COSC 4330/6310				FINAL		Ju	LY 25, 2012	
	This exam is closed book . You can have one page of notes. Your test has three pages.							
1. Which of the seven following page replacement policies $(3 \times 5 \text{ points})$								
	G	lobal LRU	Global FIFO	Original Clock	Berkeley Clock	Mach	Windows	
	a) Simulate a <i>page referenced-bit</i> ? <u>Berkeley Clock</u>							
	b)	Incorporate a	a global queue ?	Mach and Windo				
	c)	Were design	ed to handle <i>real</i>	<i>time</i> applications	Windows			
2.	For <i>fals</i>	For each of the statements below, indicate in one or two sentence whether the statement is <i>true</i> or <i>false</i> , and <i>why</i> : $(3 \times 5 \text{ points})$						
	a)	a) UNIX lets each user select the block size of his or her files.						
	FALSE, the block size is set by the system administrator for all files in a given disk							
		partition.						
	b) Internal fragmentation is much more of an issue in file systems than in virtual memory sys					emory systems.		
		<u>TRUE, beca</u>	use the same dis	k partition might	contain both very	small and ve	ry small files.	
		<u> </u>					<u></u>	
	c)	In the Fast F	ile System, each	cylinder group con	ntains <i>either</i> inodes	<i>or</i> data block	. S.	
		FALSE, eac	<u>h cylinder group</u>	<u>contains both ino</u>	des and data block	S.		

- 3. *Questions with short answers* (6×5 points)
 - a) How do you prevent *thrashing* in a virtual memory system?

By ensuring that all programs have their working set of pages in physical memory. This

requires a good page replacement policy and enough physicial memory.

b) Why are TLB entries *bigger* than regular page table entries?

Because they must contain the virtual page number in addition to the page frame number.

- c) How does the Fast File System ensure that all *metadata updates* are executed in the *right order*? By forcing all metadata updates to be BLOCKING: this ensures that these operations are executed one by one in strict sequence.
- d) Describe the full contents of a UNIX *directory entry*?

Each directory entry contains a name and an inode number (and NOTHING ELSE!)

e) In the Windows page replacement policy, what is the cost of *reclaiming* a page from the *global queue*?

Two context switches.

f) What is the main advantage of using *asynchronous log updates* in a *journaling file system* ?

Faster updates.

4. An old virtual memory system has a virtual address space of four Gigabytes and a page size of two Kilobytes. (2×5 points)

a)	How many bits are used for <i>the page number</i> ?	<u>32 - 11 = 21</u> bits
b)	How many bits are used for the <i>byte offset</i> ?	<u>log₂ 2,048 = 11</u> bits

- 5. A virtual memory system has 8 Kilobyte pages and 64-bit addresses and uses *inverted page tables*.
 - a) Given that each page table entry occupies 24 bytes what is the fraction of main memory occupied by page tables? (5 points)

24/8K = 24/8,192 = a bit less than 3 percent (2.923 percent to be exact)

b) Why are these page tables entries occupying 24 bytes? (5 points)

Each page table entry must contain a page number, a page frame number and the address of the next

entry. Since the system uses 64-bit addresses each of these entries occupies 8 bytes.

- **6.** A UNIX Fast File System has 32-bit addresses, 8 Kilobyte blocks and 15 block addresses in each inode. How many file blocks can be accessed: (4×5 points)
 - a) Directly from the i-node?*You may, if you want, detail your computation here:*
 - b) With one level of indirection? <u>8K/4 = 2K</u> blocks You may, if you want, detail your computation here:
 - c) With two levels of indirection? <u>4G/8K 2K 12 = 512K 2K 12 = 510K 12</u> blocks
 You may, if you want, detail your computation here: (The maximum file size is 4GB!) (I would have accepted 512K as a correct answer.)
 - d) With three levels of indirection?*You may, if you want, detail your computation here:*

<u>12</u> blocks

ZERO blocks