
Lec7: Reductions
Textbook chapter 10

Introduction

• A reduction is a very common computation primitive—deriving a
single value out of an array of values using binary operator.

• E.g.: reduction(+): sum of array: s = a0+a1 + .. an
reduction(*): prod of array: s = a0*a1*…*an
reduction(max): s = max(a0, max(a1, …, an)))..) = max(a0,…,an)

• The binary operator is commutative and associative
• A very important parallel primitive as well as its computational

structure can be parallelized

General Reduction

• For add reduction,
IDENTITY = 0
op = +

• For max reduction,
IDENTITY = -infinity
op = max(.,.)

• For prod reduction,
IDENTITY = 1
op = *

• …

Reduction tree

• Any reduction can be parallelized
visualized as a tree

• Time (rounds) flow from top to
bottom.

• The ops at the same round can
be done in parallel.

• Order of evaluation is different
from the sequential for loop, but
it’s OK because op is associative

• #rounds = O(log n) vs sequential
O(n)

• The O(log n) is actually optimal

Simple Reduction Kernel

• Start with 1 Thread block, with
a fixed maximum array size

Single Thread Block Reduction

Minimizing Control Divergence

• Round by round, less and less
threads are active

• Utilization of the SIMD lanes?
• Round 1: 50%

Round 2: 25%
Round 3: 12.5%

• What’s the utilization of the SIMD
lanes for n=256, blockDim.x=128?

• Utilization := total active
threads/total SIMD lanes:
About 255 active useful lane op
Total lane op: 4*5*32 +
(2+1)*32=736
Utilization = 255/736 = 35%

Reducing Control Divergence

• Now the first few rounds,
utilization is 100%

• Utilization only degrades in
later rounds.

• What’s the new utilization?
active threads still 255
lanes used:
(4+2+1 + 5)*32 = 384
around half of divergent kernel

Minimal-divergent Reduction

Minimizing global memory access explicitly

• The kernel writes intermediary results into global memory, and
then read them in subsequent rounds

• A better idea is to explicitly store the intermediate data in shared
memory.

Arbitrary input length?

• Break the input down into fixed-
size segment, each one
“reduced” by a thread block.

• Each block produces a single
reduced result

• An extra step at the end to reduce
the results from all thread blocks
• Could be atomicAdds
• Or another round of tree-reduction!

(if many blocks are involved)

General Kernel

Thread Coarsening

• For previous kernels, we
decompose the workload at fine
granularity; launching N/2
threads for length N input.

• Consider thread coarsening—
• Essentially, each (active) thread

adds not only 2 numbers, but 4.
• Less threads N/2 -> N/4
• Less rounds: log_2(N) -> log_4(N)
• Each thread and each round is

bigger

Let’s write code: Optimization Goal

• What would be our goal for a certain sized array? Strive for peak
performance of GPU. But by what metric?
• GB/s?
• GFLOP/s?

• Arithmetic intensity of Reduction:
• 0.25 FLOP/B (assuming 4B element like float)

• Low arithmetic intensity (of problem! Not a particular impl)
• Should be bottlenecked by memory bandwidth
• Therefore GB/s is more appropriate metric
• RTX 3080 has global memory bandwidth 760GB/s

Kernel1: naïve tree reduction: interleaving

Kernel2: tree reduction: non-divergent

• Minimal warp divergence
• Also shared memory access

becomes bank conflict free

Kernel3: Reduce one round and half the
threads

• Fusing the load from global
memory to shared memory
with the first round

• Reduce ½ threads
• Reduce one round of shared

memory read and write.

Kernel 4: Unrolling the loop (the last 6
iterations)

Reduction: CUB

• CUB is part of CUDA
distribution

• It’s a library of collective
parallel primitives, of which
“reduce” is one of them.

• Here we use the DeviceReduce
version; there are also
BlockReduce and WarpReduce
which are block-wise and
warp-wise reduction.

Sidenote: Block-wise reduction and
AtomicAdd

• No multi-level, multi-kernel,
each one reducing #elements
by 256x

• Instead just a block-wide
reduction, and then atomicAdd
all the results from all blocks

• Atomic Global memory access
are serialized

	Slide 1: Lec7: Reductions
	Slide 2: Introduction
	Slide 3: General Reduction
	Slide 4: Reduction tree
	Slide 5: Simple Reduction Kernel
	Slide 6: Single Thread Block Reduction
	Slide 7: Minimizing Control Divergence
	Slide 8: Reducing Control Divergence
	Slide 9: Minimal-divergent Reduction
	Slide 10: Minimizing global memory access explicitly
	Slide 11
	Slide 12: Arbitrary input length?
	Slide 13: General Kernel
	Slide 14: Thread Coarsening
	Slide 15: Let’s write code: Optimization Goal
	Slide 16: Kernel1: naïve tree reduction: interleaving
	Slide 17: Kernel2: tree reduction: non-divergent
	Slide 18: Kernel3: Reduce one round and half the threads
	Slide 19: Kernel 4: Unrolling the loop (the last 6 iterations)
	Slide 20: Reduction: CUB
	Slide 21: Sidenote: Block-wise reduction and AtomicAdd

