
Lec8: Scan
Reference: https://developer.nvidia.com/gpugems/gpugems3/part-

vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
textbook chapter 11

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda


Introduction: Scan

• Similar to Reduce, Scan is another important parallel 
primitives/kernels. Also called prefix-sum. 

• Scan: input an array [a0, a1, …, an]; 
output an array [b0, b1, …, bn]; where: 
b0 = 0
b1 = a0
b2 = a0 + a1
b3 = a0 + a1 + a2
…
bn = a0 + a1 + … + a[n-1]



Introduction cont’d

• What described previous slide is called exclusive scan, meaning 
b[k] = a[0] + a[1] + ...+ a[k-1] which excludes b[k]. 

• On the other hand, inclusive scan includes a[k] in computing 
b[k]: 
b[k] = a[0] + a[1] + … + a[k-1] + a[k]

• They are not that different; one can convert one to the other with 
minimal computation. 

• We’ll always default to exclusive scan unless otherwise stated. 



Potential use scan: 

• Sorting
• String comparison
• Part of many parallel algorithms where each process owns 

variable sized data
• Polynomial evaluation
• Stream compaction 
• Building histograms and other data structures like trees, graphs, …



Use of scan, cont’d

• Convert certain sequential programs into parallel one easily. E.g.



Sequential Algo; work efficiency

• Seems inherently sequential? 
• But time complexity is pretty 

good—only n additions for size n 
input. 

• If a parallel algorithm does not 
more work than the best 
sequential one (asymptotically), 
then it’s called work efficient. 

• This sequential algo is O(n). If you 
go by definition of scan, you get a 
O(n^2) one



Fixed size input on 1 thread block



Parallel Scan: V0 (Hillis and Steele)

• What’s the total work (say 
additions?)

• Each round there are between 
[n/2, n] additions. 

• There are log_2(n) rounds. 
Why? (in round d, each 
element contains at most 2^d 
x[i]s)

• Total work is therefore 
O(n log(n))
Not work-efficient



Scan: V0 (Hillis and Steele)

The algorithm proceeds round by round. 
1. In each round, every element in the array got updated by sum of two elements of previous round
2. After round d, each element contains sum of at most 2^d x[.]. 
3. In the next round d+1, each element combines two 2^d x[.], therefore forming 2^(d+1) x[.] sum.
4. After every round, element k contains only x[i] where i<k. 
5. Corollary of previous points, after log2(n) rounds, for all k, elemen k will contains as many x[i] where i<k. This 
satisfy the definition of exclusive scan.  



Scan V0: CUDA implementation (double 
buffering)



Scan V1: Work efficient Scan

• V0 is not work efficient; how to get rid of the log2(n) factor in the 
total work? 

• (Blelloch 1990) Two phase tree algorithm: 
• Imagine a binary tree, where each input value is a leaf
• Up-sweep: from leaves propagate up to root; each internal node 

combines its two children. 
• Down-sweep: complete the partial scan into full scan



Scan V1: Up-sweep

• From leaves to root, each 
internal node combines its two 
children. 

• How much work? Each node 
does one addition, so in total 
O(n) addition. 

• What’ve got? Partial scans. 
• Need a down-sweep to make 

partial scan full.
• What is missing? 



Scan V1: Down-sweep

• Traverse back from the root to 
leaves, level by level. 

• Each node: 
• Pass its value to left child
• Pass its value plus left to right 

child

• Each node does two things, so 
down-sweep is O(n) operation.





Arbitrary length input? 

• Basic idea: divide and conquer 
like reduction: 
each thread block “scan” its 
own chunk of input array. 

• Each threadblock/scan 
contributes one block sum to 
an intermediate array SUMS

• Scan on the SUMS
• Add SUMS[i] to block i. 





Benchmark

Like reduce, scan performance is capped by global memory 
bandwidth of 760 GB/s. 
Ways to improve it to the CUB level of performance? 



Single Pass Scan for Memory Access 
Efficiency
• In previous solution, partial scans are written back to global memory, and in phase 3 

updated again. This read/write whole array multiple times in 3 kernels. 
• To reduce this traffic, best to use 1 kernel, fusing the three phases into one kernel. 
• Problem is synchronization—phase 3 cannot start until phase 2 (block sum scan) 

finished. And we know blocks cannot synchronize
• need that’s a lie—thread blocks can synchronize, but only in ad-hoc way. We are 

going ad-hoc synchronization. 
• Upon further inspection, we don’t actually need a thread block barrier between 

phase 1 and phase 2; for a thread block i it only needs all blocks <i finish phase 1 
before block i can start phase 2. (The same synchronization applies to phase 2 and 
phase 3)

• This suggests a lighter synchronization-–streaming or domino synchronization–each 
thread block just waits on its immediate previous block: 

0 -> 1 -> 2 -> … -> tb-1



Adjacent synchronization
• Ad-hoc wait on signal
• Flags[bid] false: not ready; 

true: ready. 
• Note how to wait until 

previous block finishes? 
• Scheduling problems? 

Deadlock? 



Scheduling & Synchronization

• In terms of scheduling, if we can schedule block 0,1,…, k first, and 
then schedule k+1,…,2k, … etc, i.e. scheduling blocks in this 
streaming fashion, then the synchronizations are automatically 
satisfied. 

• But we can’t force scheduling threadblocks on GPU. Unless…
• We decouple the static blockIdx with the logical block index. I.e., 

we dynamically assign blocks an index following 0, 1, 2, … as they 
are scheduled, regardless of their blockIdx. 



Dynamic block index assignment

• Note that bid is no longer 
statically determined by 
blockIdx.x

• Instead, it’s given out as blocks 
get scheduled. 

• This ensures that (logical) 
thread blocks are scheduled 
linearly; i.e. 0, 1, …, k will be 
scheduled first; then k+1, …, 
2k, etc. 



Use of Scan: Stream Compaction

• Compaction: Input an array, output an array, filtering out 
unwanted elements determined by predicate p(). 

• How to do this in parallel? (hint: use scan?)



Stream Compaction

• Step1: map using p() for each 
input element (data parallel)

• Step2: Scan the 1-0 array of 
last step

• Step3: Scatter—look up 
number in scan result to find 
its location (or should be 
filtered out)
Is this step parallel? 




	Slide 1: Lec8: Scan
	Slide 2: Introduction: Scan
	Slide 3: Introduction cont’d
	Slide 4: Potential use scan: 
	Slide 5: Use of scan, cont’d
	Slide 6: Sequential Algo; work efficiency
	Slide 7: Fixed size input on 1 thread block
	Slide 8: Parallel Scan: V0 (Hillis and Steele)
	Slide 9: Scan: V0 (Hillis and Steele)
	Slide 10: Scan V0: CUDA implementation (double buffering)
	Slide 11: Scan V1: Work efficient Scan
	Slide 12: Scan V1: Up-sweep
	Slide 13: Scan V1: Down-sweep
	Slide 14
	Slide 15: Arbitrary length input? 
	Slide 16
	Slide 17: Benchmark
	Slide 18: Single Pass Scan for Memory Access Efficiency
	Slide 19: Adjacent synchronization
	Slide 20: Scheduling & Synchronization
	Slide 21: Dynamic block index assignment
	Slide 22: Use of Scan: Stream Compaction
	Slide 23: Stream Compaction
	Slide 24

