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Objective
– To learn the parallel histogram computation pattern

– An important, useful computation
– Very different from all the patterns we have covered so far in terms of 

output behavior of each thread
– A good starting point for understanding output interference in parallel 

computation
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Histogram
– A method for extracting notable features and patterns from large data 

sets
– Feature extraction for object recognition in images
– Fraud detection in credit card transactions
– Correlating heavenly object movements in astrophysics
– …

– Basic histograms - for each element in the data set, use the value to 
identify a “bin counter” to increment
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A Text Histogram Example
– Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, n-

p, …
– For each character in an input string, increment the appropriate bin 

counter.
– In the phrase “Programming Massively Parallel Processors” the 

output histogram is shown below:
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A simple parallel histogram algorithm

– Partition the input into sections
– Have each thread to take a section of the input
– Each thread iterates through its section.
– For each letter, increment the appropriate bin counter
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Sectioned Partitioning (Iteration #1) 
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Sectioned Partitioning (Iteration #2)
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Input Partitioning Affects Memory Access Efficiency

– Sectioned partitioning results in poor memory access efficiency
– Adjacent threads do not access adjacent memory locations
– Accesses are not coalesced
– DRAM bandwidth is poorly utilized
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Input Partitioning Affects Memory Access Efficiency

– Sectioned partitioning results in poor memory access efficiency
– Adjacent threads do not access adjacent memory locations
– Accesses are not coalesced
– DRAM bandwidth is poorly utilized

– Change to interleaved partitioning
– All threads process a contiguous section of elements 
– They all move to the next section and repeat
– The memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
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Interleaved Partitioning of Input
– For coalescing and better memory access performance

…
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Interleaved Partitioning (Iteration 2)

…
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Objective
– To understand data races in parallel computing

– Data races can occur when performing read-modify-write operations
– Data races can cause errors that are hard to reproduce
– Atomic operations are designed to eliminate such data races
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Read-modify-write in the Text Histogram Example

– For coalescing and better memory access performance

…
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Read-Modify-Write Used in Collaboration Patterns

– For example, multiple bank tellers count the total amount of cash in the 
safe

– Each grab a pile and count
– Have a central display of the running total
– Whenever someone finishes counting a pile, read the current running 

total (read) and add the subtotal of the pile to the running total (modify-
write)

– A bad outcome
– Some of the piles were not accounted for in the final total
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A Common Parallel Service Pattern
– For example, multiple customer service agents serving waiting customers 
– The system maintains two numbers, 

– the number to be given to the next incoming customer (I)
– the number for the customer to be served next (S)

– The system gives each incoming customer a number (read I) and 
increments the number to be given to the next customer by 1 (modify-
write I)

– A central display shows the number for the customer to be served next
– When an agent becomes available, he/she calls the number (read S) and 

increments the display number by 1 (modify-write S)
– Bad outcomes

– Multiple customers receive the same number, only one of them receives service
– Multiple agents serve the same number
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A Common Arbitration Pattern
– For example, multiple customers booking airline tickets in parallel
– Each 

– Brings up a flight seat map (read)
– Decides on a seat
– Updates the seat map and marks the selected seat as taken (modify-

write)

– A bad outcome
– Multiple passengers ended up booking the same seat
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Data Race in Parallel Thread Execution

Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be 
after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution 
timing between the two threads, which is referred to as a data race. 

thread1: thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New
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Timing Scenario #1
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 1
– Mem[x] = 2 after the sequence
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Timing Scenario #2
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old  Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

– Thread 1 Old = 1
– Thread 2 Old = 0
– Mem[x] = 2 after the sequence
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Timing Scenario #3
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 0
– Mem[x] = 1 after the sequence
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Timing Scenario #4
Time Thread 1 Thread 2

1 (0) Old  Mem[x]

2 (1) New  Old + 1

3 (0) Old  Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

– Thread 1 Old = 0
– Thread 2 Old = 0
– Mem[x] = 1 after the sequence
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Purpose of Atomic Operations – To Ensure Good Outcomes

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

Or 
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Objective

– To learn to use atomic operations in parallel programming

– Atomic operation concepts

– Types of atomic operations in CUDA

– Intrinsic functions

– A basic histogram kernel
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Data Race Without Atomic Operations

– Both threads receive 0 in Old

– Mem[x] becomes 1

thread1:

thread2: Old  Mem[x]

New  Old + 1

Mem[x]  New

Old  Mem[x]

New  Old + 1

Mem[x]  New

Mem[x] initialized to 0

time
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Key Concepts of Atomic Operations

– A read-modify-write operation performed by a single hardware 
instruction on a memory location address
– Read the old value, calculate a new value, and write the new value to the 

location

– The hardware ensures that no other threads can perform another 
read-modify-write operation on the same location until the current 
atomic operation is complete
– Any other threads that attempt to perform an atomic operation on the 

same location will typically be held in a queue

– All threads perform their atomic operations serially on the same location
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Atomic Arithmetic Operations in CUDA

– Performed by calling functions that are translated into single instructions 
(a.k.a. intrinsic functions or intrinsics)

– Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare 
and swap)

– Read CUDA C programming Guide for details

– Atomic Add

int atomicAdd(int* address, int val); 

– reads the 32-bit word old from the location pointed to by address in 
global or shared memory, computes (old + val), and stores the 
result back to memory at the same address. These three operations 
are performed in one atomic transaction. The function returns old. 
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More Atomic Adds in CUDA

– Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address,

unsigned int val); 

– Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long

int* address, unsigned long long int val); 

– Single-precision floating-point atomic add (Compute capability 2.x+)
float atomicAdd(float* address, float val); 

– Double-precision floating-point atomic add (Compute capability 6.x+)

double atomicAdd(double* address, double val); 

– 16-bit floating-point atomic add (Compute capability 7.x+)

__half atomicAdd(__half* address, __half val); 

6
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A Basic Text Histogram Kernel

– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input  in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) 

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

atomicAdd( &(histo[buffer[i]]), 1);

i += stride;

}

}
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A Basic Histogram Kernel (cont.)
– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input  in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) 

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26) 

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}
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Objective

– To learn about the main performance considerations of atomic 
operations

– Latency and throughput of atomic operations

– Atomic operations on global memory

– Atomic operations on shared L2 cache

– Atomic operations on shared memory

2
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Atomic Operations on Global Memory (DRAM)
– An atomic operation on a 

DRAM location starts with a 
read, which has a latency of 
a few hundred cycles

– The atomic operation ends 
with a write to the same 
location, with a latency of a 
few hundred cycles

– During this whole time, no 
one else can access the 
location
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Atomic Operations on DRAM

– Each Read-Modify-Write has two full memory access delays 
– All atomic operations on the same variable (DRAM location) are serialized

atomic operation N atomic operation N+1

time

DRAM read latency DRAM read latencyDRAM write latency DRAM write latency



5

Latency determines throughput

– Throughput of atomic operations on the same DRAM location is the 
rate at which the application can execute an atomic operation.

– The rate for atomic operation on a particular location is limited by the 
total latency of the read-modify-write sequence, typically more than 
1000 cycles for global memory (DRAM) locations.

– This means that if many threads attempt to do atomic operation on 
the same location (contention), the memory throughput is reduced to 
< 1/1000 of the peak bandwidth of one memory channel!

5
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You may have a similar experience in supermarket checkout

– Some customers realize that they missed an item after they started 
to check out

– They run to the isle and get the item while the line waits
– The rate of checkout is drastically reduced due to the long latency of running to the 

isle and back.

– Imagine a store where every customer starts the check out before 
they even fetch any of the items

– The rate of the checkout will be 1 / (entire shopping time of each customer) 

6
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Hardware Improvements 

– Atomic operations on Fermi L2 cache
– Medium latency, about 1/10 of the DRAM latency

– Shared among all blocks

– “Free improvement” on Global Memory atomics

atomic operation N atomic operation N+1

time

L2 latency L2 latency L2 latency L2 latency
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Hardware Improvements

– Atomic operations on Shared Memory
– Very short latency

– Private to each thread block

– Need algorithm work by programmers (more later)

..

atomic 

operation 

N

atomic 

operation 

N+1

time
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Objective
– Learn to write a high performance kernel by privatizing outputs

– Privatization as a technique for reducing latency, increasing 
throughput, and reducing serialization

– A high performance privatized histogram kernel 
– Practical example of using shared memory and L2 cache atomic 

operations

2
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Privatization

Final 
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N…

Heavy contention and 
serialization
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Privatization (cont.)

Final 
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N…

Much less contention and 
serialization
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Privatization (cont.)

Final 
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N…

Much less contention 
and serialization



6

Cost and Benefit of Privatization
– Cost

– Overhead for creating and initializing private copies
– Overhead for accumulating the contents of private copies into the final copy

– Benefit
– Much less contention and serialization in accessing both the private copies and the 

final copy
– The overall performance can often be improved more than 10x
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Shared Memory Atomics for Histogram 
– Each subset of threads are in the same block
– Much higher throughput than DRAM (100x) or L2 (10x) atomics
– Less contention – only threads in the same block can access a 

shared memory variable
– This is a very important use case for shared memory!
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Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo) 

{
__shared__ unsigned int histo_private[7];

8
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Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo) 

{
__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;
__syncthreads();

9

Initialize the bin counters in 
the private copies of histo[] 
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Build Private Histogram

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads

int stride = blockDim.x * gridDim.x;
while (i < size) {

atomicAdd( &(private_histo[buffer[i]/4), 1);
i += stride;

}

10
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Build Final Histogram
// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x] );

}

}

11



12

More on Privatization
– Privatization is a powerful and frequently used technique for 

parallelizing applications

– The operation needs to be associative and commutative
– Histogram add operation is associative and commutative
– No privatization if the operation does not fit the requirement

– The private histogram size needs to be small
– Fits into shared memory

– What if the histogram is too large to privatize?
– Sometimes one can partially privatize an output histogram and use range 

testing to go to either global memory or shared memory
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