
Lec7: Reductions
Textbook chapter 10



Introduction

• A reduction is a very common computation primitive—deriving a 
single value out of an array of values using binary operator. 

• E.g.: reduction(+): sum of array: s = a0+a1 + .. an
reduction(*): prod of array: s = a0*a1*…*an
reduction(max): s = max(a0, max(a1, …, an)))..) = max(a0,…,an)

• The binary operator is commutative and associative
• A very important parallel primitive as well as its computational 

structure can be parallelized



General Reduction

• For add reduction, 
IDENTITY = 0
op = +

• For max reduction, 
IDENTITY = -infinity
op = max(.,.)

• For prod reduction,
IDENTITY = 1
op = *

• …



Reduction tree

• Any reduction can be parallelized 
visualized as a tree

• Time (rounds) flow from top to 
bottom.

• The ops at the same round can 
be done in parallel. 

• Order of evaluation is different 
from the sequential for loop, but 
it’s OK because op is associative

• #rounds = O(log n) vs sequential 
O(n) 

• The O(log n) is actually optimal



Simple Reduction Kernel

• Start with 1 Thread block, with 
a fixed maximum  array size



Single Thread Block Reduction



Minimizing Control Divergence

• Round by round, less and less 
threads are active

• Utilization of the SIMD lanes? 
• Round 1: 50%

Round 2: 25%
Round 3: 12.5%

• What’s the utilization of the SIMD 
lanes for n=256, blockDim.x=128?

• Utilization := total active 
threads/total SIMD lanes:
About 255 active useful lane op
Total lane op: 4*5*32 + 
(2+1)*32=736
Utilization = 255/736 = 35%



Reducing Control Divergence

• Now the first few rounds, 
utilization is 100%

• Utilization only degrades in 
later rounds. 

• What’s the new utilization? 
# active threads still 255
# lanes used: 
(4+2+1 + 5)*32 = 384
around half of divergent kernel



Minimal-divergent Reduction



Minimizing global memory access explicitly

• The kernel writes intermediary results into global memory, and 
then read them in subsequent rounds

• A better idea is to explicitly store the intermediate data in shared 
memory. 





Arbitrary input length?

• Break the input down into fixed-
size segment, each one 
“reduced” by a thread block. 

• Each block produces a single 
reduced result

• An extra step at the end to reduce 
the results from all thread blocks
• Could be atomicAdds
• Or another round of tree-reduction! 

(if many blocks are involved)



General Kernel



Thread Coarsening

• For previous kernels, we 
decompose the workload at fine 
granularity; launching N/2 
threads for length N input. 

• Consider thread coarsening—
• Essentially, each (active) thread 

adds not only 2 numbers, but 4. 
• Less threads N/2 -> N/4
• Less rounds: log_2(N) -> log_4(N)
• Each thread and each round is 

bigger



Let’s write code: Optimization Goal

• What would be our goal for a certain sized array? Strive for peak 
performance of GPU. But by what metric? 
• GB/s? 
• GFLOP/s? 

• Arithmetic intensity of Reduction: 
• 0.25 FLOP/B (assuming 4B element like float)

• Low arithmetic intensity (of problem! Not a particular impl)
• Should be bottlenecked by memory bandwidth
• Therefore GB/s is more appropriate metric
• RTX 3080 has global memory bandwidth 760GB/s



Kernel1: naïve tree reduction: interleaving



Kernel2: tree reduction: non-divergent

• Minimal warp divergence
• Also shared memory access 

becomes bank conflict free



Kernel3: Reduce one round and half the 
threads 

• Fusing the load from global 
memory to shared memory 
with the first round 

• Reduce ½ threads 
• Reduce one round of shared 

memory read and write. 



Kernel 4: Unrolling the loop (the last 6 
iterations) 



Reduction: CUB

• CUB is part of CUDA 
distribution

• It’s a library of collective 
parallel primitives, of which 
“reduce” is one of them. 

• Here we use the DeviceReduce
version; there are also 
BlockReduce and WarpReduce
which are block-wise and 
warp-wise reduction. 



Sidenote: Block-wise reduction and 
AtomicAdd

• No multi-level, multi-kernel, 
each one reducing #elements 
by 256x 

• Instead just a block-wide 
reduction, and then atomicAdd
all the results from all blocks

• Atomic Global memory access 
are serialized
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