
	Slide 2: Agenda
	Slide 3: Warmup: #0: Control Divergence in Warp
	Slide 4: #1: Memory Coalescing
	Slide 5: Microbenchmarking:
	Slide 6: 2d/3d threadIdx -> warp ID
	Slide 7: Memory Coalescing Example: Blur
	Slide 8: Effects of Memory Coalescing
	Slide 9: Example: Naïve Matrix Multiplication
	Slide 10: #2: Avoid bank conflict in shared memory
	Slide 11: Shared Memory
	Slide 12: Shared Memory
	Slide 13: Shared Memory
	Slide 14: Example: Microbenchmarking
	Slide 15: Example Scenario: Matrix Multiplication
	Slide 16: #3: Thread Coarsening
	Slide 17: Example: Matrix Multiplication
	Slide 18: MatMul: Tiled Version (Old)
	Slide 19: MatMul: Tiled Version (thread coarsened)
	Slide 20: Discussion: Pros vs Cons
	Slide 21: Simple Benchmark
	Slide 22: Checklist
	Slide 23: Assignment1: Matrix Transpose

