
Lec6: Performance
Considerations

Based on textbook chapter 6

Agenda

• We have discussed in last lecture how to reduce global memory
access/traffic

• This lecture we learn how to access global memory efficiently:
• Memory coalescing
• Latency hiding

• And efficient shared memory access
• And a checklist of performance considerations

Warmup: #0: Control Divergence in Warp

#1: Memory Coalescing

• DRAM is slow:
• Long latency in accessing the cells
• Each time one bit is accessed, a

range of consecutive bits are
provided—for free.

• Good for spatial data locality
• Burst access is fast, random

access is slow

• Remember a warp of threads
execute the same instruction…

• If the instruction is MEMORY
LOAD, then we will have have 32
simultaneous memory requests
to global memory

• If those 32 mem req are
consecutive: e.g. thread 0 reads
location X, thread 1 reads
location X+1,… then

• The 32 mem req can be
combined into 1 mem req, much
faster!

Microbenchmarking:

Size ~ 1GB in and out data
Coalesced Kernel Time: 15.48 ms
Non-Coalesced Kernel Time: 97.45 ms
Performance Ratio (Non-Coalesced/Coalesced): 6.29x

2d/3d threadIdx -> warp ID

• In CUDA the warp membership is determined by the thread’s
linear index within the block. For a 2D thread index, the linear
index is computed as:

linearID=threadIdx.x + threadIdx.y × blockDim.x

E.g. For a blockDim = (16,16), the following 32 threads belong to
warp0: (coordinates are (x,y))
Warp0: (0,0), (1, 0), (2, 0), …, (15, 0), (0, 1), (1, 1), …, (15, 1)
Warp1: (0, 2), (1, 2), (2,2), …, (15, 2), (0, 3), (1, 3), …, (15, 3)

Memory Coalescing Example: Blur

Effects of Memory Coalescing

• fdlkjfld

• RTX3080 Global memory bandwidth is 760 GB/s
• Why 2*sizeof(float)*m*n? Is it not reading 9 copies of the input pixel

map?
• Think about the scheduling of blocks to SMs, and working set size of a

SM.
• How many threads/blocks can be resident on a SM? What’s the working

set size of a block/thread? The working set size of a SM? Cache size?

Example: Naïve Matrix Multiplication

• This kernel clearly is
bottlenecked by global
memory traffic

• Are the accesses coalescing or
not?

• If not, how to fix?

#2: Avoid bank conflict in shared memory

Shared Memory
• Shared memory is an interleaved memory

• Typically, 32 banks
• Each bank can service one address per cycle
• Successive 32-bit words are assigned to successive banks

• Bank = Address % 32

• Bank conflicts are only possible within a warp
• No bank conflicts between different warps

11

Shared Memory
• Bank conflict free

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

12

Slide credit: Hwu & Kirk

Shared Memory
• N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

13

Slide credit: Hwu & Kirk

Example: Microbenchmarking

Example Scenario: Matrix Multiplication

• This is the tiled MatMul from
lec5.

• Now analyze its bank conflicts
in shared memory

#3: Thread Coarsening

• In previous examples we
mostly decompose the
workloads into very fine tasks:
• Each thread does very little
• Launch many threads

• Pros:
• Sufficient (thread) parallelism
• Easy to start with

• Cons: large overhead,
especially fixed cost per thread
• Registers
• Redundant loading data/work
• More synchronization overhead
• Less data locality

• Solution:
• Less threads, each doing more
• A good design approach is to

first decompose into fine tasks,
and then assign one thread to
multiple task

Example: Matrix Multiplication

• We used to assign one thread to one output C[i][j]
• To coarsen threading, we assign one thread to say 4 outputs; they

could be contiguous chunk or distributed around.
• So a 16x16 thread block will handle say 32x32 matrix block
• Benefits?

• Might have huge benefit in data reuse in registers
• Thread level parallelism—pipelining
• This is analogous to loop unrolling in serial programs, this can be the

single most effective technique in unblocking compiler/hardware to do a
bunch of optimizations

MatMul: Tiled Version (Old)

MatMul: Tiled Version (thread coarsened)

Discussion: Pros vs Cons

• Reduction to global memory traffic?
• Increased data reuse in shared memory?
• Increased data reuse in register file?

Cons:
• Reduced # threads (occupancy?)
• Increased register pressure?

Simple Benchmark

Checklist

Assignment1: Matrix Transpose

• A great exercise to apply the performance considerations
discussed so far. Particularly:
• Coalescing global memory access
• Use the shared memory (not necessarily to improve data reuse, but rather

to achieve Coalescing)
• Thread coarsening (loop unrolling) to further improve performance

• Two kernels:
• shmemTransposeKernel: use of shared memory to achieve coalescing
• optimalTransposeKernel: use thread coarsening

• Goal: approach or (exceed!) the vendor optimized routine
memcpy().

	Slide 1: Lec6: Performance Considerations
	Slide 2: Agenda
	Slide 3: Warmup: #0: Control Divergence in Warp
	Slide 4: #1: Memory Coalescing
	Slide 5: Microbenchmarking:
	Slide 6: 2d/3d threadIdx -> warp ID
	Slide 7: Memory Coalescing Example: Blur
	Slide 8: Effects of Memory Coalescing
	Slide 9: Example: Naïve Matrix Multiplication
	Slide 10: #2: Avoid bank conflict in shared memory
	Slide 11: Shared Memory
	Slide 12: Shared Memory
	Slide 13: Shared Memory
	Slide 14: Example: Microbenchmarking
	Slide 15: Example Scenario: Matrix Multiplication
	Slide 16: #3: Thread Coarsening
	Slide 17: Example: Matrix Multiplication
	Slide 18: MatMul: Tiled Version (Old)
	Slide 19: MatMul: Tiled Version (thread coarsened)
	Slide 20: Discussion: Pros vs Cons
	Slide 21: Simple Benchmark
	Slide 22: Checklist
	Slide 23: Assignment1: Matrix Transpose

